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Preface

This volume of the Lecture Notes in Computer Science series contains the pro-
ceedings of the 3rd Conference on Numerical Analysis and Its Applications,
which was held at the University of Rousse, Bulgaria, June 29–July 3, 2004.
The conference was organized by the Department of Numerical Analysis and
Statistics at the University of Rousse with the support of the Department of
Mathematics of North Carolina State University.

This conference continued the tradition of the two previous meetings (1996,
2000 in Rousse) as a forum where scientists from leading research groups from
the “East” and “West” are provided with the opportunity to meet and exchange
ideas and establish research cooperations. More than 100 scientists from 28 coun-
tries participated in the conference.

A wide range of problems concerning recent achievements in numerical anal-
ysis and its applications in physics, chemistry, engineering, and economics were
discussed. An extensive exchange of ideas between scientists who develop and
study numerical methods and researchers who use them for solving real-life prob-
lems took place during the conference.

We thank the plenary lecturers, Profs. R. Lazarov and V. Thome, and the
key lecturers and the organizers of the minisymposia, T. Boyadjiev, T. Donchev,
E. Farkhi, M. Van Gijzen, S. Nicaise, and M. Todorov, for their contributions.
We recognize the effort required to prepare these key lectures and organize
the minisymposia. We appreciate your sharing your knowledge of modern high-
performance computing numerical methods with the conference participants. We
also thank I. Brayanov for the help in putting together the book.

The 4th Conference on Numerical Analysis and Its Applications will take
place in 2008.

October 2004 Zhilin Li
Lubin Vulkov

Jerzy Waśniewski
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Boško S. Jovanović, Lubin G. Vulkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

The Finite Element Method for the Navier-Stokes Equations for a
Viscous Heat Conducting Gas

E.D. Karepova, A.V. Malyshev, V.V. Shaidurov,
G.I. Shchepanovskaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Augmented Strategies for Interface and Irregular Domain Problems
Zhilin Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Accuracy Estimates of Difference Schemes for Quasi-Linear Elliptic
Equations with Variable Coefficients Taking into Account Boundary
Effect

Volodymyr Makarov, Lyubomyr Demkiv . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Research Papers

Nodal Two-Dimensional Solitons in Nonlinear Parametric Resonance
N.V. Alexeeva, E.V. Zemlyanaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



VIII Table of Contents

Supercloseness Between the Elliptic Projection and the Approximate
Eigenfunction and Its Application to a Postprocessing of Finite Element
Eigenvalue Problems

Andrey B. Andreev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

One-Dimensional Patch-Recovery Finite Element Method for
Fourth-Order Elliptic Problems

Andrey B. Andreev, Todor T. Dimov, Milena R. Racheva . . . . . . . . . . . 108

Modelling of the Elastic Line for Twist Drill with Straight Shank Fixed
in Three-Jaw Chuck

Andrey B. Andreev, Jordan T. Maximov, Milena R. Racheva . . . . . . . . 116

On the Solvability of the Steady-State Rolling Problem
Todor Angelov Angelov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Quasi-Monte Carlo Method for an Elastic Electron Back-Scattering
Problem

Emanouil I. Atanassov, Mariya K. Durchova . . . . . . . . . . . . . . . . . . . . . . 133

Numerical Treatment of Fourth Order Singularly Perturbed Boundary
Value Problems

Basem S. Attili . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Selection Strategies for Set-Valued Runge-Kutta Methods
Robert Baier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Numerical Methods for the Landau-Lifshitz-Gilbert Equation
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A Method Which Finds the Maxima and Minima of a Multivariable
Function Applying Affine Arithmetic

Shinya Miyajima, Masahide Kashiwagi . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

On Analytic Iterative Functions for Solving Nonlinear Equations and
Systems of Equations

G. Nedzhibov, M. Petkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Parallel Implementation and One Year Experiments with the Danish
Eulerian Model

Tzvetan Ostromsky, Ivan Dimov, Zahari Zlatev . . . . . . . . . . . . . . . . . . . . 440

Conditioning and Error Estimation in the Numerical Solution of Matrix
Riccati Equations

P.Hr. Petkov, M.M. Konstantinov, N.D. Christov . . . . . . . . . . . . . . . . . . 448

Numerical Modelling of the One-Phase Stefan Problem by Finite
Volume Method

Nickolay Popov, Sonia Tabakova, François Feuillebois . . . . . . . . . . . . . . 456

Adaptive Conjugate Smoothing of Discontinuous Fields
Minvydas Ragulskis, Violeta Kravcenkiene . . . . . . . . . . . . . . . . . . . . . . . . 463

Finite Differences Scheme for the Euler System of Equations in a Class
of Discontinuous Functions

Mahir Rasulov, Turhan Karaguler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

The λ-Error Order in Multivariate Interpolation
Dana Simian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478



XII Table of Contents

Computational Aspects in Spaces of Bivariate Polynomial of w-Degree n
Dana Simian, Corina Simian, Andrei Moiceanu . . . . . . . . . . . . . . . . . . . 486

Restarted GMRES with Inexact Matrix–Vector Products
Gerard L.G. Sleijpen, Jasper van den Eshof, Martin B. van Gijzen . . . 494

Applications of Price Functions and Haar Type Functions to the
Numerical Integration

S.S. Stoilova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Numerical Modelling of the Free Film Dynamics and Heat Transfer
Under the van der Waals Forces Action

Sonia Tabakova, Galina Gromyko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Two Resultant Based Methods Computing the Greatest Common
Divisor of Two Polynomials

D. Triantafyllou, M. Mitrouli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Conservative Difference Scheme for Summary Frequency Generation of
Femtosecond Pulse

Vyacheslav A. Trofimov, Abdolla Borhanifar, Alexey G. Volkov . . . . . . 527

Compariosn of Some Difference Schemes for Problem of Femtosecond
Pulse Interaction with Semiconductor in the Case of Nonlinear Mobility
Coefficient

Vyacheslav A. Trofimov, Maria M. Loginova . . . . . . . . . . . . . . . . . . . . . . 535

Soliton-Like Regime of Femtosecond Laser Pulse Propogation in Bulk
Media Under the Conditions of SHG

Vyacheslav A. Trofimov, Tatiana M. Lysak . . . . . . . . . . . . . . . . . . . . . . . 543

Computational Method for Finding of Soliton Solutions of Nonlinear
Shrödinger Equation

Vyacheslav A. Trofimov, Svetlana A. Varentsova . . . . . . . . . . . . . . . . . . . 551

Convergence Analysis for Eigenvalue Approximations on Triangular
Finite Element Meshes

Todor D. Todorov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Performance Optimization and Evaluation for Linear Codes
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Uniform Convergence of a Monotone Iterative
Method for a Nonlinear Reaction-Diffusion

Problem

Igor Boglaev

Institute of Fundamental Sciences, Massey University,
Private Bag 11-222, Palmerston North, New Zealand

I.Boglaev@massey.ac.nz

Abstract. This paper deals with a monotone iterative method for solv-
ing a nonlinear parabolic reaction-diffusion problem. The monotone it-
erative method based on the method of upper and lower solutions is
constructed. A rate of convergence of the method is estimated. Uniform
convergence properties of the monotone iterative method are studied.
Numerical experiments are presented.

1 Introduction

We are interested in a monotone iterative method for solving the nonlinear
reaction-diffusion problem

− μ2
(
∂2u

∂x2 +
∂2u

∂y2

)
+

∂u

∂t
= −f(P, t, u), (1)

P = (x, y), (P, t) ∈ Q = Ω × (0, tF ], Ω = {0 < x < 1, 0 < y < 1} ,
fu(P, t, u) ≥ 0, (P, t, u) ∈ Q× (−∞,∞), (fu ≡ ∂f/∂u),

where μ is a small positive parameter. The initial-boundary conditions are de-
fined by

u(P, t) = g(P, t), (P, t) ∈ ∂Ω × (0, tF ], u(P, 0) = u0(P ), P ∈ Ω,

where ∂Ω is the boundary of Ω. The functions f(P, t, u), g(P, t) and u0(P ) are
sufficiently smooth. Under suitable continuity and compatibility conditions on
the data, a unique solution u(P, t) of (1) exists (see [6] for details). For μ � 1,
problem (1) is singularly perturbed and characterized by the boundary layers of
width O(μ| lnμ|) at the boundary ∂Ω (see [2] for details).

In the study of numerical solutions of nonlinear singularly perturbed problems
by the finite difference method, the corresponding discrete problem is usually
formulated as a system of nonlinear algebraic equations. A major point about this
system is to obtain reliable and efficient computational algorithms for computing
the solution. In the case of the parabolic problem (1), the implicit method is

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 I. Boglaev

usually in use. On each time level, this method leads to a nonlinear system
which requires some kind of iterative scheme for the computation of numerical
solutions. A fruitful method for the treatment of these nonlinear systems is the
method of upper and lower solutions and its associated monotone iterations (in
the case of ”unperturbed” problems see [8], [9] and references therein). Since
the initial iteration in the monotone iterative method is either upper or lower
solutions, which can be constructed directly from the difference equation without
any knowledge of the exact solution, this method eliminates the search for the
initial iteration as is often needed in Newton’s method. This elimination gives a
practical advantage in the computation of numerical solutions.

In [4], for solving nonlinear singularly perturbed reaction-diffusion problems
of elliptic type, we proposed the discrete monotone iterative method based on the
method of upper and lower solutions. In this paper, we extand the monotone
approach from [4] for solving the nonlinear parabolic reaction-diffusion prob-
lem (1).

The structure of the paper is as follows. In Section 2, we construct a monotone
iterative method for solving the implicit difference scheme which approximates
the nonlinear problem (1) and study convergence properties of the proposed
method. Section 3 is devoted to the investigation of uniform convergence of the
monotone iterative method based on Shishkin- and Bakhvalov-type meshes. The
final Section 4 presents results of numerical experiments.

2 Monotone Iterative Method

On Q introduce a rectangular mesh Ω
h ×Ω

τ
, Ω

h
= Ω

hx ×Ω
hy

:

Ω
hx

= {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx = 1; hxi = xi+1 − xi} ,

Ω
hy

=
{
yj , 0 ≤ j ≤ Ny; y0 = 0, yNy = 1; hyj = yj+1 − yj

}
,

Ω
τ

= {tk = kτ, 0 ≤ k ≤ Nτ , Nττ = tF } .
For the approximation of the continuous problem (1), we use the implicit differ-
ence scheme

LhU(P, t) +
1
τ

[U(P, t)− U(P, t− τ)] = −f(P, t, U), (2)

U(P, t) = g(P, t), (P, t) ∈ ∂Ωh ×Ωτ , U(P, 0) = u0(P ), P ∈ Ω
h
,

where LhU(P, t) is defined by

LhU = −μ2 (D2
x +D2

y

)
U.

D2
xU(P, t), D2

yU(P, t) are the central difference approximations to the second
derivatives

D2
xU

k
ij = (h̄xi)

−1
[(
Uki+1,j − Ukij

)
(hxi)

−1 −
(
Ukij − Uki−1,j

)
(hxi−1)

−1
]
,
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D2
yU

k
ij = (h̄yj)

−1
[(
Uki,j+1 − Ukij

) (
hkyj

)−1 −
(
Ukij − Uki,j−1

)
(hyj−1)

−1
]
,

h̄xi = 2−1 (hxi−1 + hxi) , h̄yj = 2−1 (hyj−1 + hyj) ,

where Ukij ≡ U (xi, yj , tk).

2.1 Statement of the Monotone Iterative Method

Now, we construct an iterative method for solving the nonlinear difference scheme
(2) which possesses the monotone convergence. This method is based on the
method of upper and lower solutions from [2]. Represent the difference equation
from (2) in the equivalent form

LU(P, t) = −f(P, t, U) + τ−1U(P, t− τ), LU(P, t) ≡
(
Lh + τ−1)U(P, t).

We say that on a time level t ∈ Ωτ , V (P, t) is an upper solution with a given
function V (P, t− τ) , if it satisfies

LV (P, t) + f
(
P, t, V

)
− τ−1V (P, t− τ) ≥ 0, P ∈ Ωh,

V (P, t) = g(P, t), P ∈ ∂Ωh.

Similarly, V (P, t) is called a lower solution on a time level t ∈ Ωτ with a given
function V (P, t − τ), if it satisfies the reversed inequality and the boundary
condition.

Additionally, we assume that f(P, t, u) from (1) satisfies the two-sided con-
straints

0 ≤ fu ≤ c∗, c∗ = const. (3)

The iterative solution V (P, t) to (2) is constructed in the following way. On
each time level t ∈ Ωτ , we calculate n∗ iterates V (n)(P, t), P ∈ Ω

h
, n = 1, . . . , n∗

using the recurrence formulas

(L+ c∗)Z(n+1)(P, t) = −
[
LV (n)(P, t) + f

(
P, t, V (n)

)
−τ−1V (P, t− τ)

]
, P ∈ Ωh, (4)

Z(n+1)(P, t) = 0, P ∈ ∂Ωh, n = 0, . . . , n∗ − 1,

V (n+1)(P, t) = V (n)(P, t) + Z(n+1)(P, t), P ∈ Ω
h
,

V (P, t) ≡ V (n∗)(P, t), P ∈ Ω
h
, V (P, 0) = u0(P ), P ∈ Ω

h
,

where an initial guess V (0)(P, t) satisfies the boundary condition

V (0)(P, t) = g(P, t), P ∈ ∂Ωh.
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2.2 Convergence of the Monotone Iterative Method

On Ω
h

= Ω
hx×Ω

hy
, we represent a difference scheme in the following canonical

form
d(P )W (P ) =

∑
P ′∈S(P )

e (P, P ′)W (P ′) + F (P ), P ∈ Ωh, (5)

W (P ) = W 0(P ), P ∈ ∂Ωh,

and suppose that

d(P ) > 0, e (P, P ′) ≥ 0, c(P ) = d(P )−
∑

P ′∈S′(P )

e (P, P ′) > 0, P ∈ Ωh,

where S′(P ) = S(P ) \ {P}, S(P ) is a stencil of the difference scheme. Now, we
formulate a discrete maximum principle and give an estimate on the solution to
(5).

Lemma 1. Let the positive property of the coefficients of the difference scheme
(5) be satisfied.

(i) If W (P ) satisfies the conditions

d(P )W (P )−
∑

P ′∈S(P )

e (P, P ′)W (P ′)− F (P ) ≥ 0(≤ 0), P ∈ Ωh,

W (P ) ≥ 0(≤ 0), P ∈ ∂Ωh,

then W (P ) ≥ 0(≤ 0), P ∈ Ω
h
.

(ii) The following estimate on the solution to (5) holds true

‖W‖
Ω

h ≤ max
[∥∥W 0

∥∥
∂Ωh ; ‖F/c‖Ωh

]
, (6)

where
‖W‖

Ω
h = max

P∈Ωh
|W (P )|,

∥∥W 0
∥∥
∂Ωh = max

P∈∂Ωh

∣∣W 0(P )
∣∣ .

The proof of the lemma can be found in [11].

Theorem 1. Let V (P, t − τ) be given and V
(0)

(P, t), V (0)(P, t) be upper and
lower solutions corresponding to V (P, t−τ). Suppose that f(P, t, u) satisfies (3).
Then the upper sequence

{
V

(n)
(P, t)

}
generated by (4) converges monotonically

from above to the unique solution V(P, t) of the problem

LV (P, t) + f(P, t, V )− τ−1V (P, t− τ) = 0, P ∈ Ωh, (7)

V (P, t) = g(P, t), P ∈ ∂Ωh,

the lower sequence
{
V (n)(P, t)

}
generated by (4) converges monotonically from

below to V (P, t):

V(P, t) ≤ V
(n+1)

(P, t) ≤ V
(n)

(P, t) ≤ V
(0)

(P, t), P ∈ Ω
h
,
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V (0)(P, t) ≤ V (n)(P, t) ≤ V (n+1)(P, t) ≤ V(P, t), P ∈ Ω
h
,

and the sequences converge with the linear rate ρ = c∗/(c∗ + τ−1).

Proof. We consider only the case of the upper sequence. If V
(0)

(P, t) is an upper
solution, then from (4) we conclude that

(L+ c∗)Z(1)(P, t) ≤ 0, P ∈ Ωh, Z(1)(P, t) = 0, P ∈ ∂Ωh.

From Lemma 1, by the maximum principle for the difference operator L + c∗,
it follows that Z(1)(P, t) ≤ 0, P ∈ Ω̄h. Using the mean-value theorem and the
equation for Z(1), we have

LV (1)
(P, t) + f

(
P, t, V

(1)
)
− V (P, t− τ)

τ
= −

[
c∗ − f (1)

u (P, t)
]
Z(1)(P, t), (8)

where f
(1)
u (P, t) ≡ fu

[
P, t, V

(0)
(P, t) + θ(1)(P, t)Z(1)(P, t)

]
, 0 < θ(1)(P, t) < 1.

Since the mesh function Z(1)(P, t) is nonpositive on Ωh and taking into account
(3), we conclude that V

(1)
(P, t) is an upper solution. By induction we obtain

that Z(n)(P, t) ≤ 0, P ∈ Ω
h
, n = 1, 2, . . ., and prove that

{
V

(n)
(P, t)

}
is a

monotonically decreasing sequence of upper solutions.
Now we shall prove that the monotone sequence

{
V

(n)
(P, t)

}
converges to

the solution of (7). Similar to (8), we obtain

LV (n)
(P, t) + f

(
P, t, V

(n)
)
− V (P, t− τ)

τ
= −

[
c∗ − f (n)

u (P, t)
]
Z(n)(P, t), (9)

and from (4), it follows that Z(n+1)(P, t) satisfies the difference equation

(L+ c∗)Z(n+1)(P, t) =
(
c∗ − f (n)

u

)
Z(n)(P, t), P ∈ Ωh.

Using (6) and (3), we conclude∥∥∥Z(n+1)(t)
∥∥∥
Ω

h
≤ ρn

∥∥∥Z(1)(t)
∥∥∥
Ω

h
, ρ =

c∗

c∗ + τ−1 . (10)

This proves convergence of the upper sequence to the solution V of (7) with the
linear rate ρ. In view of limV

(n)
= V as n→∞, we conclude that V ≤ V

(n+1) ≤
V

(n)
.

The uniqueness of the solution to (7) follows from estimate (6). Indeed, if by
contradiction, we assume that there exist two solutions V1 and V2 to (7), then
by the mean-value theorem, the difference δV = V1 − V2 satisfies the following
difference problem

(L+ fu) δV(P, t) = 0, P ∈ Ωh, δV(P, t) = 0, P ∈ ∂Ωh.

By (6), this leads to the uniqueness of the solution to (7).
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Theorem 2. Let V (0)(P, t) be an upper or a lower solution in the iterative
method (4), and let f(P, t, u) satisfy (3). Suppose that on each time level the
number of iterates n∗ satisfies n∗ ≥ 2. Then the following estimate on conver-
gence rate holds

max
t∈Ωτ

‖V (t)− U(t)‖
Ω

h ≤ C(ρ)n∗−1,

where U(P, t) is the solution to (2) and constant C is independent of τ . Further-
more, on each time level the sequence

{
V (n)(P, t)

}
converges monotonically.

Proof. Introduce the notation

W (P, t) = U(P, t)− V (P, t),

where V (P, t) ≡ V (n∗)(P, t). Using the mean-value theorem, from (2), (9), con-
clude that W (P, τ) satisfies

(L+ fu(P, τ))W (P, τ) =
[
c∗ − f (n∗)

u (P, τ)
]
Z(n∗)(P, τ), P ∈ Ωh,

W (P, τ) = 0, P ∈ ∂Ωh,

where fu(P, τ) ≡ fu [P, τ, U(P, τ) + θ(P, τ)W (P, τ)] , 0 < θ(P, τ) < 1, and we
have taken into account that V (P, 0) = U(P, 0). By (6), (3) and (10),

‖W (τ)‖
Ω

h ≤ c∗τρn∗−1
∥∥∥Z(1)(τ)

∥∥∥
Ω

h
.

Estimate Z(1)(P, τ) from (4) by (6),∥∥∥Z(1)(τ)
∥∥∥
Ω

h
≤ τ

∥∥∥LV (0)(τ) + f
(
V (0)

)
− τ−1u0

∥∥∥
Ω

h
≤ C1,

where C1 is independent of τ . Thus,

‖W (τ)‖
Ω

h ≤ C̃1τρ
n∗−1, C̃1 = c∗C1, (11)

where C̃1 is independent of τ . Similarly, from (2), (9), it follows that

(L+ fu(P, 2τ))W (P, 2τ) = τ−1W (P, τ)

+
[
c∗ − f (n∗)

u (P, 2τ)
]
Z(n∗)(P, 2τ).

By (6),
‖W (2τ)‖

Ω
h ≤ ‖W (τ)‖

Ω
h + c∗τρn∗−1

∥∥∥Z(1)(2τ)
∥∥∥
Ω

h
.

Estimate Z(1)(P, 2τ) from (4) by (6),∥∥∥Z(1)(2τ)
∥∥∥
Ω

h
≤ τ

∥∥∥LV (0)(2τ) + f
(
V (0)

)
− τ−1U(τ)

∥∥∥
Ω

h
≤ C2,

where C2 is independent of τ . From here and (11), we conclude

‖W (2τ)‖
Ω

h ≤
(
C̃1 + C̃2

)
τρn∗−1, C̃2 = c∗C2.
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By induction, we prove

‖W (tk)‖Ωh ≤
(

k∑
l=1

C̃l

)
τρn∗−1, k = 1, . . . , Nτ , (12)

where all constants C̃l are independent of τ . Denoting

C0 = max
1≤l≤Nτ

C̃l,

and taking into account that Nττ = tF , we prove the estimate in the theorem
with C = tFC0.

Remark 1. Consider the following approach for constructing initial upper and
lower solutions V

(0)
(P, t) and V (0)(P, t). Suppose that for t fixed, a mesh function

R(P, t) is defined on Ω
h

and satisfies the boundary condition R(P, t) = g(P, t)
on ∂Ωh. Introduce the following difference problems

LZ(0)
q (P, t) = q

∣∣LR(P, t) + f(P, t, R)− τ−1V (P, t− τ)
∣∣ , P ∈ Ωh, (13)

Z(0)
q (P, t) = 0, P ∈ ∂Ωh, q = 1,−1.

Then the functions V
(0)

(P, t) = R(P, t) + Z
(0)
1 (P, t), V (0)(P, t) = R(P, t) +

Z
(0)
−1 (P, t) are upper and lower solutions, respectively.

We check only that V
(0)

(P, t) is an upper solution. From the maximum prin-
ciple, it follows that Z(0)

1 (P, t) ≥ 0 on Ω̄h. Now using the difference equation for
Z

(0)
1 , we have

L
(
R + Z

(0)
1

)
+ f

(
R + Z

(0)
1

)
− τ−1V (P, t− τ) = F (P, t) + |F (P, t)|

+f (0)
u Z

(0)
1 ,

F (P, t) ≡
∣∣LR(P, t) + f(P, t, R)− τ−1V (P, t− τ)

∣∣ .
Since f

(0)
u ≥ 0 and Z

(0)
1 is nonnegative, we conclude that V

(0)
(P, t) is an upper

solution.

Remark 2. Since the initial iteration in the monotone iterative method (4) is
either an upper or a lower solution, which can be constructed directly from the
difference equation without any knowledge of the solution as we have suggested
in the previous remark, this algorithm eliminates the search for the initial iter-
ation as is often needed in Newton’s method. This elimination gives a practical
advantage in the computation of numerical solutions.

Remark 3. The implicit two-level difference scheme (2) is of the first order accu-
racy with respect to τ . From here and since ρ ≤ c∗τ , one may choose n∗ = 2 to
keep the global error of the monotone iterative method (4) consistent with the
global error of the difference scheme (2).
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3 Uniform Convergence of the Monotone Iterative
Method (4)

Here we analyse a convergence rate of the monotone iterative method (4) defined
on meshes of the general type introduced in [10]. On these meshes, the implicit
difference scheme (2) converges μ-uniformly to the solution of (1).

A mesh of this type is formed in the following manner. We divide each of
the intervals Ω

x
= [0, 1] and Ω

y
= [0, 1] into three parts [0, σx], [σx, 1− σx],

[1− σx, 1], and [0, σy], [σy, 1− σy], [1− σy, 1], respectively. Assuming that Nx, Ny
are divisible by 4, in the parts [0, σx], [1− σx, 1] and [0, σy], [1− σy, 1] we allocate
Nx/4+1 and Ny/4+1 mesh points, respectively, and in the parts [σx, 1− σx] and
[σy, 1− σy] we allocate Nx/2+1 and Ny/2+1 mesh points, respectively. Points
σx, (1− σx) and σy, (1− σy) correspond to transition to the boundary layers.
We consider meshes Ω

hx
and Ω

hy
which are equidistant in

[
xNx/4, x3Nx/4

]
and[

yNy/4, y3Ny/4
]

but graded in
[
0, xNx/4

]
,
[
x3Nx/4, 1

]
and

[
0, yNy/4

]
,
[
y3Ny/4, 1

]
.

On
[
0, xNx/4

]
,
[
x3Nx/4, 1

]
and

[
0, yNy/4

]
,
[
y3Ny/4, 1

]
let our mesh be given by

a mesh generating function φ with φ(0) = 0 and φ(1/4) = 1 which is supposed
to be continuous, monotonically increasing, and piecewise continuously differen-
tiable. Then our mesh is defined by

xi =

⎧⎨⎩σxφ (ξi) , ξi = i/Nx, i = 0, . . . , Nx/4;
ihx, i = Nx/4 + 1, . . . , 3Nx/4− 1;
1− σx (1− φ (ξi)) , ξi = (i− 3Nx/4) /Nx, i = 3Nx/4 + 1, . . . , Nx,

yj =

⎧⎨⎩σyφ (ξj) , ξj = j/Ny, j = 0, . . . , Ny/4;
jhy, j = Ny/4 + 1, . . . , 3Ny/4− 1;
1− σy (1− φ (ξj)) , ξj = (j − 3Ny/4) /Ny, j = 3Ny/4 + 1, . . . , Ny,

hx = 2 (1− 2σx)N−1
x , hy = 2 (1− 2σy)N−1

y .

We also assume that dφ/dξ does not decrease. This condition implies that

hxi ≤ hx,i+1, i = 1, . . . , Nx/4− 1, hxi ≥ hx,i+1, i = 3Nx/4 + 1, . . . , Nx − 1,

hyj ≤ hy,j+1, j = 1, . . . , Ny/4− 1, hyj ≥ hy,j+1, j = 3Ny/4 + 1, . . . , Ny − 1.

3.1 Shishkin-Type Mesh

We choose the transition points σx, (1− σx) and σy, (1− σy) in Shishkin’s sense
(see [7] for details), i.e.

σx = min
{
4−1, υ1μ lnNx

}
, σy = min

{
4−1, υ2μ lnNy

}
,

where υ1 and υ2 are positive constants. If σx,y = 1/4, then Nx,y are very large
compared to 1/μ which means that the difference scheme (2) can be analysed
using standard techniques. We therefore assume that

σx = υ1μ lnNx, σy = υ2μ lnNy.
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Consider the mesh generating function φ in the form

φ(ξ) = 4ξ.

In this case the meshes Ω
hx

and Ω
hy

are piecewise equidistant with the step
sizes

N−1
x < hx < 2N−1

x , hxμ = 4υ1μN
−1
x lnNx, (14)

N−1
y < hy < 2N−1

y , hyμ = 4υ2μN
−1
y lnNy.

The implicit difference scheme (2) on the piecewise uniform mesh (14) con-
verges μ-uniformly to the solution of (1):

max
(P,t)∈Ωh×Ωτ

|U(P, t)− u(P, t)| ≤M
(
(lnN/N)2 + τ

)
, N = min {Nx;Ny} ,

where constant M is independent of μ, N and τ . The proof of this result can be
found in [7]. From here and Theorem 2, we conclude

max
(P,t)∈Ωh×Ωτ

|V (P, t)− u(P, t)| ≤M
(
(lnN/N)2 + τ

)
+ C(ρ)n∗−1, (15)

where constant C is independent of τ .
Without loss of generality, we assume that the boundary condition in (1) is

zero, i.e. g(P, t) = 0. This assumption can always be obtained via a change of
variables. Let the initial function V (0)(P, t) be chosen on each time level in the
form of (13), i.e. V (0)(P, t) is the solution of the following difference problem

LV (0)(P, t) = q
∣∣f(P, t, 0)− τ−1V (P, t− τ)

∣∣ , P ∈ Ωh, (16)

V (0)(P, t) = 0, P ∈ ∂Ωh, q = 1,−1,

where R(P, t) = 0. Then the functions V
(0)

(P, t), V (0)(P, t) corresponding to
q = 1 and q = −1 are upper and lower solutions, respectively.

Theorem 3. Suppose that the boundary condition in (1) is zero, and an initial
upper or a lower solution V (0)(P, t) is chosen by (16). Let f(P, t, u) satisfy (3).
If on each time level the number of iterates of the monotone iterative method
(4) satisfies n∗ ≥ 2, then the solution of the monotone iterative method (4) on
the piecewise uniform mesh (14) converges μ-uniformly to the solution of the
problem (1). The estimate (15) holds true with ρ = c∗/

(
c∗ + τ−1

)
and constants

C and M are independent of μ, N and τ .

Proof. By (6), ∥∥∥V (0) (t)
∥∥∥
Ω

h
≤ τ

∥∥f(P, t, 0)− τ−1V (t− τ)
∥∥
Ω

h . (17)
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Using the mean-value theorem, from (3) and (12), it follows that∥∥∥Z(1) (tl)
∥∥∥
Ω

h
≤ τ

[ ∥∥∥LhτV (0) (tl)
∥∥∥
Ω

h
+ c∗

∥∥∥V (0) (tl)
∥∥∥
Ω

h

+
∥∥f (P, tl, 0)− τ−1V (tl − τ)

∥∥
Ω

h

]
≤

(
2τ + c∗τ2) ∥∥f (P, tl, 0)− τ−1V (tl − τ)

∥∥
Ω

h

≤
(
2τ + c∗τ2) ‖f (P, tl, 0)‖

Ω
h + (2 + c∗τ) ‖V (tl − τ)‖

Ω
h

≤ Cl.

To prove that all constants Cl are independent of the small parameter μ, we
have to prove that ‖V (tl − τ)‖

Ω
h is μ-uniformly bounded. For l = 1, V (P, 0) =

u0(P ), where u0 is the initial condition in the differential problem (1), and,
hence, C1 is independent of μ, τ and N , where we assume τ ≤ τ0. For l = 2, we
have∥∥∥Z(1) (t2)

∥∥∥
Ω

h
≤

(
2τ + c∗τ2) ‖f (P, t2, 0)‖

Ω
h + (2 + c∗τ) ‖V (t1)‖Ωh ≤ C2,

where V (P, t1) = V (n∗)(P, t1). As follows from Theorem 1, the monotone se-
quences

{
V

(n)
(P, t1)

}
and

{
V (n) (P, t1)

}
are μ-uniformly bounded from above

by V
(0)

(P, t1) and from below by V (0) (P, t1). From (17) at t = t1, we have∥∥∥V (0)(t1)
∥∥∥
Ω

h
≤ τ

∥∥f(P, t1, 0)− τ−1u0(P )
∥∥
Ω

h ≤ K1,

where constant K1 is independent of μ, τ and N . Thus, we prove that C2 is
independent of μ, τ and N . Now by induction on l, we prove that all constants
Cl in (12) are independent of μ, and, hence, constant C = tF c

∗ max1≤l≤Nτ
Cl in

Theorem 2 is independent of μ, τ and N . From here and (15), we conclude that
the monotone iterative method (4) converges μ-uniformly to the solution of the
differential problem (1).

3.2 Bakhvalov-Type Mesh

We choose the transition points σx, (1 − σx) and σy, (1 − σy) in Bakhvalov’s
sense (see [3] for details), i.e.

σx = υ1μ ln (1/μ) , σy = υ2μ ln (1/μ) , (18)

φ(ξ) =
ln[1− 4(1− μ)ξ]

lnμ
.

The difference scheme (2) on the Bakhvalov-type mesh converges μ-uniformly
to the solution of (1):

max
(P,t)∈Ωh×Ωτ

|U(P, t)− u(P, t)| ≤M
(
N−1 + τ

)
, N = min {Nx, Ny} ,
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where constant M is independent of μ, N and τ . The proof of this result can be
found in [3].

For the monotone iterative method (4) on the Bakhvalov-type mesh, Theo-
rem 3 holds true with the following error estimate

max
(P,t)∈Ωh×Ωτ

|V (P, t)− u(P, t)| ≤M
(
N−1 + τ

)
+ C(ρ)n∗−1,

where constants C and M are independent of μ, N and τ .

4 Numerical Experiments

Consider problem (1) with f(P, t, u) = (u−4)/(5−u), g(P, t) = 1 and u0(P ) = 1,
which models the biological Michaelis-Menton process without inhibition [5].
This problem gives c∗ = 1.

On each time level tk, the stopping criterion is chosen in the form∥∥∥V (n)(tk)− V (n−1)(tk)
∥∥∥
Ω

h
≤ δ,

where δ = 10−5. All the discrete linear systems are solved by GMRES-solver
[1].

It is found that in all the numerical experiments the basic feature of monotone
convergence of the upper and lower sequences is observed. In fact, the monotone
property of the sequences holds at every mesh point in the domain. This is, of
course, to be expected from the analytical consideration.

Consider the monotone iterative method (4) on the Shishkin-type mesh (14)
with Nx = Ny. Since for our data set we allow σx > 0.25, the step size hxμ is
calculated as

hxμ =
4 min {0.25, σx}

Nx
.

In Table 1, for τ1 = 10−1, τ2 = 5 × 10−2 and τ3 = 10−2 and for various val-
ues of μ and Nx, we give the average (over ten time levels) numbers of itera-
tions nτ1 , nτ2 , nτ3 required to satisfy the stopping criterion. From the data,
we conclude that for Nx fixed, the numbers of iterations are independent of the
perturbation parameter μ and the number of iterations nτ as a function of τ
is monotone increasing. These numerical results confirm our theoretical results
stated in Theorems 2 and 3.

Now, consider the monotone iterative method (4) on the Bakhvalov-type
mesh (18) with Nx = Ny. In this case, for all values of μ and Nx presented
in Table 1, we have nτ1 = 5, nτ2 = 4, nτ3 = 3. Thus, the main features of
the monotone iterative method (4) on the Shishkin-type mesh highlighted from
Table 1 hold true for the algorithm on the Bakhvalov-type mesh.

Table 2 presents the numerical experiments corresponding to ones in Table 1,
when on each time level the Newton iterative method on the Bakhvalov-type
mesh is in use. We denote by (k∗) if on time level tk more than 100 iterations
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Table 1. Average numbers of iterations on the Shishkin-type mesh

μ nτ1 ; nτ2 ; nτ3

10−1 5; 4; 3 5; 4; 3 5; 4; 3
10−2 4; 3.8; 2.8 4.9; 4; 3 5; 4; 3
10−3 4; 3.8; 2.8 4.9; 4; 3 5; 4; 3
10−4 4; 3.8; 2.8 4.9; 4; 3 5; 4; 3
10−5 4; 3.8; 2.8 4.9; 4; 3 5; 4; 3
Nx/4 16 32 64, 128, 256

Table 2. Average numbers of iterations for the Newton’s method on the Bakhvalov-
type mesh

μ nτ1 ; nτ2 ; nτ3

10−1 (9∗); 8.1; 4.1 (9∗); 8.1; 4.1 (9∗); 8.1; 4.1 (8∗); 8.1; 4.1
10−2 18.4; 8.1; 4.1 17.1; 8.1; 4.1 (10∗); 8.1; 4.1 (8∗); 8.1; 4.1
10−3 18.3; 8.1; 4.1 17.5; 8.1; 4.1 (9∗); 8.1; 4.1 (8∗); 8.1; 4.1
10−4 18.8; 8.1; 4.1 17.8; 8.1; 4.1 (10∗); 8.1; 4.1 (9∗); 8.1; 4.1
10−5 17.2; 8.1; 4.1 17.5; 8.1; 4.1 19.3; 8.1; 4.1 (9∗); 8.1; 4.1
Nx/4 16 32 64 128

is needed to satisfy the stopping criterion, or if the method diverges. The ex-
perimental results show that, in general, the Newton method cannot be used
successfully for this test problem.
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Abstract. Given the matrices A and E in Cn×n, we consider, for the
family A(t) = A + tE, t ∈ C, questions such as i) existence and analyt-
icity of t �→ R(t, z) = (A(t) − zI)−1 , and ii) limit as |t| → ∞ of σ(A(t)),
the spectrum of A(t). The answer depends on the Jordan structure of
0 ∈ σ(E), more precisely on the existence of trivial Jordan blocks (of
size 1). The results of the theory of Homotopic Deviation are then used
to analyse the convergence of Krylov methods in finite precision.

Keywords: Sherman-Morrison formula, Schur complement, Jordan
structure, frontier point, critical point, Ritz value, eigenprojection, ana-
lyticity, singularity, backward analysis, Krylov method.

1 Introduction

A and E are given matrices in Cn×n, which are coupled by the complex pa-
rameter t to form A(t) = A + tE. σ(A) (resp. re(A) = C − σ(A)) denotes the
spectrum (resp. resolvent set) of A. We study the two maps:

t ∈ C 
→ R(t, z) = (A(t)− zI)−1,

for z given in re(A), and
t ∈ C 
→ σ(A(t)).

Such a framework is useful to perform a backward analysis for computational
methods which are inexact: one has access to properties of A(t) by means of
the resolvent matrix R(0, z) = (A− zI)−1, z ∈ re(A), only. In this context, the
question of the behavior of R(t, z) and σ(A(t)) as |t| → ∞ arises naturally [6].
Such a study is also of interest for engineering when the parameter t has a
physical meaning and can be naturally unbounded [10].

Various approaches are useful, ranging from analytic/algebraic spectral the-
ory [1, 2, 3, 6, 10] to linear control systems theory [12]. The theory surveyed here
is Homotopic Deviation [4, 5, 11] which specifically looks beyond analyticity
for |t| large. The case of interest corresponds to a singular matrix E. The tools
are elementary linear algebra based on the Sherman-Morrison formula, the Schur
complement and on the Jordan structure of 0 ∈ σ(E). It also relies on Lidskii’s
perturbation theory [18].

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 14–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Presentation of the Paper

The paper is organized as follows. The mathematical setting is given in the
rest of Section 1. Then Section 2 analyses the convergence rates for the two
analytic developments for R(t, z) around 0 and ∞. A similar analysis for σ(A(t))
is performed in Section 3. This results in a complete homotopic backward
analysis for the eigenproblem for A, in terms of t ∈ C, the homotopy parameter.
The theory is used in Section 4 to explain the extreme robustness of inexact
Krylov methods to very large perturbations [5, 15].

Due to space limitation, most proofs have been omitted. A more comprehen-
sive development of the theory can be found in [17] and [11].

1.2 Notation

We set
Fz = −E(A− zI)−1, z ∈ re(A)

Formally
R(t, z) = R(0, z)(I − tFz)−1.

exists for t �= 1
μz , 0 �= μz ∈ σ(Fz) and is computable as

R(t, z) = R(0, z)
∞∑
k=0

(tFz)k for |t| < 1
ρ(Fz)

, ρ(Fz) = max |μz|.

When Rank E = n, 0 /∈ σ(Fz), and the eigenvalues of Fz are denoted by
μiz, i = 1, · · · , n. Therefore R(t, z) is defined for almost all t ∈ C, t �= ti,

with ti = 1
μiz , i = 1, · · · , n. Consequently z is an eigenvalue of the n matrices

A(ti), i = 1, · · · , n. What happens in the limit |t| → ∞? It is easy to check
that under the assumption that E is regular and |t| → ∞, the limit of the
resolvent matrix R(t, z) (resp. the spectrum σ(A(t)) is 0 (resp. at ∞). To get
a richer situation where the limit resolvent may be nonzero, and eigenvalues
may stay at finite distance, we assume that E �= 0 is singular, or rank deficient,
r = Rank E, 1 ≤ r < n. We set Ĉ = C∪ {∞}; card Ĉ = card C = c denotes the
cardinal of the (complex) continuum.

1.3 E = UV H with U, V ∈ Cn×r of Rank r, 1 ≤ r < n

Any singular matrix E �= 0 of Rank r can be written under the form

E = UV H , with U, V ∈ Cn×r of Rank r, 1 ≤ r < n,

where U, V of Rank r represent a basis for Im E, Im EH respectively [12]. Fz
has now Rank r, so that at most r eigenvalues μiz, i = 1, · · · , r are nonzero.
They are the r eigenvalues of

Mz = −V H(A− zI)−1U ∈ Cr×r, z ∈ re(A).
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By applying the Sherman-Morrison formula [12] we have that

R(t, z) = R(0, z)[In − tU(Ir − tMz)−1V HR(0, z)] (1)

exists for t �= 1
μz , 0 �= μz ∈ σ(Mz). For z ∈ re(A), R(t, z) is not defined when

t ∈ C satisfies tμz = 1, 0 �= μz ∈ σ(Mz). If Mz is regular, this is equivalent to
t ∈ σ(M−1

z ).
Therefore z ∈ re(A) is an eigenvalue of A+tE iff tμz = 1. This means that any

z in re(A) is an inexact value for A at homotopic distance |t|, that is z is an exact
eigenvalue of the r matrices A(ti) = A + tiE with ti = 1

μiz ∈ C, i = 1, · · · , r,
when Mz is of Rank r.

When r > 1, the homotopic distance is not uniquely defined.
The matrix Mz of order r < n will play the key role in the analysis of our

problem, similar to the role of the transfer matrix in linear control theory [12].

1.4 The Limit of R(t, z) When |t| → ∞, for z ∈ re(A)

We suppose that |t| > 1/min |μz| for Mz of Rank r.

Proposition 1. For 1 ≤ r < n, z given in re(A) such that Rank Mz = r,
lim

|t|→∞
R(t, z) exists and is given by

R(∞, z) = R(0, z)[In + UM−1
z V HR(0, z)]

Proof. Straightforward [11, 7].

When M−1
z exists, the asymptotic resolvent R(∞, z) exists and is computable

in closed form. This shows the dual role played by the two quantities |t1| =
1/max |μz| = 1/ρ(Mz) and |tr| = 1/min |μz| = ρ(M−1

z ).
1) |t1| defines the largest analyticity disk for R(t, z): it rules the convergence

of the initial analytic development

R(t, z) = R(0, z)[In − tU

∞∑
k=0

(tMz)kV HR(0, z)] (2)

based on Mz and valid for |t| < |t1| (around 0).
The series expansion(2) becomes finite when Mz is nilpotent (ρ(Mz) = 0).

2) |tr| defines the smallest value for |t| beyond which R(t, z) is analytic in
s = 1/t: it rules the convergence of the asymptotic analytic development:

R(t, z) = R(0, z)[In + UM−1
z

∑∞
k=0(sM

−1
z )kV HR(0, z)]

= R(∞, z) + R(0, z)UM−1
z

∑∞
k=1(tMz)−kV HR(0, z),

(3)

based on M−1
z and valid for |t| > |tr|, s = 1/t, (around ∞).

Observe that M−1
z cannot be nilpotent (because it is invertible).
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1.5 Frontier of Existence for R(∞, z) = lim
|t|→∞

R(t, z)

In general, lim
z→λ

ρ(Mz) = ∞ for λ ∈ σ(A). If λ ∈ σ(A) is such that lim
z→λ

Mz = Mλ

is defined (hence ρ(Mλ) < ∞, see [3]) we say that λ is unobservable by the
deviation process (A,E) [11], see also § 3.3.

Definition 1. The frontier points form the set F (A,E) = {z ∈ re(A); 0 ∈
σ(Mz)} of points in re(A) for which R(∞, z) does not exist. The critical points
form the set C(A,E) of frontier points such that ρ(Mz) = 0.

The inclusion C(A,E) ⊂ F (A,E)) becomes an equality when r = 1. In gen-
eral, F (A,E) is a finite set of isolated points in re(A) ⊂ C. We shall prove below
that when 0 ∈ σ(E) is semi-simple, then card F (A,E) ≤ n− r.

An exceptional case when card F (A,E) = c or 0 is provided by the particular
matrix A = λI, which entails Mz = 1

z − λ
V HU . Clearly, Mz is regular (resp.

singular) for z �= λ when 0 is semi simple (resp. defective).
Similarly, it will be shown that C(A,E) is a finite set of at most n− 1 points,

unless the map t 
→ σ(A(t)) is constant for t ∈ C, and C(A,E) = F (A,E) =
re(A). This situation requires E to be nilpotent.

2 Convergence Rates for the Two Analytic Developments
for R(t, z)

As z varies in re(A), the convergence rate for (2) (resp. (3) is described by the
map : ϕ1 : z 
→ ρ(Mz) (resp. ϕ2 : z 
→ ρ(M−1

z ))

2.1 The Spectral Portrait ϕ1

The map ϕ1 is the homotopic analogue of the popular normwise spectral portrait
map : z 
→ ||(A− zI)−1||, [6]. In ϕ1, the matrix (A− zI)−1 of order n is replaced
by Mz of order r < n, and || · || by ρ(·).

An important consequence is that ϕ1 can localize the critical points (ρ =
0) when they are isolated, whereas the normwise spectral portrait cannot, see
specifically the paragraph 2.3.

The map ϕ1 : z 
→ ρ(Mz) is subharmonic with singularities at the observable
eigenvalues of A (ρ = ∞) and the critical points (ρ = 0). We assume that there
exist observable eigenvalues. Subharmonicity in C is the 2D-analogue of mono-
tonicity in IR. It allows to order the ε−level sets, ε > 0 by inclusion. As z varies
outside the disk {z; |z| ≤ ρ(A)}, ρ(Mz) decreases from +∞ to 0 (ρ(Mz) → 0 as
|z| → ∞). Therefore the set Γα0 = {z ∈ C; ρ(Mz) = α} consists of a finite num-
ber of closed curves. For α small enough, there exists one single exterior curve
around all the others which enclose local minima or isolated critical points.

The associated domain of convergence for(2) is the unbounded region outside
the outer curve and inside the inner curves. See Figure 1, a) on the left. See
also [7, 8].
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2.2 The Frontier Portrait ϕ2

The map ϕ2 : z 
→ ρ(M−1
z ) = ρ2 is also subharmonic with singularities (ρ = ∞)

at points in F (A,E). We assume that A �= λI, and that F (A,E) is a non empty
finite set. When |z| increases away from F (A,E), ρ(M−1

z ) decreases to a local
minimum to increase again (ρ(M−1

z ) → ∞ as |z| → ∞). For β ≥ β� > 0, the
set Γ β∞ = {z ∈ C; ρ(M−1

z ) = β} consists of a finite number of closed curves.
And for β large enough, there exists one single exterior curve around the others
which enclose the points in F (A,E). We observe that in exact arithmetic, it is
conceivable that ρ(M−1

z ) can be 0 at observable eigenvalue of A, for which Mz

is not defined, hence μmin = ∞( 1
μmin = 0) where μmin is an eigenvalue for Mz

of minimal modulus.
The associated domain of convergence for (3) is the bounded region inside

the outer curve and outside the inner ones. See Figure 1, b) on the right and [10].
The shaded areas represent the respective analyticity domains for R(t, z) around
0 (|t| < 1

α ) and ∞ (|t| > β), with α small or β large, α ≤ β.

a) Γ α
0 for (2) b) Γ β

∞ for (3)

Fig. 1. Analytic representations for R(t, z), α ≤ β

2.3 The Critical Points

When they exist, the critical points in C(A,E) ⊂ F (A,E) are singularities for
ϕ1 (at 0) and for ϕ2 (at ∞).

At an isolated critical point, there is an abrupt change in the representation
of R(t, z). The symmetry of the dual analytic representation, valid locally for |t|
small (around 0) or large (around ∞) is broken in favour of 0.

The finite representation:

R(t, z) = R(0, z)[In − tU

r−1∑
k=0

(tMz)kV HR(0, z)] (4)

as a polynomial in t of degree ≤ r, is valid for t everywhere in C. The limit as
|t| → ∞ is not defined.

If Mz is nilpotent for any z in re(A), σ(A) is unobservable but R(0, z) is not
defined for z ∈ σ(A).
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2.4 The Case r = 1

The matrix Mz of order r reduces to the scalar μz. And μzμ
−1
z = 1. Therefore

C(A,E) = F (A,E), and we can choose α = β = 1. The unique set Γ 1
0 = Γ 1

∞
reduces to the set Γ studied in [7].

There are at most n − 1 critical points [4] unless σ(A(t)) is invariant under
t ∈ C. In this case C(A,E) = re(A) and can be extended to C by continuity of
z 
→ ρ(Mz) = 0.

The symmetry between 0 and ∞ expressed by s = 1/t is also carried by
ρ(M−1

z ) = 1/ρ(Mz). Convergence at 0 (resp. ∞) for (2) is equivalent to diver-
gence at 0 (resp. ∞) for (3) for any z not critical (ρ(Mz) > 0). Such an exact
symmetry does not hold for r > 1 since any z in re(A), which is not a frontier
point, is simultaneously an eigenvalue for r matrices A(t), instead of just one. We
shall continue this analysis in Section 3, after the comparison of the normwise
versus homotopic level sets to follow.

2.5 Normwise Versus Homotopic Level Sets for || · ||, ρ1, ρ2.

A normwise backward analysis yields the well-known identity for ε > 0:

RNε = {z ∈ re(A); ||(A−zI)−1|| ≥ 1
ε
} = {z ∈ σ(A+E)∩re(A), ||E|| ≤ ε} = SNε ,

where the sets cannot be empty [6]. N stands for normwise.
The homotopic analogue of RNε is given by Rε = {z ∈ re(A); ρ(Mz) ≥ 1

ε}
which can be empty for ε > 0 if all the eigenvalues of A are unobservable by
(A,E). Such a situation corresponds to ρ(Mz) = 0 for any z ∈ re(A).

The analogue of SNε consists of the z in re(A) which are eigenvalues of A+tE,
at distance |t| ≤ ε. Because there can be r such matrices for any given z in re(A),
the homotopic distance is not uniquely defined.

For example, one can choose a distance which is a) minimal or b) maximal.
This corresponds to :

a) |t| = 1
|μmax| : A(t) is the closest matrix having z as its eigenvalue. Then

Saε = Rε [9]. This is the only possibility when r = 1.
b) |t| = 1

|μmin| : A(t) is the farthest matrix, then Sbε ⊂ Rε. The maximal

distance induces the level set for ϕ2 : ρ(M−1
z ) ≤ ε [10].

3 The Spectrum σ(A(t)) as |t| → ∞
Because E is singular, it is possible that some eigenvalues λ(t) of A(t) remain
at finite distance when |t| → ∞ [4].

Observing the evolution t 
→ λ(t) as t ∈ C leads to the distinction between
invariant and evolving eigenvalues for A, according to the :
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Definition 2. λ ∈ σ(A) is an evolving (resp. invariant) eigenvalue iff λ(t) �= λ
for almost all t �= 0 (resp. λ(t) = λ for all t ∈ C). We write σ(A) = σi ∪ σe

where σi (resp. σe) consists of invariant (resp. evolving) eigenvalues.

Note that, in case of a multiple λ, one copy of λ may be invariant while another
is evolving [10].

3.1 Notation

0 ∈ σ(E) has algebraic (resp. geometric) multiplicity m (resp. g = n − r). The
general case is g < m ≤ n (0 defective). There are g′, 0 ≤ g′ < g, trivial
Jordan blocks of size 1 associated with 0. The corresponding eigenvectors span
K ′ ⊂ Ker E when g′ ≥ 1; M = Ker Em is the invariant subspace for 0. Let
P (resp. P ′) be the spectral (resp. eigen)projection on M (resp. K ′). Π (resp.
Π ′) of order m (resp. g′) represents the Galerkin approximation PAP (resp.
P ′AP ′) restricted to M (resp. K ′). The spectrum σ(Π) (resp. σ(Π ′)) consists
of the associated Ritz values. If 0 is semi-simple, g′ = g = m = n− r < n, K ′ =
Ker E = M, P ′ = P and Π ′ = Π.

The Galerkin approximation P ′AP ′ and its restriction Π ′ to K ′ will play an
essential role for the analysis of limσ(A(t)) as |t| → ∞.

We define in Ĉ the set σ∞(A,E) = lim
|t|→∞

σ(A(t)) = {∞, Lim }, which

represents the possible limits for λ(t) ∈ σ(A(t)) as |t| → ∞. Either |λ(t)| → ∞,
or λ(t) → z ∈ Lim ⊂ C.

We set l� = card Lim , 0 ≤ l� ≤ n, where the points in Lim are counted
according to their algebraic multiplicity as eigenvalues of A(t), |t| large.

It is clear that all invariant eigenvalues in σi belong to Lim .

3.2 Properties of Lim

We suppose first that 0 ∈ σ(E) is defective : 0 ≤ g′ < g = n− r < m ≤ n.
Lim can be partitioned into the invariant spectrum σi and Lime = {z ∈

C, z = lim
|t|→∞

λ(t) with λ(t) �= λ(0) = λ for almost all t}, which consists of the

limits in C of evolving eigenvalues originating from σe.
Based on Lidskii’s perturbation theory [18], it can be shown [11, 17] that,

generically when g′ ≥ 1, Lim is the spectrum of a matrix Ω of order g′ derived
from Π ′ as a Schur complement in a matrix of order g > g′. Moreover,

Proposition 2. When the frontier set is discrete, then

C(A,E) ⊂ Lim ∩ re(A) = F (A,E)

with equality when r = 1.
When σ(A) is unobservable, F (A,E) = C(A,E) is the continuous set re(A)

and Lim = σ(A).

An immediate consequence is that when g′ = 0 (no trivial Jordan blocks) the
three sets σ(Π ′), Lim and C(A,E) are empty under the nondegeneracy condition.
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The situation simplifies when 0 ∈ σ(E) is semi-simple: first there is no condi-
tion, second the frontier and critical sets are always discrete with at most n− r
points. Lim contains exactly n − r points which are the Ritz values in σ(Π),
with Π ≡ Π ′.

Proposition 3. If 0 ∈ σ(E) is semi-simple, then Lim = σ(Π), and C(A,E) ⊂
F (A,E) = Lim ∩ re(A) with g′ = g = n− r = m = l� < n.

See [4, 10]. A numerical example in Computational Acoustics is treated in [10],
where s = ζ is the complex impedance, and t = 1/ζ is the admittance. The
boundary condition for the acoustic wave is Neumann (resp. Dirichlet) for ζ = ∞
(resp 0).

3.3 Limits of the Homotopic Backward Analysis

The connection between z and t which holds when z is interpreted as an eigen-
value of A + tE is expressed by tμz = 1.

This relation is well defined for t and μz nonzero. The limits of the backward
analysis correspond to (t = 0, |μz| = ∞) or (|t| = ∞, μz = 0).

1) λ is an exact eigenvalue for A : t = 0 requires that Mλ is not defined. This
is the case for observable eigenvalues (μλ is not defined).

Unobservable eigenvalues (Mλ exists) are seen by the process as inexact eigen-
value at a positive distance ≥ 1

ρ(Mλ)
, instead of a distance exactly zero.

2) z ∈ re(A) is a critical point such that ρ(Mz) = 0, therefore |t| = ∞ is
the only possibility. An isolated critical point is an inexact eigenvalue at infinite
distance, in agreement with the representation of R(t, z) as a polynomial in t.
Such a z is the limit of λ(t) as |t| → ∞.
However, when the set of critical points is C, that is, when Mz is nilpotent for
any z in re(A), Lim = σ(A) and only the eigenvalues themselves are (trivial)
limits, not arbitrary critical points in re(A).

4 Convergence of Krylov Methods in Finite Precision

We approach this question by considering an iterative Krylov method as an
inner-outer iteration.

The outer loop modifies the starting vector υ1 for the construction of the
Krylov basis. The inner loop is a direct method which is an incomplete Arnoldi
decomposition of size k, k < n [13, 11]. The dynamics of this 2-level algorithm
is studied by a homotopic deviation on the matrix of order k + 1

B =
(
Hk u
0 a

)
such that Hk+1 =

(
Hk u

0 h
k+1 k

a

)
is the computed Hessenberg form of order

k + 1. The homotopy parameter is h = hk+1 k, and the deviation matrix is
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E = ek+1e
T
k : B(h) = B + hE = Hk+1. E is nilpotent (E2 = 0) with Rank 1,

and σ(E) = {(01)k−1, (02)}. For k fixed, 1 < k < n, we set H− = Hk−1, H =
Hk, H

+ = Hk+1 : these are the three successive Hessenberg matrices constructed
by the Arnoldi decomposition, of order k − 1, k and k + 1. We define u =(
ũT , uk

)T . When uk �= 0, we set Ω = H− − h
k k−1
uk ũeTk−1.

We assume that Hk = H is irreducible, therefore σ(H−) ∩ σ(H) = ∅ and
hk k−1 �= 0 in particular. σ(B) = σ(H) ∪ {a}.

With the notation of Section 3, 0 ∈ σ(E) has the multiplicities g′ = k −
1 < g = k < m = k + 1. Therefore g′ ≥ 1 for k ≥ 2. The eigenspace K ′ is
K ′ = lin (e1, · · · , ek−1), and P ′ is the orthogonal projection on K ′, P = Ik+1.
Thus Π ′ = Hk−1 = H−. The matrix Mz reduces to the scalar μz = −eTk (B −
zIk+1)−1ek+1, for z /∈ σ(B). Finally, because r = 1, C(B,E) = F (B,E) in
re(B). We survey the results established in [5].

1) Theory tells us that in the generic case where uk �= 0, Lim = σ(Ω), and
Lim ∩ re(B) = C(B,E) contains at most k − 1 critical points in re(B). Exactly
two eigenvalues of H+ escape to ∞ as |h| → ∞.

2) The resolvent R(h, z) = (H+ − zIk+1)
−1, defined for z /∈ σ(H+) (i.e hμz �=

1) is a modification of R(0, z) = (B − zIk+1)
−1 by a rank 1 matrix depending

on h through the multiplicative scalar h
hμz − 1 only. The dependance is rational

(resp. linear) when μz �= 0 (resp. μz = 0, i.e z critical in Lim ∩ re(B)).

Let (ξ, p) be an exact eigenpair for H− : H−p = ξp for p ∈ Ck−1. We consider
the augmented vector ψ̂l = (pT , 0)T in Cl, l ≥ k, and define h− = h

k k−1 , pk−1 =
eTk−1p.

The pair (ξ, ψ̂l) is a pseudo eigenpair for Hl, l ≥ k corresponding to the
residual vector (h−pk−1)ek in Cl. The pair (ξ, ψ̂l) cannot be improved by inverse
iteration using the Hessenberg form Hl, for l ≥ k + 1 (see [13] for a numerical
illustration). The only solution is to restart with an improved starting vector v1.

In exact arithmetic, the algorithmic analysis of the inner loop is easy under
the assumption of irreducibility : either v1 is an invariant vector for A and the
algorithm stops exactly (with h = 0) for k < n, or v1 is not invariant and the
algorithm has to be run to completion (k = n).

In finite precision, the analysis is more delicate, since the mathematical anal-
ysis for convergence (h → 0) is valid only when round-off can be ignored. And
it is well known that round-off cannot be ignored when “convergence” takes
place [13, 14, 16].

“Convergence” in finite precision means “near-reducibility”, and this can hap-
pen with |h| large, although this seems numerically counter-infinitive at first
sight.

The algorithmic dynamics for “convergence” entails that there exist points
in σ(H−), σ(H) and σ(H+) which are very close, in spite of the fact that an
exact coincidence is ruled out by the assumption of irreducibility for A.

The dynamics expressed in finite precision makes it possible that a value
z ∈ σ(H+) which is close to σ(Ω) corresponds to a large h : z can be nearly
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critical. To the three above mentionned spectra, it may be necessary to add the

fourth spectrum σ(Ω). This is certainly the case when ||Ω −H−|| = |h−| ||ũ|||uk| is

small.
Observe that ||ũ|||uk| = tan ψ, where ψ is the acute angle between the direction

spanned by uk and ek.
Therefore a complete explanation for the ”convergence” of Krylov methods

in finite precision requires to complement the classical point of view of exact
convergence (h → 0), valid when the arithmetic can be regarded as exact, by
the novel notion of criticality (|h| → ∞) which takes care of the effect of finite
precision when they cannot be ignored.

The reader is refered to [5] to see precisely how this new notion clarifies the
finite precision behaviour of such key aspects of Krylov methods as the Arnoldi
residual, an algorithmic justification for restart and the extreme robustness to
very large perturbations [15]. The notion of criticality offers therefore a theoret-
ical justification for the highly successful heuristics which are commonly in use.
It also shows why |h

k+1 k
| small can be a misleading indicator for the nearness

to exact reducibility.
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Abstract. The new method for calculating the energy values of the hy-
drogen atom in a strong magnetic field (0 ≤ B ≤ 1013G) with high degree
of accuracy is developed in this paper. The proposed method is based on
the Kantorovich method for solving eigenvalue problems. This method
successfully reduces the given two dimensional spectral problem for the
Schrödinger equation to the spectral problems for one one-dimensional
equation and the system of ordinary second-order differential equations.
The rate of convergence is examined numerically and is illustrated in the
table. The results are in good agreement with the best one up to now
and show that 12 significant digits are computed in the obtaining energy
values.

1 Introduction

A growing interest in the problem of the hydrogen atom in strong magnetic
fields is motivated by its various applications in different branches of physics –
astrophysics, solid state physics, atomic spectroscopy.

In recent years, several new techniques were carried out to treat the whole
region of a magnetic field. Very accurate numerical results have been obtained.
These include Hartree–Fock–like calculations [13], [15], variational calculations
[14], [6], [7], [19], [8], finite–element analysis [11], [16], [17], finite–different meth-
ods [9]. The most precise calculations reported to date are presented in [12],
where the solution is expressed as a power series in the radial variables with
coefficients being polynomials in the sine of the polar angle.

A goal of this paper is to show the peculiarities of a modern implementa-
tion of the Kantorovich method to numerical solution of the multi-dimensional
eigenvalue problems and also to point out some prospects of its application to
the calculations of the low-energy spectrum of the hydrogen atom.
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The Schrödinger equation for the hydrogen atom, written in spherical coor-
dinates, has the following form

−
(

1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ

)
Ψ(r, θ) + V (r, θ)Ψ(r, θ) = εΨ(r, θ), (1)

0 ≤ r <∞ and 0 ≤ θ ≤ π. The potential function V (r, θ) is given by the formula

V (r, θ) =
m2

r2 sin2 θ
− 2

r
+ γm +

1
4
γ2r2 sin2 θ,

where m = 0,±1, . . . is a magnetic quantum number, γ = B/B0, B0 ∼= 4.70 ×
109G is a dimensionless parameter, which determines the strength of the field. In
these expressions ε is the energy of the bound state and Ψ is the corresponding
wave function. This function satisfies the following boundary conditions

lim
θ→0

sin θ
∂Ψ

∂θ
= 0,

∂Ψ

∂θ
(r,

π

2
) = 0, 0 ≤ r <∞, for the even parity state,

Ψ(r,
π

2
) = 0, 0 ≤ r <∞, for the odd parity state,

(2)

lim
r→0

r2 ∂Ψ

∂r
= 0, lim

r→∞
r2Ψ = 0. (3)

The wave function is normalized as∫ ∞

0

∫ π/2

0
r2 sin θΨ2(r, θ)dθdr = 1. (4)

2 Reduction of the 2D Problem by the Kantorovich
Method

Consider a formal expansion of the solution of (1)–(3) using the finite set of
one-dimensional basis functions {Φi(θ; r)}nmax

i=1

Ψ(r, θ) =
nmax∑
i=1

χi(r)Φi(θ; r). (5)

In (5), functions χ(r)T = (χ1(r), χ2(r), . . . , χnmax
(r)) are unknown, and surface

functions Φ(θ; r)T = (Φ1(θ; r), Φ2(θ; r), . . . , Φnmax
(θ; r)) form an orthonormal

basis for each value of radius r which is treated here as a parameter.
In the Kantorovich approach [10] functions Φi(θ; r) are determined as solu-

tions of the following one-dimensional parametric eigenvalue problem

− ∂

∂θ
sin θ

∂Φ(θ; r)
∂θ

+ V̂ (r, θ)Φ(θ; r) = E(r) sin θΦ(θ; r),

V̂ (r, θ) = r2 sin θV (r, θ)
(6)
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with boundary conditions derived from (2)

lim
θ→0

sin θ
∂Φ

∂θ
= 0,

∂Φ

∂θ
(
π

2
; r) = 0, 0 ≤ r <∞, for the even parity state,

Φ(
π

2
; r) = 0, 0 ≤ r <∞, for the odd parity state.

(7)

Since the operator in the left side of (6) is self-adjoint, its eigenfunctions are
orthonormal ∫ π/2

0
sin θΦi(θ; r)Φj(θ; r)dθ = δij , (8)

δij is Kroneker’s δ–symbol.The problem (6)–(7) is solved for each value of r ∈ ωr,
where ωr = (r1, r2, . . . , rk, . . .) is a given set of r.

The Galerkin weak form of the problem (1)–(3) is∫ ∞

0

∫ π/2

0

(
r2 sin θ

(
∂Ψ

∂r

)2

+ sin θ

(
∂Ψ

∂θ

)2

+ V̂ Ψ2

)
dθdr =

ε

∫ ∞

0

∫ π/2

0
r2 sin θΨ2dθ dr.

(9)

After substitution of expansion (5) into (9), using (6), (7), (8) and obtained from
them identity∫ π/2

0

(
sin θ

∂Φi(θ; r)
∂θ

∂Φj(θ; r)
∂θ

+ V̂ (r, θ)Φi(r, θ)Φj(θ; r)
)
dθ =

Ei(r) + Ej(r)
2

δij ,

(10)
the solution of problem (1)–(3) is transformed to a solution of an eigenvalue prob-
lem for a system of nmax ordinary second-order differential equations for deter-
mining the energy ε and coefficients (radial wave functions) χ(r)T = (χ1(r), χ2(r),
. . ., χnmax(r)) of expansion (5)

− I
1
r2

d

dr
r2 dχ

dr
+

U(r)
r2 χ + Q(r)

dχ

dr
+

1
r2

dr2Q(r)χ
dr

= εIχ, (11)

lim
r→0

r2 ∂χ

∂r
= 0, lim

r→∞
r2χ = 0. (12)

Here I, U(r), and Q(r) are finite nmax × nmax matrices, elements of which are
given by relations

Uij(r) =
Ei(r) + Ej(r)

2
δij + r2Hij(r), Hij(r) = Hji(r) =

∫ π/2

0
sin θ

∂Φi
∂r

∂Φj
∂r

dθ,

Qij(r) = −Qji(r) = −
∫ π/2

0
sin θΦi

∂Φj
∂r

dθ, Iij = δij , i, j = 1, 2, . . . , nmax.

(13)
Thus, the application of the Kantorovich approach makes the problem (1)–(3)
equivalent to the following problems:
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• Calculation of potential curves Ei(r) and eigenfunctions Φi(θ; r) of the spec-
tral problem (6)–(7) for a given set of r ∈ ωr .

• Calculation of the derivatives
∂Φ

∂r
and computation of the corresponding

integrals (see (13)) necessary for obtaining matrix elements of radial coupling
Uij(r) and Qij(r).

• Calculation of energies ε and radial wave functions χ(r) as eigensolutions
of one-dimensional eigenvalue problem (11)–(12) and examination of the
convergence of obtained eigensolutions as a function of number of channels
nmax.

3 Computation of the Matrix Elements of Radial
Coupling

Calculation of potential matrices U(r) and Q(r) ([4]) with sufficiently high accu-
racy is a very important step of solving the system of radial equations (11). This
is a very difficult problem for most of numerical methods usually used in this
case. To obtain the desired energies and wave functions with required precision,

the derivatives
∂Φ

∂r
should be computed with the highest possible accuracy.

An effective method, allowing to calculate derivative
∂Φ

∂r
with the same ac-

curacy as achieved for eigenfunctions of (6), has been developed in [3]. For com-
pleteness here we outline it briefly. Taking a derivative of (6) with respect to r,

we get that
∂Φ

∂r
can be obtained as a solution of the following right hand side

boundary problem

− ∂

∂θ
sin θ

∂

∂θ

∂Φ(θ; r)
∂r

+ V̂ (r, θ)
∂Φ(θ; r)

∂r
− E(r) sin θ

∂Φ(θ; r)
∂r

=

E′(r) sin θΦ(θ; r)− ∂V̂ (r, θ)
∂r

Φ(θ; r),
(14)

where the boundary conditions for function
∂Φ

∂r
are the same as for function Φ.

Taking into account that E(r) is an eigenvalue of the operator, defined by(6),
problem (14) will have a solution if and only if the right hand side term is
orthogonal to the eigenfunction Φ. From this condition we find

E′(r) =
∫ π/2

0

∂V̂ (r, θ)
∂r

Φ2(θ; r)dθ. (15)

Now problem (14) has a solution, but it is not unique. From the normalization
condition (8) we obtain the required additional condition∫ π/2

0
sin θΦ(θ; r)

∂Φ(θ; r)
∂r

dθ = 0, (16)

guaranteeing the uniqueness of the solution.
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4 Matrix Representations of the Eigenvalue Problems

For numerical solution of one-dimensional eigenvalue problems (6)–(7), (11)–(12)
and boundary value problem (14)–(16), the high-order approximations of the
finite element method ([18], [5]) elaborated in the papers [1], [2] have been used.
One-dimensional finite elements of order k = 1, 2, . . . , 10 have been implemented.
Using the standard finite element procedures [5], problems (6)–(7) and (11)–(12)
are approximated by the generalized algebraic eigenvalue problem

AFh = EhBFh. (17)

A and B are the finite element matrices, corresponding to problems (6)–(7) or
(11)–(12) (see [1],[2]), Eh is the corresponding eigenvalue and Fh is the vector
approximating solutions of (6)–(7) or (11)–(12) on the finite-element grid.

Let us consider a numerical algorithm for the computation of derivative
∂Φ

∂r
,

proposed in [3]. It follows from (17) that we should solve the following linear
system of algebraic equations

Ku ≡ (A− EhB)uh = b, uh =
∂Fh

∂r
, (18)

The finite element matrices A and B are defined as

Aij =
∫ π/2

0

(
sin θ

∂ϕi(θ)
∂θ

∂ϕj(θ)
∂θ

+ V̂ (r, θ)ϕi(θ)ϕj(θ)
)
dθ,

Bi,j =
∫ π/2

0
sin θϕi(θ)ϕj(θ)dθ,

(19)

where ϕi(θ), ϕj(θ) are the finite element polynomials.
Now we determinate the derivative (Eh)′ and the right hand side b using the

formulas
(Eh)′ = (Fh)TPFh, b = ((Eh)′B−P)Fh,

Pij =
∫ π/2

0

∂V̂ (r, θ)
∂r

ϕi(θ)ϕj(θ)dθ.

Since Eh is an eigenvalue of (14), matrix K in (18) is degenerate. The algorithm
for solving (18) can be written in three steps as follows:

Step 1. The additional condition (16) has the form

(uh)TBFh = 0.

Denote by s a number determined by the condition

|BFh|s = max
1≤i≤N

|BFh|i, Ds = (BFh)s,

where N is the order of matrices above.
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Step 2. Solve two systems of algebraic equations

Kv = b, Kw = d,

where

dT = (K1s,K2s, . . . ,KNs), ds = 0, bi = bi, bs = 0,

Kij = Kij , i �= s, j �= s, Kis = 0, i �= s, Ksj = 0, j �= s, Kss = 1.

In this way we have vs = 0 and ws = 0.

Step 3. Find constants γ, γ1 and γ2 as

γ1 = vTBFh, γ2 = wTBFh, γ = − γ1

Dk − γ2
.

After that derivative uh =
∂Fh

∂r
is obtained using formula

uhi = vi − γwi, i �= s, uhs = γ.

Let El, Φl and
∂Φl
∂r

be the exact solutions of (6)–(7), (11)–(12) or (14)–(16)

and Ehl ,F
h
l ,u

h
l be the corresponding numerical solutions. Then the following

estimates are valid [18]

|El − Ehl | ≤ c1(El)h2k, ||Φl − Fhl ||0 ≤ c2(El)hk+1,

||∂Φl
∂r

− uhl ||0 ≤ c3h
k+1, c1 > 0, c2 > 0, c3 > 0,

where h is the grid step, k is the order of finite elements, l is the number of the
corresponding eigensolution, and constants c1, c2 and c3 do not depend on step
h. ¿From the consideration above it is evident, that the derivative computed has
the same accuracy as the calculated eigenfunction.

5 Numerical Results

In this section we present our numerical results for the energy spectrum of
hydrogen atom in strong magnetic fields (0 ≤ γ ≤ 2000). Ten eigensolutions
(nmax = 10) of the problem (6)–(7) are calculated that corresponding to get 10
equations of system (11). Finite elements of order k = 4 are implemented. Prob-
lem (6)–(7) has been solved using a grid with 157 finite elements in the interval
[0, π/2] and consists of 527 nodes. The finite element grid of r has been chosen as
follows, 0 (100) 3 (70) 20 (80) 100 (number in parentheses denotes the number
of finite elements of order k = 4 in each intervals [0,3], [3,20], [20,100]). This grid
is composed of 999 nodes. The maximum number of unknowns of the system
(11) (nmax = 10) is 9990. To calculate the finite element matrices in each finite
element [θi−1, θi] or [rj−1, rj ] the Gaussian quadrature with k + 1 nodes have
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Table 1. Convergence of the energy states ε(1s0) and ε(2s0) (in a.u.) with the number
of coupled channels nmax for γ = 4

nmax ε(1s0) ε(2s0)

1 1.613 354 906 00 3.672 561 204 50

2 1.450 371 395 55 3.627 227 848 92

3 1.438 964 768 53 3.623 088 870 19

4 1.438 433 429 69 3.622 352 872 53

5 1.438 405 323 92 3.622 311 478 09

6 1.438 404 033 39 3.622 307 326 59

7 1.438 403 971 08 3.622 307 091 84

8 1.438 403 968 24 3.622 307 073 74

9 1.438 403 968 11 3.622 307 072 71

10 1.438 403 968 10 3.622 307 072 64

been used. All matrix elements Uij(r) and Qij(r) are calculated in the Gaussian
nodes with respect to r.

The algebraic problem (17) has been solved by the subspace iteration method
[5], which allows us to find simultaneously first several low eigensolutions. All
eigenvalues and the corresponding matrix elements of the problem (6)–(7) are
calculated with relative accuracy of 10−12.

A study of the convergence of the states energy of ε(1s0) and ε(2s0) with the
number of radial equations (nmax) is demonstrated in Table 1 for γ = 4. One
can see that the energy values converge monotonically from above, with the 10-
channel values being ε(1s0) = 1.43840396810 a.u. and ε(2s0) = 3.62230707264
a.u. Fig.1 and Fig.2 show the first four eigenfunctions of problem (6)–(7) for
γ = 4, r = 5 and r = 15. As can been seen in these figures the new orthogonal
basis, obtained as eigenfunctions of problem (6)–(7) are localized around the
point θ = 0 when the radius r grows up.

The bounding energies of the states ε(1s0), ε(2s0), ε(2p0), ε(3p0) are calcu-
lated for a great number of values of γ, 0 ≤ γ ≤ 2000. The Table 2 compares
the computing energies E = (γ− ε)/2 with the energies obtained in [12] for some
values of γ.

6 Conclusions

In the present work the bound states of hydrogen atom in strong magnetic
field are calculated using the spherical coordinates. The reduction of the two-
dimensional problem to the one-dimensional one has been performed using the
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Table 2. The computing energy states E(1s0), E(2s0), E(2p0), E(3p0) (in a.u.) for
different values of γ and comparison with results of [12] (second row for each value
of γ)

γ E(1s0) E(2s0) E(2p0) E(3p0)

0.001 0.500 499 749 962 0.125 496 500 154 0.125 498 500 040 0.056 046 559 081 8

0.500 499 750 000 0.125 496 500 159 0.125 498 500 042 0.056 046 559 1

0.5 0.697 210 538 415 0.150 807 855 768 0.224 760 340 772 0.083 390 113 017

0.697 210 538 458 0.150 807 855 777 0.224 760 340 776 0.083 390 113 0

2.0 1.022 213 907 57 0.173 944 705 952 0.297 710 972 377 0.096 854 600 992

1.022 213 907 665 0.173 944 705 973 0.297 710 972 385 0.096 854 601 0

10.0 1.747 797 163 54 0.208 951 829 004 0.382 649 848 288 0.109 845 603 244

1.747 797 163 714 0.208 951 829 045 0.382 649 848 306 0.109 845 603 4

50.0 3.017 860 705 31 0.242 687 792 636 0.445 685 111 287 0.118 263 525 932

3.017 860 705 047 0.242 687 793 8 0.445 685 11 0.118 263 57

100.0 3.789 804 205 34 0.256 181 557 671 0.463 617 764 142 0.120 524 344 279

3.789 804 236 305 0.256 181 570 3 0.463 617 76 0.120 525 41

500.0 6.257 000 067 21 0.284 742 857 971 0.487 507 172 413 0.123 473 628 273

6.257 087 674 681 0.284 757 5 0.487 507 1

1000.0 7.660 347 166 47 0.295 558 610 554 0.492 494 991 025 0.124 082 539 315

7.662 423 247 755 0.295 857 0.492 495 0

Fig. 1. Fig. 2.
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Kantorovich method. A new method for computing variable coefficients (poten-
tial matrix elements of radial coupling) of a final system of ordinary second-order
differential equations has been proposed. In this method, a new boundary para-
metric problem with respect to unknown derivatives of eigensolutions in radius
variable has been formulated. An efficient, fast and stable algorithm for solving
the boundary problem with the same accuracy for the basic eigenfunctions and
their derivatives has been suggested. As a result, matrix elements of radial cou-
pling can be calculated with the same precision as the basic functions obtained
as solutions of an auxiliary parametric eigenvalue problem. The finite element
method is used for numerical solution of the problem. The fast convergence of
the method is illustrated in the tables. These tables show an excellent coincide
with the previous results. Note that the basic functions Φi are calculated with
respect to γ. That is why we have a possibility to obtain different solutions of
problem (6)–(7) for every value of γ. Taking into account these remarks the pro-
posed method allows a stable calculation of energy values in very large interval
of γ, 0 ≤ γ ≤ 2000.
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Abstract Cauchy Problems�

I. Faragó
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Abstract. In this paper we consider the interaction of the operator
splitting method and applied numerical method to the solution of the
different sub-processes. We show that the well-known fully-discretized
numerical models (like Crank-Nicolson method, Yanenko method, se-
quential alternating Marchuk method, parallel alternating method, etc.),
elaborated to the numerical solution of the abstract Cauchy problem can
be interpreted in this manner. Moreover, on the base of this unified ap-
proach a sequence of the new methods can be defined and investigated.

1 Introduction

In the modelling of complex time-depending physical phenomena the simultane-
ous effect of several different sub-processes has to be described. The operators
describing the sub-processes are as a rule simpler than the whole spatial dif-
ferential operator. The operator splitting method is one of the most powerful
methods to solve such problems. For simplicity, in this paper we assume that
there are only two sub-processes. The generalization to more sub-processes is
straightforward.

The mathematical models of the above problems can be written in the form of
abstract Cauchy problems (ACP) of special structure. Namely, let S denote some
normed space and we consider the initial value problem in the Banach space S
of the form

dw(t)
dt

= (A + B)w(t), t ∈ (0, T )

w(0) = w0,

⎫⎪⎬⎪⎭ (1)

where w : [0, T ) → S is the unknown (abstract) function, w0 ∈ S is a given
element, A and B are given operators of type S → S. Then defining the splitting
step by τ > 0, τ << T we consider the sequence of initial value problems of
the form
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dwn1
dt

(t) = Awn1 (t), (n− 1)τ < t ≤ nτ,

wn1 ((n− 1)τ) = wn−1
2 ((n− 1)τ),

(2)

and
dwn2
dt

(t) = Bwn2 (t), (n− 1)τ < t ≤ nτ,

wn2 ((n− 1)τ) = wn1 (nτ),

(3)

for n = 1, 2, . . . N , where N denotes the supremum of the integers N1 such that
N1τ ≤ T .

Here w0
2(0) = w0 and this splitting is called sequential splitting. The function

wNsp(nτ) = wn2 (nτ), defined at the points tn = nτ is called splitting solution of
the problem.

We can define other types of splittings, too. The most popular and widely
used one is the so-called Strang splitting (or Strang-Marchuk splitting), defined
as follows [6], [10]:

dwn1
dt

(t) = Awn1 (t), (n− 1)τ < t ≤ (n− 0.5)τ,

wn1 ((n− 1)τ) = wn−1
3 ((n− 1)τ),

(4)

dwn2
dt

(t) = Bwn2 (t), (n− 1)τ < t ≤ nτ,

wn2 ((n− 1)τ) = wn1 ((n− 0.5)τ),

(5)

and
dwn3
dt

(t) = Awn3 (t), (n− 0.5)τ < t ≤ nτ,

wn3 ((n− 0.5)τ) = wn2 (nτ),

(6)

for n = 1, 2, . . . N .

Here w0
3(0) = w0, and the function wNsp(nτ) = wn3 (nτ), defined at the points

tn = nτ is the corresponding splitting solution of the problem.
Another alternative is the symmetrically weighted sequential splitting (SWS

splitting) [3], [5] which means the following. We execute two sequential splittings
in different ordering (which are independent tasks) and at the end of each step
the splitting approximation is computed as the arithmetical mean of the results.
This means that the algorithm of the computation is as follows:

dun1 (t)
dt

= Aun1 (t), (n− 1) < t ≤ nτ,

un1 ((n− 1)τ) = un−1
2 ((n− 1)τ);

(7)
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dun2 (t)
dt

= Bun2 (t), (n− 1) < t ≤ nτ,

un2 ((n− 1)τ) = un1 (nτ);

(8)

and
dvn1 (t)
dt

= Bvn1 (t), (n− 1) < t ≤ nτ,

vn1 ((n− 1)τ) = vn−1
2 ((n− 1)τ);

(9)

dvn2 (t)
dt

= Avn2 (t), (n− 1) < t ≤ nτ,

vn2 ((n− 1)τ) = vn1 (nτ);

(10)

and

wNsp(nτ) :=
un2 (nτ) + vn2 (nτ)

2
(11)

for n = 1, 2, . . . N , where u0
2(0) = v0

2(0) = w0.

Typically, the splitting solution is different from the exact solution, i.e., there
is some error, called local splitting error, defined as

Errsp(τ) := w(τ)− wNsp(τ). (12)

E.g., provided that A,B ∈ B(S) (the set of bounded operators), for the sequential
splitting this error is

Errsp(τ) = [exp(A + B)τ − exp(Bτ) exp(Aτ)]w0. (13)

For the other splittings the local splitting error for bounded operators can be
defined similarly.

Definition 1. A splitting is called consistent if

‖Errsp(τ)‖ = O(τp+1) (14)

with p > 0 and p is called order of the splitting.

As an easy computation shows, the sequential splitting is of first order, the Strang
splitting and the SWS splitting are of second order for bounded operators [4].

2 Splitting as a Discretization Process

We could see that the use of any splitting to problem (1) in fact results in
a discretization process: while the true solution w(t) of (1) is defined on the
time interval [0, T ], the splitting solution wNsp(nτ) is defined on the mesh Ωτ :=
{n · τ , n = 0, 1 . . . N}.
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Remark 1. Let us compare the splitting discretizaton method with the well-
known one-step numerical methods applied to ordinary differential equations.
(See e.g. [1].) Considering the one-step numerical method of Runge-Kutta type
of the form

yn+1 = yn + τΦ(τ, yn, yn+1), (15)

the local approximation error is defined as follows

l̂ = y(τ)− y1. (16)

The RK-method is called consistent if l̂ = O(τp+1) with p > 0 and p is called
the order of the numerical method. This implies that the notions of consistency
and order coincide for the splitting methods and the numerical methods for the
ODE’s.

The splitting discretization process can be written in the form

wn+1 = C(τ)wn,
w0 = w0

(17)

where, for simplicity we have used the notation wn = wNsp(nτ). Here {C(τ)}τ>0 is
a one-parameter family of operators S → S and they are defined by the applied
splitting. For bounded operators we can define C(τ) directly for the different
splittings introduced above:

– for the sequential splitting

Css(τ) = exp(τB) exp(τA); (18)

– for the Strang splitting

CSt(τ) = exp(
τ

2
A) exp(τB) exp(

τ

2
A), (19)

– and for the SWS splitting

CSWS(τ) =
1
2

[exp(τB) exp(τA) + exp(τA) exp(τB)] . (20)

In virtue of the general theory of abstract numerical methods, we can consider
a splitting method as an abstract numerical method, defined in some Banach
space S. For such methods we have the following [8]

Definition 1. The numerical method C(τ) which is applied to the well-posed
ACP problem (1), is called consistent if for all fixed t ∈ [0, T ) the relation

lim
τ→0

∥∥∥∥(C(τ)− I

τ
− (A + B)

)
w(t)

∥∥∥∥ = 0 (21)

holds for the solutions w(t) which correspond to all possible choices of the initial
elements w0.
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Since the abstract function w(t) is the solution of the ACP, therefore for all
t ∈ (0, T ) there exists the limit

lim
τ→0

∥∥∥∥w(t + τ)− w(t)
τ

− (A + B)w(t)
∥∥∥∥ = 0. (22)

Consequently, (21) is satisfied if and only if the relation

lim
τ→0

∥∥∥w(t + τ)− C(τ)w(t)
τ

∥∥∥ = 0 (23)

holds, that is, the numerical method C(τ) is consistent if and only if (23) holds.
Substituting t = 0 into the formula, we see that the expression in norm (which is
called local approximation error of the numerical method) is the local splitting
error. Hence, the sequential, the Strang and the SWS splittings as abstract
discretization methods are consistent.

However, as it follows from the abstract theory of numerical methods, the
consistency itself doesn’t yield the convergence. Our aim is to use the Lax the-
orem. Therefore we introduce the following

Definition 2. We say that a splitting discretization with the operator C(τ) is
stable if for all fixed t ∈ [0, T ) there exists a constant K > 0 such that the relation

‖C(τ)n‖ ≤ K (24)

holds for all n ∈ IN such that nτ ≤ t.

Hence the condition
‖C(τ)‖ ≤ 1 + Kτ (25)

(where K ≥ 0 is a constant) is a sufficient condition for the stability. The con-
tractivity of the operators exp(τA) and exp(τB), i.e.,

|| exp(τA)|| ≤ 1; || exp(τB)|| ≤ 1 (26)

in some norm is clearly a sufficient condition for the stability (24).

Remark 2. The sequential splitting is unconditionally stable for bounded oper-
ators. This follows from the relation

‖Css(τ)n‖ ≤ ‖Css(τ)‖n ≤ [‖ exp(τB)‖]n [‖ exp(τA)‖]n ≤

≤ [exp(τ‖B‖)]n [exp(τ‖A‖)]n = exp(nτ‖B‖) exp(nτ‖A‖) =

= exp [nτ(‖A‖+ ‖B‖)] ≤ exp [t(‖A‖+ ‖B‖)]

(27)

which holds for all n ∈ IN such that nτ ≤ t. Hence the splitting is stable with
the constant K = exp [t(‖A‖+ ‖B‖)].
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To prove the similar statements for the Strang and SWS splittings, as an easy
exercise, is left to the reader.

The Lax equivalence theorem says that for a well-posed ACP a consistent nu-
merical method is convergent if and only if it is stable [8]. Hence, we have

Theorem 1. Assume that A,B ∈ B(S). Then the sequential, Strang and SWS
splittings are convergent for the well-posed ACP (1).

3 Application of Numerical Methods in the Split
Sub-problems

In Section 2 we analyzed the convergence under the assumption that the split
sub-problems are solved exactly. Usually, this cannot be done and we apply some
numerical method to their solution with the discretization parameter Δt. Clearly,
the condition Δt ≤ τ should be satisfied. Aiming at finishing the numerical
solving process at the endpoint of the time intervals, where the sub-problems
are posed, we select Δt = τ/K, where K is some integer.

In this manner, we can define a new numerical discretization method, based
on the splitting. Obviously, for the different sub-problems different numerical
methods can be chosen with different discretization parameters. Hence, assum-
ing the use of the same numerical method on each splitting step, the total dis-
cretization operator depends on the choice of the splitting, the splitting step,
the applied numerical methods and their step sizes. For instance, for the sequen-
tial splitting, by the choice of some numerical method NM1 with the step-size
Δt1 = τ/K1 for the first sub-problem, and a numerical method NM2 with the
step-size Δt2 = τ/K2 for the second sub-problem, the total numerical discretiza-
tion operator can be defined as Ctot = Ctot(τ,NM1,K1, NM2,K2). (For sim-
plicity, we will use the notation C(τ) when NM1,K1, NM2 and K2 are fixed.)

Example 1. Let us consider the sequential splitting applied to the ACP (1). We
solve each problem with the explicit Euler (EE) method and we choose Δt = τ
for both sub-problems. (I.e., Ctot = Ctot(τ, EE, 1, EE, 1)). If we denote by yn1
and yn2 the approximations to wN1 (nτ) and wN2 (nτ), respectively, the numerical
schemes are

yn+1
1 − yn1

τ
= Ayn1 ,

yn+1
2 − yn2

τ
= Byn2 (28)

and yn2 = yn+1
1 . Hence

yn+1
2 = (I + τB)(I + τA)yn1 . (29)

Consequently,
C(τ) = (I + τB)(I + τA). (30)
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Example 2. Let us consider again the sequential splitting for the ACP (1) and
apply the explicit Euler (EE) method with Δt = τ/K for both sub-problems.
(I.e., Ctot = Ctot(τ, EE,K,EE,K)). Then

C(τ) = (I +
τ

K
B)K(I +

τ

K
A)K . (31)

Obviously, in order to prove the convergence of the combined numerical dis-
cretization, we can apply the Lax theorem with the choice C(τ) = Ctot. For
illustration, we prove a simple case.

Theorem 1. Assume that A,B ∈ B(S). Then the sequential splitting with the
explicit Euler method with the choice Δt = τ is convergent for the well-posed
ACP (1).

Proof. By the use of (30), we get

C(τ)− I

τ
− (A + B) = τA ·B, (32)

which means that combined method is consistent for the bounded operators.
As for the stability, for (30) we get the relation

‖C(τ)n‖ = ‖ ((I + τB)(I + τA))n ‖ ≤ (1 + τ‖B‖)n (1 + τ‖A‖)n ≤

≤ exp(t‖A‖) exp(t‖B‖) = exp (t(‖A‖+ ‖B‖)) ,
(33)

which proves the stability.

4 Some Combined Schemes

In Section 3 we defined the combined discretization methods. In this section we
show the relation of these methods to some well-known discretization methods.

4.1 Crank-Nicolson Method

Let us consider the Cauchy problem

dw

dt
= Aw(t); 0 < t ≤ T ,

w(0) = w0.
(34)

If we use the trivial splitting A =
1
2
A +

1
2
A, then (34) can be split into two

sub-problems via sequential splitting. (For simplicity, we write only the first
step.)

dw1
1(t)
dt

=
1
2
Aw1

1(t); 0 < t ≤ τ ,

w1
1(0) = w0.

(35)



42 I. Faragó

dw1
2(t)
dt

=
1
2
Aw1

2(t), 0 < t ≤ τ

w1
2(0) = w1

1(τ)
(36)

Applying the explicit Euler method for the sub-problem (35) and the implicit
Euler (IE) method for (36) with �t = τ , we obtain

y1
1 − y0

1

τ
=

1
2
Ay0

1 ; y0
1 = w0,

y1
2 − y0

2

τ
=

1
2
Ay1

2 ; y0
2 = y1

1 .

This implies that for the above special decomposition the discretization operator
for the sequential splitting is Ctot = Ctot(τ, EE, 1, IE, 1) and has the form

C(τ) = (I − τ

2
A)−1(I +

τ

2
A), (37)

i.e., we obtained the operator of the Crank-Nicolson method (”trapezoidal rule”).
In this example, the discretization error of the method consists of only the nu-
merical integration part because obviously the splitting error equals zero. This
shows that such an approach can lead to an increase of the order: although
the applied numerical methods (explicit and implicit Euler methods) are of first
order, the combined method has second order accuracy.

4.2 Componentwise Split Crank-Nicolson Method (Second Order
Yanenko Method)

Let us consider the ACP (1) and use the sequential splitting and the middle
point numerical integration method (CN) with τ = Δt, i.e.,

yn+1
1 − yn1

τ
= A(

yn+1
1 + yn1

2
)

yn1 = yn−1
2

(38)

yn+1
2 − yn2

τ
= B(

yn+1
2 + yn2

2
)

yn2 = yn+1
1 ,

(39)

where y0
2 = w0 and n = 1, 2, . . . ; nτ ≤ T , which can be written in the form

yn+1
1 = yn1 + τA(

yn1 + yn+1
1

2
),

yn+1
2 = yn+1

1 + τB(
yn+1
1 + yn+1

2

2
).

(40)
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This method is known as the second-order Yanenko method [12].
An easy computation shows that

C(τ) = (I − τ

2
B)−1(I +

τ

2
B)(I − τ

2
A)−1(I +

τ

2
A). (41)

Obviously, in the above algorithm the inverse operators always exist for suffi-
ciently small values of τ . Using the Neumann series we have

(I − τ

2
B)−1 = I +

τ

2
B +

τ2

4
B2 +O(τ3) (42)

(I − τ

2
A)−1 = I +

τ

2
A +

τ2

4
A2 +O(τ3) (43)

Hence,

C(τ) = I + τ(A + B) +
τ2

2
(A2 + B2 + 2BA) +O(τ3),

which shows the consistency (in first order) of this combined method. (If the
operators A and B commute then the order is higher.)
The numerical discretization method can be realized as follows:

1. ξ1 := (I + τ
2 )yn

2. (I − τ
2A)ξ2 = ξ1

3. ξ3 = (I + τ
2B)ξ2

4. (I − τ
2B)ξ4 = ξ3

5. yn+1 = ξ4,

for n := 0, 1, . . . and y0 = w0. This algorithm requires the solution of only
two systems of linear equations, with (hopefully) simple linear operators. E.g.,
when (1) results from a semidiscretization of the heat equation, A and B are the
corresponding space discretization matrices, i.e.

A =
1
h2
x

tridiag(1,−2, 1), B :=
1
h2
y

tridiag(1,−2, 1),

then, in practice, this algorithm leads to two one-dimensional problems. Since
in this case A and B commute, therefore this method has second order accuracy
for this problem.

4.3 Sequential Alternating Marchuk Scheme

Let us denote the Yanenko scheme (40) as yn+1 = ΦAB(yn). In order to restore
the symmetry, we interchange the order of A and B in each step. This leads to
the modification

yn+1 = ΦAB(yn); yn+2 = ΦBA(yn+1), n = 0, 2, 4 . . . . (44)

This method was defined by Marchuk [7] and it corresponds to the case of the
Strang splitting with the middle-point numerical integration method and τ = Δt.
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4.4 Parallel Alternating Scheme

Let us consider the method defined as

yn+1 =
1
2
ΦAB(yn) +

1
2
ΦBA(yn) (45)

[11]. One can easily see that this method corresponds to the SWS splitting with
the middle-point numerical integration method with τ = Δt.

4.5 Local One-Dimensional Schemes

We consider the heat conduction equation in 3D. The Yanenko scheme has the
form:

yn+1
1 − yn

τ
= Λxxy

n+1
1 ,

yn+1
2 − yn+1

1

τ
= Λyyy

n+1
2 ,

yn+1
3 − yn+1

2

τ
= Λzzy

n+1
3 , yn+1 = yn+1

3

(46)

for n = 0, 1 . . . with y0 = w0. In this scheme Λxx, Λyy and Λzz denote the usual

discretizations of the one-dimensional differential operators
∂2

∂x2 ,
∂2

∂y2 and
∂2

∂z2 ,

respectively. (For more details, see [7], [9].)

Clearly, this scheme corresponds to the sequential splitting with implicit Euler
methods and τ = Δt.

Finally, we note that other, widely used in the applied problems methods
as the ADI method and the stabilization method can be investigated in this
framework, too. E.g. in [2] the ADI method is successfully applied for solving the
system of linear algebraic equations arising from the problem of the identification
of spatially varying diffusivity in the diffusion-convection -reaction equation.
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Abstract. General elliptic interface problem with variable coefficients
and curvilinear interface is transformed into analogous problem with
rectilinear interface. For the numerical solution of transformed problem
a finite difference scheme with averaged right–hand side is proposed.
Convergence rate estimate in discrete W 1

2 norm, compatible with the
smoothness of data, is obtained.

1 Introduction

Interface problems occur in many applications in science and engineering. These
kinds of problems can be modelled by partial differential equations with discon-
tinuous or singular coefficients. Various forms of conjugation conditions satisfied
by the solution and its derivatives on the interface are known [4], [15]. In [2] a
review of results on numerical solution of two-dimensional elliptic and parabolic
interface problems in recent years is presented. In [10], [11], [12], [19] conver-
gence of finite difference method for different elliptic, parabolic and hyperbolic
problems in which the solution is continuous on the interface curves, while the
flow is discontinuous, is studied.

In the present work we investigate a general elliptic interface problem in
rectangular domain, crossed by curvilinear interface. By suitable change of vari-
ables problem is transformed into analogous one with rectilinear interface. For
the numerical solution of transformed problem a finite difference scheme with
averaged right–hand side is proposed. Convergence rate estimate in discrete W 1

2
norm, compatible with the smoothness of data, is obtained. Analogous problem
for Laplace operator is considered in [8]

The layout of the paper is as follows. In Section 2 the interface boundary value
problem (BVP) is defined. Further, it is transformed into BVP with rectilinear
interface by suitable change of variables. The main properties of transformed
problem are studied in Section 3. In Section 4 finite difference scheme (FDS) ap-
proximating considered rectilinear interface problem is constructed. Convergence
of FDS is proved in Section 5.
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2 Problem with Curvilinear Interface

Let Ω = (0, 1)2, Γ = ∂Ω, and let S be a smooth curve intersecting Ω. For clarity,
let S be defined by equation ξ2 = g(ξ1), where g ∈ C1[0, 1] and 0 < g0 ≤ g(ξ1) ≤
g1 < 1. In domain Ω we consider Dirichlet boundary value problem

MU + K(ξ)δS(ξ)U = F (ξ) in Ω, U = 0 on Γ, (1)

where ξ = (ξ1, ξ2),

MU = −
2∑

i,j=1

Aij(ξ)
∂2U

∂ξi∂ξj
+ 2

2∑
i=1

Bi(ξ)
∂U

∂ξi
+ C(ξ)U , Aij(ξ) = Aji(ξ)

is elliptic operator and δS(ξ) is Dirac distribution concentrated on S. The equal-
ity in (1) is treated in the sense of distributions.

The BVP (1) can be transformed into analogous one with rectilinear interface.
It can be easily verified that the change of variables x = x(ξ), where

x1 = ξ1 , x2 =
[1− g(ξ1)] ξ2

ξ2 − 2ξ2g(ξ1) + g(ξ1)
(2)

maps Ω onto Ω. The curve S is mapped onto straight line Σ: x2 = 1/2. By
change of variables (2) BVP (1) transforms to following one

Lu + k(x)δΣ(x)u = f(x) in Ω, u = 0 on Γ, (3)

where u(x) = U(ξ), f(x) = F (ξ), δΣ(x) = δ(x2 − 1/2) is Dirac distribution con-
centrated on Σ, k(x) = k(x1) = K(x1, g(x1))

√
1 + [g′(x1)]2, while coefficients

of differential operator

Lu = −
2∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+ 2

2∑
i=1

b̂i(x)
∂u

∂xi
+ ĉ(x)u , aij(x) = aji(x)

can be expressed by coefficients of M and derivatives ∂xi

∂ξj
, for example

a11(x) = A11(ξ) ,

a12(x) = A11(ξ)
ξ2(1− ξ2)g′(ξ1)

[ξ2 − 2ξ2g(ξ1) + g(ξ1)]2
+ A12(ξ)

g(ξ1)[1− g(ξ1)]
[ξ2 − 2ξ2g(ξ1) + g(ξ1)]2

etc. Finally, we represent operator L in the skew–symmetric form

Lu = −
2∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+

2∑
i=1

[
bi

∂u

∂xi
+

∂(biu)
∂xi

]
+ cu , (4)

where

bi(x) = b̂i(x) +
1
2

2∑
j=1

∂aij
∂xj

, c(x) = ĉ(x)−
2∑
j=1

∂bj
∂xj

.

In such a way, in the sequel we can restrict our investigation to the BVP of
the form (3), (4). This problem will be called canonical. Note that differential
operator L is a general convection–diffusion operator [18].



48 B.S. Jovanović and L.G. Vulkov

3 Canonical Problem with Rectilinear Interface

Dirac distribution δΣ belongs to Sobolev space W−α
2 (Ω), with α > 1/2. In such

a way, equation (3) must be treated as an equation in this space. For α = 1 this
means that

〈Lu + kδΣu, v〉 = 〈f, v〉, ∀v ∈
◦
W 1

2 (Ω), (5)

where 〈f, v〉 denotes duality pairing between spaces W−1
2 (Ω) and

◦
W 1

2 (Ω). Using
standard rules for differentiation of distributions (see [20]) from (5) we obtain

the following weak form of BVP (3), (4): find u ∈
◦
W 1

2 (Ω) such that

a(u, v) = 〈f, v〉 , ∀ v ∈
◦
W 1

2 (Ω) , (6)

where

a(u, v) =
∫
Ω

[ 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
+

2∑
i=1

bi

(
∂u

∂xi
v − u

∂v

∂xi

)
+ cuv

]
dx

+
∫
Σ

kuv dΣ .

(7)

The following assertion is an immediate consequence of the Lax–Milgram
lemma [14] and the imbedding W 1

2 (Ω) ⊂ L2(Σ).

Lemma 1. Let the following assumptions

f ∈W−1
2 (Ω), aij , bi, c ∈ L∞(Ω), k ∈ L∞(Σ), aij = aji, c ≥ 0, k ≥ 0,

2∑
i,j=1

aij(x) zizj ≥ c0

2∑
i=1

z2
i , c0 = const > 0, ∀ z = (z1, z2) ∈ R2, a. e. in Ω

hold. Then there exists the unique solution u ∈
◦
W 1

2 (Ω) of BVP (6), (7).

In the case when f(x) does not contains δΣ(x) one easily checks that (6), (7)
is also the weak form of the following BVP with conjugation conditions on the
interface Σ:

Lu = f(x) in Ω− ∪Ω+, u = 0 on Γ,

[u]Σ = 0 ,
[ 2∑
j=1

a2j
∂u

∂xj
− b2u

]
Σ

= ku
∣∣∣
Σ

(8)

where Ω− = (0, 1)× (0, 1/2), Ω+ = (0, 1)× (1/2, 1), and [u]Σ = u(x1, 1/2+0)−
u(x1, 1/2− 0). In this sense, BVPs (3), (4) and (8) are equivalent.

Increased smoothness of the solution can be proved under some additional
assumptions on the input data.

Lemma 2. Let the following assumptions hold, besides the assumptions of Lemma

1: f ∈ L2(Ω), aij , bi ∈ W 1
∞(Ω), k ∈ W 1

∞(Σ). Then
∂2u

∂x2
1
,

∂2u

∂x1∂x2
∈ L2(Ω)
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and
∂2u

∂x2
2
∈ L2(Ω±). If also

∂f

∂x1
∈ L2(Ω),

∂f

∂x2
∈ L2(Ω±), aij , bi∈W 2

∞(Ω),c ∈

W 1
∞(Ω), k ∈ W 2

∞(Σ) and f = a12 = b1 =
∂a11

∂x1
= 0 for x1 = 0 and x1 = 1

then
∂3u

∂x3
1
,

∂3u

∂x2
1∂x2

∈ L2(Ω) and
∂3u

∂x1∂x2
2
,
∂3u

∂x3
2
∈ L2(Ω±).

For more detailed analysis of elliptic BVPs in domains with corners we refer
to [6] and [5].

In the sequel we will assume that the generalized solution of BVP (3), (4)

belongs to W̃ s
2 (Ω) =

◦
W 1

2 (Ω) ∩W s
2 (Ω−) ∩W s

2 (Ω+), s > 2, while the coefficients
of equation satisfies the following smoothness conditions: aij , bi ∈W s−1

2 (Ω−) ∩
W s−1

2 (Ω−) ∩ C(Ω̄), c ∈W s−2
2 (Ω−) ∩W s−2

2 (Ω−), k ∈W s−1
2 (Σ). We define

‖u‖2
W̃ s

2 (Ω)
= ‖u‖2W 1

2 (Ω) + ‖u‖2W s
2 (Ω−) + ‖u‖2W s

2 (Ω+) .

4 Finite Difference Approximation

Let ω̄h be a uniform mesh with step h = 1/(2n) in Ω̄, ωh = ω̄h ∩ Ω, ω1h =
ω̄h ∩

(
[0, 1)× (0, 1)

)
, ω2h = ω̄h ∩

(
(0, 1)× [0, 1)

)
, γh = ω̄h ∩ Γ , σh = ωh ∩Σ and

σ−
h = σh ∪ {(0, 1/2)}.

Further, we shall use standard denotations [16]

vxi =
v+i − v

h
, vx̄i =

v − v−i

h
, v±i(x) = v(x± hei), e1 = (1, 0), e2 = (0, 1) .

We approximate the BVP (3), (4) on the mesh ω̄h by the following finite
difference scheme with averaged right–hand side

Lh v + kδσh
v = T 2

1 T
2
2 f in ωh, v = 0 on γh, (9)

where

Lhv = −1
2

2∑
i,j=1

[
(aijvx̄j

)xi
+ (aijvxj

)x̄i

]
+

1
2

2∑
i=1

[
bivx̄i + bivxi + (biv)x̄i + (biv)xi

]
+ (T 2

1 T
2
2 c)v,

δσh
(x) = δh(x2 − 1/2) =

{
0, x ∈ ωh \ σh
1/h, x ∈ σh

is discrete Dirac delta-function and Ti are Steklov averaging operators [17]:

T1f(x1, x2) = T−
1 f(x1+h/2, x2) = T+

1 f(x1−h/2, x2) =
1
h

∫ x1+h/2

x1−h/2
f(x′

1, x2) dx′
1,
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T2f(x1, x2) = T−
2 f(x1, x2+h/2) = T+

2 f(x1, x2−h/2) =
1
h

∫ x2+h/2

x2−h/2
f(x1, x

′
2) dx

′
2.

Note that these operators are self–commutative and they transform the deriva-
tives to divided differences, for example

T−
i

∂u

∂xi
= ux̄i

, T+
i

∂u

∂xi
= uxi

, T 2
i

∂2u

∂x2
i

= uxix̄i
.

We also define

T 2−
2 f(x1, x2) =

1
h

∫ x2

x2−h

(
1 +

x′
2 − x2

h

)
f(x1, x

′
2) dx

′
2,

T 2+
2 f(x1, x2) =

1
h

∫ x2+h

x2

(
1− x′

2 − x2

h

)
f(x1, x

′
2) dx

′
2.

Analogous FDS for BVP without interface (the case k = 0) is investigated in [18].
Let Hh be the space of mesh functions defined on ωh, equal to zero on γh,

endowed with the inner product and norm

(v, w)h = h2
∑
x∈ωh

v(x)w(x) , ‖v‖L2(ωh) = (v, v)1/2h .

We also define the following discrete inner products, norms and seminorms

(v, w)ih = h2
∑
x∈ωih

v(x)w(x) , ‖v‖L2(ωih) = (v, v)1/2ih ,

‖v‖2W 1
2 (ωh) = ‖vx1‖2L2(ω1h) + ‖vx2‖2L2(ω2h) + ‖v‖2L2(ωh) ,

(v, w)σh
= h

∑
x∈σh

v(x)w(x) , ‖v‖L2(σh) = (v, v)1/2σh
,

|w|
W

1/2
2 (σh) =

(
h2

∑
x∈σ−

h

∑
x′∈σ−

h , x
′ 
=x

|w(x)− w(x′)|2
|x1 − x′

1|2

)1/2

.

Further we shall make use of the assertion:

Lemma 3. Let v ∈ Hh and w be a mesh function defined on σ−
h . Then

|(wx̄1 , v)σh
| ≤ C ‖v‖W 1

2 (ωh) |w|W 1/2
2 (σh) .

The proof is analogous to the proof of Lemma 2 in [9].
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5 Convergence of the Finite Difference Scheme

Let u be the solution of BVP (3), (4) and v – the solution of FDS (9). The error
z = u− v satisfies the finite difference scheme

Lh z + kδσh
z = ϕ in ωh, z = 0 on γh, (10)

where

ϕ =
2∑

i,j=1

ηij,x̄i
+

2∑
i=1

ξi,x̄i
+

2∑
i=1

ζi + χ + δσh
μ ,

ηij = T+
i T 2

3−i

(
aij

∂u

∂xj

)
− 1

2
(
aijuxj

+ a+i
ij u

+i
x̄j

)
,

ξi =
1
2
(
b+ii u+i + biu

)
− T+

i T 2
3−i(biu),

ζi =
1
2
(
biux̄i + biuxi

)
− T 2

1 T
2
2

(
bi

∂u

∂xi

)
,

χ = (T 2
1 T

2
2 c)u− T 2

1 T
2
2 (cu),

μ = ku− T 2
1 (ku),

Let us set

η1j = η̃1j + δσh
η̂1j , ζj = ζ̃j + δσh

ζ̂j , ξ1 = ξ̃1 + δσh
ξ̂1, χ = χ̃ + δσh

χ̂,

where

η̂11 =
h2

6
T+

1

([
a11

∂2u

∂x1∂x2
+

∂a11

∂x2

∂u

∂x1

]
Σ

)
,

η̂12 =
h2

6
T+

1

([
a12

∂2u

∂x2
2

+
∂a12

∂x2

∂u

∂x2

]
Σ

)
− h2

4
T+

1

([ ∂

∂x1

(
a12

∂u

∂x2

)]
Σ

)
,

ζ̂1 = −h2

6
T 2

1

([ ∂

∂x2

(
b1

∂u

∂x1

)]
Σ

)
,

ζ̂2 =
h2

4

[
b2 T

2
1

(∂2u

∂x2
2

)]
Σ

− h2

6
T 2

1

([ ∂

∂x2

(
b2

∂u

∂x2

)]
Σ

)
,

ξ̂1 = −h2

6
T+

1

([∂(b1u)
∂x2

]
Σ

)
,

χ̂ = −h2

3

[
(T 2

1 c)
(
T 2

1
∂u

∂x2

)]
Σ

.

Using summation by part and Lemma 3, we get the a priori estimate

‖z‖W 1
2 (ωh) ≤ C

[
2∑
j=1

(
‖η2j‖L2(ω2h) + ‖η̃1j‖L2(ω1h) + |η̂1j |W 1/2

2 (σh)

+‖ζ̃j‖L2(ωh) + ‖ζ̂j‖L2(σh)

)
+ ‖ξ2‖L2(ω2h) + ‖ξ̃1‖L2(ω1h)

+|ξ̂1|W 1/2
2 (σh) + ‖χ̃‖L2(ωh) + ‖χ̂‖L2(σh) + ‖μ‖L2(σh)

]
.

(11)
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Therefore, in order to estimate the rate of convergence of the difference scheme
(10) it is sufficient to estimate the terms at the right–hand side of (10).

Terms η2j are estimated in [7]. After summation over the mesh ω2h we obtain

‖η2j‖L2(ω2h) ≤ Chs−1
(
‖a2j‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

+‖a2j‖W s−1
2 (Ω+)‖u‖W s

2 (Ω+)

)
, 2 < s ≤ 3.

(12)

Terms η̃1j for x ∈ ω1h \σ−
h can be estimated in the same manner. For x ∈ σ−

h

we set

η̃11 =
3∑
k=1

(η−
11,k + η+

11,k) ,

where

η±
11,1 = T+

1 T 2±
2

(
a11

∂u

∂x1

)
− 2

(
T+

1 T 2±
2 a11

)(
T+

1 T 2±
2

∂u

∂x1

)
±h

6

(
T+

1
∂a11

∂x2

)[
2
(
T+

1 T 2±
2

∂u

∂x1

)
−
(
T+

1
∂u

∂x1

)]∣∣∣∣
x2=1/2±0

±h

6

[
a11 + a+1

11

2

(
T+

1
∂2u

∂x1∂x2

)
−
(
T+

1 a11
∂2u

∂x1∂x2

)]∣∣∣∣
x2=1/2±0

±h

6

[(
T+

1
∂a11

∂x2

)(
T+

1
∂u

∂x1

)
−
(
T+

1
∂a11

∂x2

∂u

∂x1

)]∣∣∣∣
x2=1/2±0

,

η±
11,2 =

[
2
(
T+

1 T 2±
2 a11

)
− a11 + a+1

11

2
∓ h

3

(
T+

1
∂a11

∂x2

)](
T+

1 T 2±
2

∂u

∂x1

)∣∣∣∣
x2=1/2±0

,

η±
11,3 =

a11 + a+1
11

4

[
2
(
T+

1 T 2±
2

∂u

∂x1

)
− ux1 ∓

h

3

(
T+

1
∂2u

∂x1∂x2

)]∣∣∣∣
x2=1/2±0

.

Terms η±
11,k, for s > 2.5, also can be estimated as corresponding terms η11,k

in [7]. In such a way one obtains

‖η̃11‖L2(ω1h) ≤ Chs−1
(
‖a11‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

+‖a11‖W s−1
2 (Ω+)‖u‖W s

2 (Ω+)

)
, 2.5 < s ≤ 3.

(13)

An analogous estimate

‖η̃12‖L2(ω1h) ≤ Chs−1
(
‖a12‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

+‖a12‖W s−1
2 (Ω+)‖u‖W s

2 (Ω+)

)
, 2.5 < s ≤ 3

(14)

holds for η̃12.
The value ξ2 at the node x ∈ ω2h is a bounded linear functional of b2u ∈

W s−1
2 (e2), where e2 = (x1 − h, x1 + h) × (x2, x2 + h) and s > 2, which van-

ishes on polynomials of first degree. Using Bramble–Hilbert lemma [1], [3] one
immediately obtains

|ξ2(x)| ≤ C hs−2 ‖b2u‖W s−1
2 (e2) , 2 < s ≤ 3,

and, after summation over the mesh ω2h
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‖ξ2‖L2(ω2h) ≤ Chs−1
(
‖b2u‖W s−1

2 (Ω−) + ‖b2u‖W s−1
2 (Ω+)

)
≤ Chs−1

(
‖b2‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

+‖b2‖W s−1
2 (Ω+)‖u‖W s

2 (Ω+)

)
, 2 < s ≤ 3.

(15)

In an analogous way, using Bramble-Hilbert lemma and decomposing some
terms if it is necessary, one obtains the following estimates:

‖ξ̃1‖L2(ω1h) ≤ Chs−1
(
‖b1‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

+‖b1‖W s−1
2 (Ω+)‖u‖W s

2 (Ω+)

)
, 2.5 < s ≤ 3,

(16)

‖ζ̃i‖L2(ωh) ≤ Chs−1
(
‖bi‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

+‖bi‖W s−1
2 (Ω+)‖u‖W s

2 (Ω+)

)
, 2.5 < s ≤ 3,

(17)

‖χ̃‖L2(ωh) ≤ Chs−1
(
‖c‖W s−2

2 (Ω−)‖u‖W s
2 (Ω−)

+‖c‖W s−2
2 (Ω+)‖u‖W s

2 (Ω+)

)
, 2 < s ≤ 3

(18)

and

‖μ‖L2(σh) ≤ Chs−1‖ku‖W s−1
2 (Σ)

≤ Chs−1‖k‖W s−1
2 (Σ)

(
‖u‖W s

2 (Ω−) + ‖u‖W s
2 (Ω+)

)
, 1.5 < s ≤ 3.

(19)

Terms χ̂ and ζ̂j can be estimated directly:

‖χ̂‖L2(σh) ≤ Ch2
(
‖c‖L2(Σ+)

∥∥∥∥ ∂u

∂x2

∥∥∥∥
C(Ω̄+)

+ ‖c‖L2(Σ−)

∥∥∥∥ ∂u

∂x2

∥∥∥∥
C(Ω̄−)

)
≤ Ch2

(
‖c‖W s−2

2 (Ω+)‖u‖W s
2 (Ω+) + ‖c‖W s−2

2 (Ω−)‖u‖W s
2 (Ω−)

)
, s > 2 ,

(20)

‖ζ̂1‖L2(σh) ≤ Ch2
(∥∥∥∥ ∂

∂x2

(
b1

∂u

∂x1

)∥∥∥∥
L2(Σ+)

+
∥∥∥∥ ∂

∂x2

(
b1

∂u

∂x1

)∥∥∥∥
L2(Σ−)

)
≤ Ch2

(
‖b1‖W s−1

2 (Ω+)‖u‖W s
2 (Ω+) + ‖b1‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

)
, s > 2.5 ,

(21)

‖ζ̂2‖L2(σh) ≤ Ch2
(
‖b2‖C(Ω̄+)

∥∥∥∥∂2u

∂x2
2

∥∥∥∥
L2(Σ+)

+ ‖b2‖C(Ω̄−)

∥∥∥∥∂2u

∂x2
2

∥∥∥∥
L2(Σ−)

+
∥∥∥∥ ∂

∂x2

(
b2

∂u

∂x2

)∥∥∥∥
L2(Σ+)

+
∥∥∥∥ ∂

∂x2

(
b2

∂u

∂x2

)∥∥∥∥
L2(Σ−)

)
≤ Ch2

(
‖b2‖W s−1

2 (Ω+)‖u‖W s
2 (Ω+) + ‖b2‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

)
, s > 2.5 .

(22)

Here the following notation is used:

‖u‖L2(Σ±) = ‖u( · , 1/2± 0)‖L2(0,1) .
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Seminorm |T+
1 φ|

W
1/2
2 (σh), for φ ∈ Wα

2 (Σ), 0 < α ≤ 1/2, can be estimated
directly:

|T+
1 φ|

W
1/2
2 (σh) ≤ 2α+1/2hα−1/2|φ|Wα

2 (Σ) ≤ Chα−1/2‖φ‖
W

α+1/2
2 (Ω±) ,

wherefrom follows

|ξ̂1|W 1/2
2 (σh) ≤ Chs−1

(∥∥∥∥∂(b1u)
∂x2

∥∥∥∥
W s−2

2 (Ω+)
+
∥∥∥∥∂(b1u)

∂x2

∥∥∥∥
W s−2

2 (Ω−)

)
(23)

≤ Chs−1
(
‖b1‖W s−1

2 (Ω+)‖u‖W s
2 (Ω+)+ ‖b1‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

)
, 2.5 < s ≤ 3 ,

|η̂11|W 1/2
2 (σh) ≤ Chs−1

(∥∥∥∥a11
∂2u

∂x1∂x2

∥∥∥∥
W s−2

2 (Ω+)
+
∥∥∥∥a11

∂2u

∂x1∂x2

∥∥∥∥
W s−2

2 (Ω−)

+
∥∥∥∥∂a11

∂x2

∂u

∂x1

∥∥∥∥
W s−2

2 (Ω+)
+
∥∥∥∥∂a11

∂x2

∂u

∂x1

∥∥∥∥
W s−2

2 (Ω−)

)
(24)

≤ Chs−1
(
‖a11‖W s−1

2 (Ω+)‖u‖W s
2 (Ω+)+ ‖a11‖W s−1

2 (Ω−)‖u‖W s
2 (Ω−)

)
, 2.5 < s ≤ 3

and analogously

|η̂12|W 1/2
2 (σh) ≤ Chs−1

(
‖a12‖W s−1

2 (Ω+)‖u‖W s
2 (Ω+)

+‖a12‖W s−1
2 (Ω−)‖u‖W s

2 (Ω−)

)
, 2.5 < s ≤ 3.

(25)

Therefore, from (11)–(25) we obtain the main result of the paper.

Theorem. Let the assumptions from Section 3 are fulfilled. Then FDS (10)
converges and the following convergence rate estimate holds

‖u− v‖W 1
2 (ωh) ≤ Chs−1

(
max
i,j

‖aij‖W s−1
2 (Ω+) + max

i,j
‖aij‖W s−1

2 (Ω−)

+ max
i
‖bi‖W s−1

2 (Ω+) + max
i
‖bi‖W s−1

2 (Ω−) + ‖c‖W s−2
2 (Ω+)

+‖c‖W s−2
2 (Ω−) + ‖k‖W s−1

2 (Σ)

)
‖u‖

W̃ s
2 (Ω) , 2.5 < s ≤ 3.

Obtained convergence rate estimate is compatible with the smoothness of
data (see [13]).
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The Finite Element Method for the
Navier-Stokes Equations for a Viscous Heat

Conducting Gas�

E.D. Karepova, A.V Malyshev, V.V. Shaidurov, and G.I. Shchepanovskaya

Institute of Computational Modelling SB RAS, Krasnoyarsk, Russia
shidurov@icm.krasn.ru

Abstract. A boundary value problem for the Navier-Stokes equations
for a viscous heat conducting gas in a finite computational domain is
considered. The space approximation is constructed with the use of the
Bubnov-Galerkin method combined with the method of lines.

This paper deals with the numerical solution of a boundary value problem for
the Navier-Stokes equations for a viscous heat conducting gas. The space ap-
proximation of the two-dimensional Navier-Stokes problem by the finite element
method is considered. Notice that a feature of the formulation of the problem
used here is that boundary conditions on the boundary of a computational do-
main relate derivatives of velocity to pressure. These boundary conditions are
natural for the variational (integral) formulation, i.e., they do not impose ad-
ditional conditions on subspaces of trial and test functions as opposed to main
boundary conditions (of the Dirichlet type). Moreover, they are ”nonreflecting”
since they do not distort propagation of local perturbations of velocities outside
of the computational domain and have no influence on the values of velocities
inside the domain.

To construct the space approximation, the Bubnov-Galerkin method com-
bined with the method of lines is used. For a space of trial and test functions,
a space of functions being piecewise bilinear on square meshes is used. For cal-
culation of integrals over an elementary domain the quadrature formulae of the
trapezoid method and of its two-dimensional analogue as the Cartesian product
are applied.

As a result, we obtain a system of ordinary differential equations in time
with respect to four vectors which consist of the values of density, velocities, and
energy at the nodes of a square grid and depend on time.

1 The Formulation of the Problem

Let Ω = (0, 1) × (0, 1) be a bounded (computational) domain in R2 with the
boundary Γ . Let also (0, tfin) be the time interval. Consider the problem on a

� This work was supported by Russian Foundation of Basic Research (grant N 02-01-
00523)

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 56–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

.



The Finite Element Method for the Navier-Stokes Equations 57

nonstationary flow of a viscous heat conducting gas in the following form. In
the cylinder (0, tfin)× Ω we write four equations in unknowns ρ, u, v, e which
differ from the standard ones by a linear combination on the equations (2) and
(3) with (1) in order to simplify the variational formulation to be considered:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (1)(

ρ
∂u

∂t
+

u

2
∂ρ

∂t

)
+
(
ρu

∂u

∂x
+

u

2
∂

∂x
(ρu)

)
+
(
ρv

∂u

∂y
+

u

2
∂

∂y
(ρv)

)

+
∂P

∂x
− ∂τxx

∂x
− ∂τxy

∂y
= 0, (2)(

ρ
∂v

∂t
+

v

2
∂ρ

∂t

)
+
(
ρu

∂v

∂x
+

v

2
∂

∂x
(ρu)

)
+
(
ρv

∂v

∂y
+

v

2
∂

∂y
(ρv)

)

+
∂P

∂y
− ∂τxy

∂x
− ∂τyy

∂y
= 0, (3)

∂

∂t
(ρe) +

∂

∂x
(ρeu) +

∂

∂y
(ρev) + P

(
∂u

∂x
+

∂v

∂y

)
= Qt −

∂qx
∂x

− ∂qy
∂y

+ Φ. (4)

Here we use the following notations: ρ(t, x, y) is density; e(t, x, y) is internal
energy of unit mass; u(t, x, y), v(t, x, y) are components of the vector of velocity;
P (t, x, y) is pressure ; τxx, τxy, τyy are components of the stress tensor given by
the formulae

τxx =
2
3
μ

(
2
∂u

∂x
− ∂v

∂y

)
, τyy =

2
3
μ

(
2
∂v

∂y
− ∂u

∂x

)
, τxy = μ

(
∂u

∂y
+

∂v

∂x

)
; (5)

μ(t, x, y) =
1
Re

μ∗(t, x, y), μ∗ is the dynamic coefficient of viscosity:

μ∗ =
(
(γ − 1)γM2

∞
)ω

eω, 0.76 ≤ ω ≤ 0.9; (6)

(qx, qy) are components of the vector of density of a heat flow given by the
formulae:

qx(t, x, y) = − γ

Pr
μ
∂e

∂x
, qy(t, x, y) = − γ

Pr
μ
∂e

∂y
; (7)

Re is the Reynolds number; Pr is the Prandtl number; M∞ is the Mach number;
γ is gas constant.

The equation of state has the form:

P = (γ − 1)ρe. (8)

The function Qt(t, x, y) in the right-hand side of the equation (4) is given
distribution of a source of energy.

the
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The dissipative function Φ will be considered in one of the following forms:

Φ = μ

(
2
3

(
∂u

∂x

)2

+
2
3

(
∂v

∂y

)2

+
(
∂v

∂x
+

∂u

∂y

)2

+
2
3

(
∂u

∂x
− ∂v

∂y

)2
)

(9)

= μ

(
4
3

((
∂u

∂x

)2

− ∂u

∂x

∂v

∂y
+
(
∂v

∂y

)2
)

+
(
∂v

∂x
+

∂u

∂y

)2
)
. (10)

From (9) it follows that it is nonnegative.
Denote the vector of a unit outer normal to Γ at a point (x, y) by n(x, y) =

(nx(x, y), ny(x, y)).
To specify boundary conditions for the equation of continuity (1) we dwell

on the case where a flow across Γ , defined by the vector u = (u, v), is directed
outward Ω, i.e.,

u · n ≥ 0 on [0, tfin]× Γ. (11)

In this case the characteristics of the equation (1) on the boundary
[0, tfin] × Γ are directed outward the domain (0, tfin) × Ω and in order for
the problem to be well-posed there is no need for boundary conditions for ρ.

To close the problem on the boundary Γ of the computational domain Ω we
consider the following boundary conditions which are natural in a variational
sense:

τxx nx + τxy ny = P nx − Pext nx, on (0, tfin)× Γ, (12)
τyy ny + τxy nx = P ny − Pext ny, on (0, tfin)× Γ, (13)

where Pext(t, x, y) is given external pressure on the boundary of the computa-
tional domain. In inward boundary stream Pext is known indeed and equals the
pressure in unperturbed medium. In outward boundary stream we take Pext as
the value of pressure which is drifted along characteristic of equation (1) from
the previous time level.

Boundary conditions of this type are natural for the variational formulation
of the problem, i.e., they do not impose additional requirements on spaces of trial
and test functions, as opposed to main boundary conditions (for example, when
u and v are given on the boundary . Besides, from the computational point of
view these boundary conditions are nonreflecting, i.e., they allow perturbations
of the functions u and v to pass through the computational boundary Γ leaving
their values inside the domain unaffected.

For the energy equation (4) we consider the Neumann boundary conditions:

∇e · n = 0 on Γ. (14)

Initial conditions are taken in the form

ρ(0, x, y) = ρ0(x, y), u(0, x, y) = u0(x, y),
(15)

v(0, x, y) = v0(x, y), e(0, x, y) = e0(x, y) on Ω.

)
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Notice that in linearization of the equations or their time approximations we
will use different approximations of second-order terms like ρu. To distinguish
between coefficients and main unknowns, we denote u and v in the coefficients
of (2) – (4) by a and b respectively.

2 Space Discretization

In this section we construct the space discretization of the system (1) – (4) using
the method of lines.

Before this we substitute unknown nonnegative function ρ by σ =
√
ρ in

equation (1) [4]:

∂σ

∂t
+

1
2
∂σ

∂x
u +

1
2
∂ (σu)
∂x

+
1
2
∂σ

∂y
v +

1
2
∂ (σv)
∂y

= 0. (16)

In the following it simplifies analysis due to change of trial space L1(Ω) for ρ by
Hilbert space L2(Ω) for σ.

Along with the differential formulation, we will use integral identities which
follow from it. To this end, we multiply the equations (16), (2) – (4) by an
arbitrary function w ∈ W 1

2 (Ω) and integrate them over Ω using integration by
parts. Taking into account the boundary conditions (12) – (14), we arrive at the
following identities:∫

Ω

(
∂σ

∂t
w +

1
2
u
∂σ

∂x
w − 1

2
σu

∂w

∂x
+

1
2
v
∂σ

∂y
w − 1

2
σv

∂w

∂y

)
dΩ

+
1
2

∫
Γ

σw u · n dΓ = 0, (17)

∫
Ω

(
ρ
∂u

∂t
+

u

2
∂ρ

∂t

)
w dΩ +

1
2

∫
Ω

(
−ρau ∂w

∂x
+ ρa

∂u

∂x
w

)
dΩ

+
1
2

∫
Ω

(
−ρbu ∂w

∂y
+ ρb

∂u

∂y
w

)
dΩ +

∫
Ω

(
(τxx)

∂w

∂x
+ (τxy)

∂w

∂y

)
dΩ

+
1
2

∮
Γ

(ρauw dy − ρbuw dx) =
∫
Ω

P
∂w

∂x
dΩ −

∮
Γ

Pextw dy, (18)

∫
Ω

(
ρ
∂v

∂t
+

v

2
∂ρ

∂t

)
w dΩ +

1
2

∫
Ω

(
−ρav ∂w

∂x
+ ρa

∂v

∂x
w

)
dΩ

+
1
2

∫
Ω

(
−ρbv ∂w

∂y
+ ρb

∂v

∂y
w

)
dΩ +

∫
Ω

(
(τxy)

∂w

∂x
+ (τyy)

∂w

∂y

)
dΩ

+
1
2

∮
Γ

(ρavw dy − ρbvw dx) =
∫
Ω

P
∂w

∂y
dΩ +

∮
Γ

Pextw dx, (19)
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Ω

(
∂

∂t
(ρe)w − (eρa)

∂w

∂x
− (eρb)

∂w

∂y
− qx

∂w

∂x
− qy

∂w

∂y

)
dΩ

(20)

+
∮
Γ

(eρaw dy − eρbw dx) =
∫
Ω

(
Qt − P

(
∂u

∂x
+

∂v

∂y

)
+ Φ

)
w dΩ.

In order to pass to grid analogues, we introduce a uniform grid

xi = ih, yj = jh, i, j = 0,±1,±2, . . .

with a mesh size h = 1/n and integer n ≥ 2. Denote the set of nodes of the
domain Ω̄ by

Ω̄h = {zij = (xi, yj), i, j = 0, 1, . . . , n}, (21)

the sets of interior and boundary nodes by

Ωh = {zij = (xi, yj), i, j = 1, 2, . . . , n− 1}, Γh = {zij = (xi, yj) ∈ Ω̄h ∩ Γ}

respectively.
As a result, the computational domain Ω̄ is subdivided into n2 square meshes

ωij = (xi, xi+1)× (yj , yj+1), i, j = 0, 1, . . . , n− 1.
For each node zij ∈ Ω̄ we introduce the basis function ϕij which equals one

at zij , equals zero at the other nodes of Ω̄h and is bilinear on each mesh:

ϕi,j(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1− |xi − x|

h

)(
1− |yj − y|

h

)
,

(x, y) ∈ [xi−1, xi+1]× [yj−1, yj+1],
0 otherwise.

(22)

Denote the span of these functions by

Hh = span{ϕi,j}ni,j=0. (23)

With the use of the introduced notations, we formulate the Bubnov-Galerkin
method for each of the equations of the system (16), (2) – (4).

Find the function σh(t, x, y):

σh(t, x, y) =
n∑

i,j=0

α
(σ)
i,j (t)ϕi,j(x, y), (24)

such that
aσ(σh, wh) = 0 ∀ wh ∈ Hh (25)

with the bilinear form

aσ(σh, wh) =
∫
Ω

(
∂σh

∂t
wh +

1
2
u
∂σh

∂x
wh − 1

2
σhu

∂wh

∂x

+
1
2
v
∂σh

∂y
wh − 1

2
σhv

∂wh

∂y

)
dΩ +

1
2

∫
Γ

σhwhu · ndΓ. (26)
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Find the functions uh, vh :

uh =
n∑

i,j=0

α
(u)
i,j (t)ϕij , vh =

n∑
i,j=0

α
(v)
i,j (t)ϕij (27)

such that
au(uh, vh, wh) = (fu, wh) ∀ wh ∈ Hh, (28)

av(uh, vh, wh) = (fv, wh) ∀ wh ∈ Hh (29)

with the bilinear forms

ahu(u
h, vh, wh) =

∫
Ω

(
ρ
∂uh

∂t
+

uh

2
∂ρ

∂t

)
wh dΩ (30)

+
1
2

∫
Ω

(
−ρauh ∂wh

∂x
+ ρa

∂uh

∂x
wh

)
dΩ

+
1
2

∫
Ω

(
−ρbuh ∂wh

∂y
+ ρb

∂uh

∂y
wh

)
dΩ

+
2
3

∫
Ω

μ

(
2
∂uh

∂x
− ∂vh

∂y

)
∂wh

∂x
dΩ +

∫
Ω

μ

(
∂uh

∂y
+

∂vh

∂x

)
∂wh

∂y
dΩ

+
1
2

∮
Γ

(
ρauhwh dy − ρbuhwh dx

)
and

ahv (u
h, vh, wh) =

∫
Ω

(
ρ
∂vh

∂t
+

vh

2
∂ρ

∂t

)
wh dΩ (31)

+
1
2

∫
Ω

(
−ρavh ∂wh

∂x
+ ρa

∂vh

∂x
wh

)
dΩ

+
1
2

∫
Ω

(
−ρbvh ∂wh

∂y
+ ρb

∂vh

∂y
wh

)
dΩ

+
∫
Ω

μ

(
∂uh

∂y
+

∂vh

∂x

)
∂wh

∂x
dΩ +

2
3

∫
Ω

μ

(
2
∂vh

∂y
− ∂uh

∂x

)
∂wh

∂y
dΩ

+
1
2

∮
Γ

(
ρavhwh dy − ρbvhwh dx

)
.

The linear forms in (28) and (29) are defined by the equalities

(fu, wh) =
∫
Ω

P
∂wh

∂x
dΩ −

∮
Γ

Pextw
h dy (32)
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and

(fv, wh) =
∫
Ω

P
∂wh

∂y
dΩ +

∮
Γ

Pextw
h dx, (33)

respectively.
Find the function eh:

eh =
n∑

i,j=0

α
(e)
i,j (t)ϕij , (34)

such that

ae(eh, wh) = (fe, wh) ∀ wh ∈ Hh (35)

with the bilinear form

ahe (e
h, wh) =

∫
Ω

( ∂

∂t
(ρe)w − (eρa)

∂w

∂x
− (eρb)

∂w

∂y
(36)

− qx
∂w

∂x
− qy

∂w

∂y

)
dΩ +

∮
Γ

(eρaw dy − eρbw dx)

and the linear form

(fe, wh) = =
∫
Ω

(
Qt − P

(
∂u

∂x
+

∂v

∂y

)
+ Φ

)
w dΩ. (37)

Since {ϕi,j}ni,j=0 is a basis in the space Hh, as the functions wh in the Bubnov-
Galerkin method it is sufficient to consider only the basis functions. Then with
the equalities (24) – (25), (27) – (29), (34) – (35) we can associate the systems
of equations

aσ(σh, ϕi,j) = 0; (38)
au(uh, vh, ϕi,j) = (fu, ϕi,j), (39)
av(uh, vh, ϕi,j) = (fv, ϕi,j); (40)

ae(eh, ϕi,j) = (fe, ϕi,j) i, j = 0, 1, 2, . . . , n. (41)

The equalities (38) – (41) involve integrals which can not be calculated exactly
in the general case. For their approximation we use the two-dimensional analogue
of the trapezoid quadrature formula.

We introduce the vectors σσσh(t), uh(t), vh(t) and eh(t) with the components
σhi,j(t), uhij(t) vhij(t) and ehij(t), respectively. We also consider the right-hand
side vectors Fhu, Fhv and Fhe with the components (fu(t), ϕi,j), (fv(t), ϕi,j) and
(fe(t), ϕi,j), respectively.

The approximate replacement of the integrals at each instant t results in lin-
ear operators Mh, Mh

sqrt (the operator of multiplication by σhij(t)), A
h
σ(t), A

h
u(t),

Bhu(t), Ahv (t), B
h
v (t), Ahe (t,u

h,vh). When numbering the nodes of Ω̄h from zero
to n2, these operators become isomorphic matrices. We sh ll use lexicographica
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ordering. In this case Mh is a diagonal matrix with positive entries and the other
matrices are five-diagonal.

Thus, for all t ∈ (0, tfin) we obtain the systems of ordinary differential equa-
tions

Mh dσσσ
h

dt
+ Ahσ(t)σσσ

h = 0, (42)

Mh
sqrt

d

dt

(
Mh
sqrtu

h
)

+ Ahu(t)u
h + Bhu(t)vh = Fhu(t), (43)

Mh
sqrt

d

dt

(
Mh
sqrtv

h
)

+ Bhv (t)uh + Ahv (t)v
h = Fhv (t), (44)

d

dt

(
Mheh

)
+ Ahe (t,u

h,vh)eh = Fhe (t). (45)

Fig. 1. Density ρ

Notice that the system (42) is written for the derivative and, assuming that
σ(t, x, y) is known at the stage where u, v, e are determined, we obtain three
other systems written for the corresponding derivatives. We shall follow this idea
of determination of u, v, e at each time level t once σ is determined in numerical
methods as well.

Thus, we obtain a discrete analogue of the Navier-Stokes equations by the
finite element method and the systems of ordinary differential equations (42)
– (45). Some useful properties being discrete analogues of continuous balance
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relations, like conservation of mass and total energy, are proved for them. The
natural boundary conditions (12) – (13) for the equation of motion and the
Neumann condition (14) for the equation of energy are of crucial importance in
conservation of balance of total energy.

In addition, some new methods for solving these systems of ordinary dif-
ferential equations, which conserve basic balance relations, are compared with
well-known ones.

Numerical experiments were performed, for example, for the problem (42) –
(45) with the initial conditions

ρ(x, y, 0) = 1, u(x, y, 0) = v(x, y, 0) = 0,

e(x, y, 0) = f(0.5, 0.5, x, y) +
1

γ (γ − 1)M2
∞

on Ωh.

Here

f(A,B, x, y) =

⎧⎪⎨⎪⎩
2
(
R2 −

(
x−A

)2 − (
y −B

)2)8( 1
R2

)8
,

if
(
x−A

)2 +
(
y −B

)2 ≤ R2,
0, otherwise;

R = 1/30. Besides, in the numerical experiment we used the following values of
the parameters:

γ = 1.4, Re = 104, M2
∞ = 16, P r = 0.7, ω = 1.

Taking into account the relation between temperature and internal energy:

T = e
(
γ (γ − 1)M2

∞
)
,

initial conditions for the equation of energy were taken so that temperature in
the nonperturbed domain is equal to one.

The figure shows the behaviour of density ρ at the instant t = t∗ when
pressure at the center becomes equal to that in the nonperturbed parts of the
computational domain (the deeper is color, the greater is density). In this figure
the graph of ρ(x, 0.5, t∗) is shown as well.
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Abstract. The augmented strategies for interface problems and prob-
lems defined on irregular domains are reviewed in this paper. There are
at least two reasons to use augmented strategies. The first one is to get
faster algorithms, particularly, to take advantages of existing fast solvers.
The second reason is that, for some interface problems, an augmented
approach may be the only way to derive an accurate algorithm. Using
an augmented approach, one or several quantities of co-dimension one
are introduced. The GMRES iterative method is often used to solve the
augmented variable(s) that are only defined along the interface or the ir-
regular boundary. Several examples of augmented methods are provided
in this paper.
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1 Introduction

When partial differential equations (PDEs) are used to model interface problems,
the coefficients, the source terms, and the solution or/and its derivatives, may
be discontinuous, or singular across the interface. It is difficult to solve such
PDEs accurately. Various numerical methods have been developed for interface
problems. We refer the readers to [14, 16, 20, 18] for an incomplete review of
Cartesian grid methods for interface problems.

Among various methods, augmented strategies are relatively new. There are
at least two reasons to use augmented strategies. The first one is to get faster
algorithms, particularly to take advantages of existing fast solvers. The second
reason is that, for some interface problems, an augmented approach may be
the only way to derive an accurate algorithm. This will be illustrated through
the augmented immersed interface method (IIM) for the incompressible Stokes
equations in which the jump conditions for the pressure and the velocity are
coupled together. The augmented techniques enable us to decouple the jump
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conditions so that the governing equations can be discretized with second order
accuracy using the immersed interface method.

For a problem defined on an irregular domain, using the so called fictitious
domain method, we can transform the problem to an interface problem on a
regular domain. Then a fast solver for the interface problem can be applied with
appropriate choice of an augmented variable.

Using augmented strategies, some augmented variable, which can be a vec-
tor with several components, of co-dimension one will be introduced. Once we
know the augmented variable, it is relatively easy to solve the original PDE
assuming that the augmented variable is known. In a finite difference discretiza-
tion, the approximate solution to the PDE with given augmented variable sat-
isfies a system of linear finite difference equations, but it generally does not
satisfy one or several interface relations or the boundary condition, which we
call the augmented equation. The two equations, the solution to the original
PDE, and the augmented equation, form a large linear system of equations with
the solution to the original PDE and the augmented variable as unknowns. If
we eliminate the solution to the original PDE from the large linear system of
equations, we will get the Schur complement system for the augmented vari-
able that is much smaller than that for the solution to the PDE. Therefore we
can use the GMRES iterative method [28] to solve the Schur complement. In
implementation, there is no need to explicitly form those coefficient matrices
of either the large system or the Schur complement system. The matrix vec-
tor multiplication needed for the GMRES iteration includes mainly two steps:
(1) solving the original PDE assuming the augmented variable is known; (2)
finding the residual of the augmented equation, or the error of the interface
conditions or the boundary conditions, given the computed solution and the
augmented variables. In this paper, we explain this technique for various prob-
lems. While an augmented approach for an interface or irregular domain problem
has some similarities with an integral equation, or boundary integral method,
to find a source strength, the augmented methods have a few special features:
(1) no Green function is needed, and therefore no need to evaluate singular
integrals; (2) no need to set up the system of equations for the augmented vari-
able explicitly; (3) applicable to general PDEs with or without source terms;
(4) the process for interface problems does not depend on the boundary con-
dition. On the other hand, we may have less knowledge about the condition
number of the Schur complement system and how to apply pre-conditioning
techniques.

2 The Augmented Approach for Elliptic Interface
Problems with Piecewise Constant Coefficient

The first augmented approach may be the fast immersed interface method [17]
for elliptic interface problems of the following
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∇ · (β(x, y)∇u) = f(x, y), x ∈ Ω − Γ,

[u]
∣∣
Γ

= w(s), [βun]
∣∣
Γ

= v(s),
(1)

with a specified boundary condition on ∂Ω, where Γ (s) is an interface that
divides the domain Ω into two sub-domains, Ω+ and Ω−, Ω = Ω+ ∪ Ω− ∪ Γ ,
and un = ∇u · n is the normal derivative along the unit normal direction n, s
is an arc-length parameterization of Γ . We use [ · ] to represent the jump of a
quantity across the interface Γ . We assume that β(x, y) has a constant value in
each sub-domain,

β(x, y) =

{
β+ if (x, y) ∈ Ω+,

β− if (x, y) ∈ Ω−.
(2)

If β+ = β− = β is a constant, then we have a Poisson equations Δu = f/β
with the source distributions along the interface that corresponds to the jumps
in the solution and the flux. The finite difference method obtained from the
immersed interface method [14, 16, 18] yields the standard discrete Laplacian
plus some correction terms to the right hand side. Therefore a fast Poisson
solver, for example, the Fishpack [1], can be used to solve the discrete system of
equations. If β+ �= β−, we can not divide the coefficient β from the flux jump
condition. The motivation is to introduce an augmented variable so that we can
take advantage of the fast Poisson solver for the interface problem with only
singular sources.

2.1 The Augmented Variable and Augmented Equation

There are more than one ways to introduce an augmented variable. Since the
PDE (1) can be written as a Poisson equation in each interior domain after we
divide β from the original equation excluding the interface Γ , it is natural to
introduce [un] as the augmented variable.

Consider the solution set ug(x, y) of the following problem as a functional
of g(s), ⎧⎪⎪⎨⎪⎪⎩

Δu =
f

β+ , if x ∈ Ω+,

Δu =
f

β− , if x ∈ Ω−,

[u]
∣∣∣
Γ

= w(s), [un]
∣∣∣
Γ

= g(s),

(3)

with the same boundary condition on ∂Ω as in the original problem. Let the
solution of (1) be u∗(x, y), and define

g∗(s) = [u∗
n](s) (4)

along the interface Γ . Then u∗(x, y) satisfies the PDE and the jump conditions
in (3) with g(s) ≡ g∗. In other words, ug∗(x, y) ≡ u∗(x, y), and[

β
∂ug∗

∂n

]
= v(s) (5)
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is satisfied. The expression (5) is called the augmented equation. Therefore, solv-
ing the original problem (1) is equivalent to finding the corresponding g∗(s)
that satisfies (3) and (5). Note that g∗(s) is only defined along the interface, so
it is one dimension lower than that of u(x, y). If we are given [un] = g(s), then
it is easy to solve (3) using the IIM since only correction terms at irregular grid
points are needed to add to the right hand side of the finite difference equations.
A fast Poisson solver such as the FFT then can be used. The cost in solving
(3) is just a little more than that in solving a regular Poisson equation on the
rectangle with a smooth solution.

2.2 The Discrete System of Equations in Matrix Vector Form

Let G = [G1, G2, · · · , GNb
]T and W = [W1,W2, · · · ,WNb

]T be the discrete
values of the jump conditions in (3) at a set of points X1, X2, · · · , XNb

on the
interface. Given W and G, using the immersed interface method [14, 16], the
discrete form of (3) can be written as

Lh Uij =
fij
βij

+ Cij , (6)

where Cij is zero at regular grid points where the interface does not cut through
the finite difference stencil, and a correction term at irregular grid points, Lh
is the discrete Laplacian operator. If a uniform Cartesian grid and the centered
five-point stencil are used, then LhUij is

LhUij=
Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui.j

h2 .

The solution Uij depends on Gk, Wk, k = 1, 2, . . . , Nb linearly. In a matrix
and vector form we have

AU + BG = F + B1W
def= F1, (7)

where U and F are the vectors formed by {Uij} and {Fij/βij}, AU = F is
the discrete linear system of finite difference equations for the Poisson equation
when Wk, Gk, and [β], are all zero. We define the residual of the second jump
condition as

R(G) = [βUn](G)−V = β+U+
n (G)− β−U−

n (G)−V. (8)

We are interested in finding G∗ such that R(G∗) = 0, where the components
of the vectors U+

n and U−
n are the discrete approximation of the normal deriva-

tive at {Xk}, 1 ≤ k ≤ Nb from the each side of the interface. Once we know the
solution U of the system (7) given G, we can interpolate Uij linearly to get u±

n

at {Xk}. The interpolation scheme is crucial to the success of the augmented
algorithm. Since the interpolation is linear, we can write

∂U(G)±

∂n
= E±U + T±G + P±V, (9)
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where E+, E−, T+, T−, P+, and P− are some sparse matrices determined by
the interpolation scheme. The matrices are only used for theoretical purposes
but not actually constructed in practice. We need to choose such a vector G
that the second interface condition β+U+

n − β−U−
n = V is satisfied along the

interface Γ . Therefore we have the second matrix vector equation

EU + TG− PV = 0, (10)

where

E = β+E+ − β−E−, T = β+T+ − β−T−, P = I + β−P− − β+P+.

There is no need to generate the matrices E, T , P , explicitly. If we put the two
matrix-vector equations (7) and (10) together, then we get[

A B

E T

][
U

G

]
=

[
F1

P V

]
. (11)

The solution U and G are the discrete forms of ug∗(x, y) and g∗ , the solution
of (3) which satisfies [un] = g∗ and [βun(g∗)] = v.

One can try to solve (11) directly but it is not very efficient generally. The
main reason to use an augmented approach is to take advantage of fast Poisson
solvers. Eliminating U from (11) gives a linear system for G

(T − EA−1B)G = P V − EA−1F1
def= F2. (12)

This is an Nb × Nb system for G, a much smaller linear system compared to
the one for U. The coefficient matrix is the Schur complement for G in (11).
Since we can not guarantee that the coefficient matrix of the Schur complement
is symmetric positive definite, the GMRES iteration [28] method, is preferred.
Different ways used to compute (9) will affect the condition number of (12)
greatly. The detailed interpolation scheme for the problem (1) can be found in
[17] along with the invertibility analysis for the coefficient matrix of (12).

The GMRES method only requires the matrix vector multiplication. We ex-
plain below how to evaluate the right hand side F2 of the Schur complement, and
how to evaluate the matrix vector multiplication needed by the GMRES itera-
tion. We can see why we do not need to form the coefficient matrix T −EA−1B
explicitly. Note that from (7) we have A−1BG = F1−U, and (12) can be written
as

TG− E
(
A−1F1 −U

)
= F2, (13)

whose residual is also defined as

R(G) = TG + EU− EA−1F1 − F2 = TG + EU−EU(0)− F2. (14)
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Evaluation of the Right Hand Side of the Schur Complement. First we
set G = 0 and solve the system (3), or (7) in the discrete form, to get U(0)
which is A−1F1 from (7). Note that the residual of the Schur complement for
G = 0 is

R(0) = (T − EA−1B)0− F2 = −F2

= −
(
PV − EA−1F1

)
= − (PV − EU(0))

= β+ ∂U(0)+

∂n
− β− ∂U(0)−

∂n
−V,

(15)

which gives the right hand side of the Schur complement system with an opposite
sign.

The Matrix-Vector Multiplication of the Schur Complement. The
matrix-vector multiplication of the Schur complement system given G is ob-
tained from the following two steps:

Step 1: Solve the coupled system (3), or (7) in the discrete form to get U(G).
Step 2: Interpolate U(G) to get R(U(G)) defined in (8). Then the matrix
vector multiplication is

(T − EA−1B)G = R(U(G))−R(U(0))

= β+ ∂U(G)+

∂n
− β− ∂U(G)−

∂n

−
(
β+ ∂U(0)+

∂n
− β− ∂U(0)−

∂n

)
.

(16)

This is because

(T − EA−1B)G = TG− EA−1BG

= TG− E
(
A−1F1 −U(G)

)
= TG + EU(G)− F2 − (T0 + EU(0)− F2)

= β+ ∂U(G)+

∂n
− β− ∂U(G)−

∂n
−V

−
(
β+ ∂U(0)+

∂n
− β− ∂U(0)−

∂n
−V

)

from the equalities AU + BG = F1, and U(0) = A−1F1.

Now we can see that a matrix vector multiplication is equivalent to solving the
system (3), or (7) in the discrete form, to get U, and using an interpolation
scheme to get the residual for the flux condition [β ∂U∂n ] at Xk, k = 1, · · · , Nb, on
the interface.

Once we know the right hand side of the system of linear equations, and
the matrix-vector multiplication, the use of the GMRES iterative method is
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straightforward, see [28]. Numerical examples using the augmented approach to
solve the PDE (1) in [17] show that the method is efficient with second order
accuracy in the infinity norm. The number of iterations of the GMRES iteration
is almost independent of the mesh sizes and the jump in the coefficient β. The
three dimensional version of the augmented approach with applications can be
found in [5].

3 The Augmented Method for Helmholtz/Poisson
Equations on Irregular Domains

The idea of the augmented approach for the elliptic interface problems de-
scribed in the previous section can be used with a little modifications to solve
Helmholtz/Poisson equations

Δu− λu = f(x), x ∈ Ω,

q(u, un) = 0, x ∈ ∂Ω,
(17)

defined on an irregular domain Ω (interior or exterior), where q(u, un) is a pre-
scribed linear boundary condition along the boundary ∂Ω. The idea and the
detailed algorithm description can be found in [10, 11, 22] with applications.

We embed the domain Ω into a rectangle (a cube in 3D) R and extend the
PDE and the source term to the entire rectangle/cube R

Δu− λu =

{
f, if x ∈ Ω,

0, if x ∈ R−Ω,
q(u, un)|∂Ω = 0,{

[u] = g, on ∂Ω,

[un] = 0, on ∂Ω,
or

{
[u] = 0, on ∂Ω,

[un] = g, on ∂Ω.

(18)

Again, the solution u is a functional of g. We determine g(s) such that the solu-
tion u(g) satisfies the boundary condition q(u(g), un(g)) = 0 along the boundary
∂Ω which is treated as an interface in the new settings. Given g, we can use the
IIM to solve u(g) with one call to a fast Poisson solver. This corresponds to
the first matrix-vector equation in (11), or (7) in the discrete form. The second
matrix-vector equation is the boundary condition q(u(G), un(G)) = 0 obtained
using the least squares interpolation scheme at a set of selected points on the
boundary ∂Ω. The interpolation scheme should be third order accurate for the
solution u, and second order accurate for the normal derivative un, and so on.

For an interior problem, we also need an artificial boundary condition along
the fictitious domain ∂R. We usually use a homogeneous Dirichlet boundary
condition. The distance between the boundary of the fictitious domain ∂R and
the real boundary ∂Ω is often chosen between 4 to 10 grid sizes.
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3.1 A Numerical Example of the Augmented Approach for an
Exterior Poisson Equation

We provide one example with different boundary conditions to show the effi-
ciency of the augmented approach. We want to show second order accuracy of
the solution, and more importantly also, show that the number of iterations is
nearly independent of the mesh size except for a factor of log h.

We construct an exact solution:

u(x, y) = −1
2

log r + r2, r =
√

x2 + y2,

f(x, y) = 4,
(19)

of an exterior problem. The boundary ∂Ω is the unit rectangle R: −1 ≤ x, y,≤ 1
excluding the ellipse Ω

x2

a2 +
y2

b2
= 1.

Case 1: The Dirichlet boundary condition on ∂R and the normal derivative
boundary condition on ∂Ω are given using the exact solution. The first part of
Table 1 shows the grid refinement analysis and other information with a = 0.5
and b = 0.4, while the second part of the table is for a = 0.5 and b = 0.15, a
skinny ellipse with large curvature at two tips.

In Table 1, n is the number of grid lines in the x- and y- directions; e is the
error of the computed solution in the maximum norm; n1 is the total number
of irregular grid points in R; n2 is the number of irregular grid points from
R − Ω side, which is also the dimension of the Schur complement system; k is
the number of iterations of the GMRES method which is also the number of
the fast Poisson solver called, and r is the ratio of the two consecutive errors.

Table 1. The grid refinement analysis with a = 0.5 b = 0.4 and b = 0.15. Second order
convergence is observed. The number of iterations is almost independent of the mesh
size

n a b e r n1 n2 k

40 0.5 0.4 5.7116 10−4 100 52 16
80 0.5 0.4 1.4591 10−4 3.9146 204 104 17
160 0.5 0.4 3.5236 10−5 4.1408 412 208 19
320 0.5 0.4 8.1638 10−6 4.3161 820 412 21

n a b e r n1 n2 k

40 0.5 0.15 4.4820 10−3 68 36 13
80 0.5 0.15 1.1466 10−3 3.9089 132 68 15
160 0.5 0.15 2.6159 10−4 4.3832 68 136 17
320 0.5 0.15 6.7733 10−5 3.8621 68 268 20



74 Z. Li

Table 2. The grid refinement analysis for pure Neumann type boundary condition

n a b e r n1 n2 k

40 0.5 0.15 4.5064 10−3 84 44 14
80 0.5 0.15 1.2529 10−3 3.5967 164 84 17
160 0.5 0.15 3.3597 10−4 3.7292 332 168 19
320 0.5 0.15 7.9409 10−5 4.2309 668 336 21

We observe a second order of convergence in the maximum norm. The number
of iterations for the GMRES iteration is almost independent of the mesh size
except of a factor log h. Note that the error may not be reduced exactly by a
factor of four but rather fluctuate as explained in [17].

Case 2: The normal derivative ∂u/∂n is prescribed on both ∂R and ∂Ω using
the exact solution. In this case, the solution is not unique and can differ by a
constant. To get a unique solution, we specify the solution at one corner using the
exact solution. In this way, we can measure the error of the computed solution.
Table 2 is the result of the grid refinement analysis. We have similar results as
we analyzed above.

The Fortran subroutines for interior/exterior Helmholtz/Poisson equations
on irregular domains are available to the public through the anonymous ftp site
[19]. There are other fast elliptic solvers for elliptic PDEs defined on irregular
domains using embedding or fictitious domain techniques, see [6, 7, 13, 23, 26, 27]
for an incomplete list.

4 The Augmented Technique for Biharmonic Equations
on Irregular Domains

Biharmonic equations arise in many applications. Classical examples can be
found in elasticity, fluid mechanics, and many other areas. The augmented tech-
nique for biharmonic equations on irregular domains have been developed in
[2, 3].

Consider a biharmonic equation defined on an irregular domain Ω

Δ2u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = g1(x, y), (x, y) ∈ ∂Ω, (20)

un(x, y) = g2(x, y), (x, y) ∈ ∂Ω,

where

Δ2 ≡ ∇4 =
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4 . (21)

There are limited publications on finite difference methods for biharmonic
equations on irregular domains, even fewer with convincing numerical examples.
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Among a few finite difference methods for biharmonic equations on irregular
domains, the remarkable ones are the fast algorithms based on integral equations
and/or the fast multipole method [9, 23, 24]. These methods are most effective for
homogeneous source term (f(x, y) = 0) and some special boundary conditions.
These methods probably still can be applied with some extra efforts for non-
homogeneous source terms and the essential boundary condition in (20). The
implementations of these methods, especially when they are coupled with the
fast multipole method, however, are not trivial.

The augmented technique for Helmholtz/Poisson equations can be easily ex-
tended to biharmonic equations on irregular domains based on the following
decoupling {

Δv(x, y) = f(x, y), (x, y) ∈ Ω,

v(x, y) = g(x, y), (x, y) ∈ ∂Ω;{
Δu(x, y) = v(x, y), (x, y) ∈ Ω,

u(x, y) = g1(x, y), (x, y) ∈ ∂Ω.

(22)

Here g(x, y) is the augmented variable. The augmented equation is the boundary
condition

∂u(x, y)
∂n

= g2(x, y), (x, y) ∈ ∂Ω. (23)

To get the solution u(x, y) given a guess g, we need to solve the two Poisson
equations in (22). This can be done using the augmented method for Poisson
equations discussed in the previous section. This step corresponds to the first
matrix-vector equation in (11) or (7) in the discrete form. Note that the solu-
tion U includes two grid functions {Uij} and {Vij}. The second matrix-vector
equation is to set the residual R(g) = ∂u(g)

∂n − g2 from the computed u(g) to
zero. Since the condition number for a bi-harmonic equation is much large than
the one for a Poisson equation, it is crucial to choose the interpolation stencil
to approximate the boundary condition. The key is to select the interpolation
stencil in a cone whose axis is close to the normal direction, see [2, 3] for the
details.

5 The Augmented Approach for Stokes Equations with
Discontinuous Viscosity and Singular Forces

Solving Stokes equations with discontinuous viscosity is one example that the
augmented approach seems to be the only way to derive an efficient method
because the jump conditions are coupled together.

Consider the following two-dimensional stationary incompressible Stokes equa-
tions

∇p = ∇ · μ
(
∇u + (∇u)T

)
+ g +

∫
Γ

f(s) δ2(x−X(s))ds, x ∈ Ω, (24)

∇ · u = 0, x ∈ Ω, (25)
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where u = (u, v) is the velocity vector, p is the pressure, Γ is an arbitrary
interface parameterized by the arc-length s, f is the density of the force strength
along Γ , μ is the viscosity, which we assume to be a piecewise constant

μ =

{
μ+, if x ∈ Ω+,

μ−, if x ∈ Ω−,
(26)

with a finite jump across Γ , g(x) is a bounded forcing term, e.g., the gravitational
force, which can be discontinuous across Γ as well, and Ω is a bounded domain
that we assume to be a rectangle. We assume periodic boundary conditions for
the pressure and the velocity.

In the case of the continuous viscosity, various methods have been developed
in the literature. We refer the readers to [4, 8, 15, 25, 29] for various methods
and the references therein. The difficulty with discontinuous viscosity is that the
jump conditions for the pressure and velocity are coupled together, see (27)-(30),
which makes it difficult to discretize the system accurately.

5.1 Jump Conditions for the Incompressible Stokes Equations
with Discontinuous Viscosity and Singular Forces

Referring to the equations (24)-(26), we assume the interface Γ is a smooth curve.
At a point (X,Y ) on the interface, we use the notations n and τ to represent
the unit normal and tangential directions respectively. We use f̂1(s) = f(s) · n
and f̂2(s) = f(s) · τ to represent the force density in the normal and tangential
directions. If Γ is smooth, then in a neighborhood of Γ , the distance function
d(x, Γ ) is also a smooth function. The normal and tangential directions of Γ
can be extended to the neighborhood, for example n = ∇d(x, Γ )/|∇d(x, Γ )|.
Therefore the quantities such as u · n, ∂u

∂n , ∂u
∂τ , etc., are well defined in the

neighborhood of Γ .
In [12], the interface conditions for two-phase Stokes equations with discon-

tinuous viscosity and a Dirac delta function singularity are derived which is
summarized in the following theorem:

Theorem 1. Assume Γ (s) ∈ C2, f̂1(s) ∈ C1, and f̂2(s) ∈ C1. Let p and u =
(u, v) be the solution to the Stokes equations (24)-(25). We have the following
jump conditions across the interface Γ ,

[p] = 2
[
μ
∂u
∂n

· n
]

+ f̂1, (27)

[
∂p

∂n

]
= [g · n] +

∂

∂τ
f̂2 + 2

[
μ

∂2

∂τ2 (u · n)
]
, (28)

[
μ
∂u
∂n

· τ
]

+
[
μ
∂u
∂τ

· n
]

+ f̂2 = 0, (29)

[μ∇ · u] = 0. (30)
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It is worthy mentioning that the equation (24)-(25) can be re-written as
the one without the singular force term but accompanied with the above jump
conditions.

The second order accurate immersed interface method has been developed in
[15, 16] if the viscosity is continuous. To get a second order accurate algorithm
based on the immersed interface method for discontinuous viscosity, our strat-
egy is to introduce an augmented vector along the interface so that the jump
conditions can be decoupled. Meanwhile, we also need two augmented equations
to complete the system of the governing equations.

5.2 The Augmented Algorithm for Stokes Equations with
Discontinuous Viscosity

The augmented method is based on the following theorem.

Theorem 2. Let p, u, and v be the solution to the Stokes equations (24)-(25).
Let q1(s) = [ũ](s) = [μu](s), q2(s) = [ṽ](s) = [μv](s), and q(s) = (q1(s), q2(s)).
Then ũ, ṽ, p, q1(s), q2(s) are the solution of the following augmented system of
partial differential equations:⎧⎪⎪⎨⎪⎪⎩

Δp = ∇ · g,

[p] = f̂1 − 2
∂q
∂τ

· τ ,
[
∂p

∂n

]
=

∂f̂2

∂τ
+ 2

∂2 (q · n)
∂τ2 ,

(31)

⎧⎪⎨⎪⎩
Δũ = px − g1,

[ũ] = q1,

[
∂ũ

∂n

]
=

(
f̂2 +

∂q
∂τ

· n
)

sin θ −
(
∂q
∂τ

· τ
)

cos θ,
(32)

⎧⎪⎨⎪⎩
Δṽ = py − g2,

[ṽ] = q2,

[
∂ṽ

∂n

]
= −

(
f̂2 +

∂q
∂τ

· n
)

cos θ −
(
∂q
∂τ

· τ
)

sin θ,
(33)

[
ũ

μ

]
= 0,

[
ṽ

μ

]
= 0. (34)

The proof of the theorem is straightforward from the Stokes equations (24)-
(25) and the jump conditions in Theorem 1, see [21]. The periodic boundary
condition is used so that we are not introducing additional boundary condition
for the pressure.

Notice that if we know q = ([u/μ], [v/μ]), the augmented vector, then the
jump conditions for the pressure are all known and we can solve the pressure
independent of the velocity. After the pressure is solved, we can solve the velocity
from (32) and (33). The three Poisson equations with the given jump conditions
can be solved using the immersed interface method [14, 16] in which a fast solver
is called with modified right hand sides at grid points near or on the interface.
The entire process to get p and u given q corresponds to the first matrix-vector
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equation in (11), or (7) in discrete form. The compatibility condition for the
two augmented variables are the two augmented equations in (34) (which means
that the velocity is continuous across the interface). The second matrix-vector
equation is to set the residual R(q) = ([u(q)/μ], [v(q)/μ]) to zero. The detailed
interpolation scheme is explained in [21].

Conclusions and Acknowledgments

In this paper, we give a review of the augmented approaches for interface prob-
lems and problems defined on irregular domains. Using an augmented approach,
one or several augmented variables are introduced along a co-dimensional inter-
face or boundary. When the augmented variable(s) is known, we can solve the
governing PDE efficiently. In the discrete case, this gives a system of equations
for the solution with given augmented variable(s). However, the solution that
depends the augmented variable(s) usually do not satisfy all the interface rela-
tions or the boundary condition. The discrete interface relation or the boundary
condition forms the second linear system of equations for the augmented variable
whose dimension is much smaller than that of the solution to the PDE. There-
fore we can use the GMRES iterative method to solve the Schur complement
system for the augmented variable(s). In many instances, the GMRES method
converges quickly, although it is still an open question how to preconditioning
the system of linear equations without explicitly form the coefficient matrix.

The author was partially supported by USA-NSF grants DMS-0412654 and
DMS-0201094; and by a USA-ARO grant 43751-MA.
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Abstract. While solving the elliptic equations in the canonical domain
with the Dirichlet boundary conditions by the grid method, it is obvi-
ously, that boundary conditions are satisfied precisely. Therefore it is
necessary to expect, that close to the domain boundary the accuracy of
the corresponding difference scheme should be higher, than in the mid-
dle of the domain. The quantitative estimate of this boundary effect first
was announced without proves in 1989 in the Reports of the Bulgarian
Academy of sciences by the first author. There accuracy of the difference
schemes for two-dimensional elliptic equation with variable coefficients
in the divergent form has been investigated.

In this paper ‘weight’ a priori estimates, taking into account bound-
ary effect, for traditional difference schemes, which approximate, with
the second order, first boundary problem for quasi-linear elliptic type
equation, which main part has a not divergent form, have been obtained.

The paper ends with numerical experiments, which testify to unim-
provement, by the order, of the received ‘weight’ estimates.

1 Introduction

At solving the elliptic equations in canonical domains with Dirichlet boundary
conditions by the method of grid, it is obvious, that boundary conditions are
satisfied exactly. That is why one should expect that near the boundary of the
domain accuracy of the corresponding difference scheme will be higher then in
the middle of the domain. The quantitative estimate of this fact first has been
announced without proof in 1989 by the first author in Reports of the Bulgarian
academy of sciences [1] at investigating the accuracy of the difference schemes
for two-dimensional elliptic equation with variable coefficients in divergent form.
These ideas for the parabolic equations have received the subsequent develop-
ment in papers [2], [3]. In this work weight a priori estimates for traditional
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difference schemes which approximate the boundary problem

2∑
i,j=1

aij (x)
∂2u

∂xi∂xj
= f0 (x, u)− f (x) , x = (x1, x2) ∈ Ω (1)

u (x) = 0, x ∈ Γ

with the second order taking into account boundary effect have been obtained,
where Ω is a unit square with a boundary Γ , a12 (x) = a21 (x)

ν

2∑
i=1

ξ2
i ≤

2∑
i,j=1

aij (x) ξiξj ≤ μ

2∑
i=1

ξ2
i , (ν > 0, μ <∞) , (2)

∀x ∈ Ω̄, ∀ξ1, ξ2 ∈ R1,

f0 (x, 0) = 0, |f0 (x, u)− f0 (x, v)| ≤ L |u− v| ,∀x ∈ Ω̄, u, v ∈ R1. (3)

here aij (x) , i, j = 1, 2, f0 (x) , f (x) are sufficiently smooth functions.
The paper ends with numerical experiments, which testify to unimprovement

of the obtained weight a priori estimates by the order.

2 Second Main Inequality for Difference Operator of the
Second Order. An Estimate of the Green Difference
Function

We consider the following linear Dirichlet problem

2∑
i,j=1

aij (x)
∂2u

∂xi∂xj
= F (x) , x ∈ Ω, (4)

u (x) = 0, x ∈ Γ,

which corresponds to problem (1) with given function F (x).
This case occupies special place among the multi-dimensional elliptic prob-

lems. For it with the help of Bernschtein method (see [5]) it is possible to prove
the second main inequality for elliptic operators. It is possible to obtain an cor-
responding estimate for difference operator which approximate the difference
operator of the problem (4). Similar result has been obtained by Djakonov [6],
but in different form than that is needed and in another way. On the square Ω,
we introduce a grid

ω = ω1 × ω2,

ωα =
{
xiα = iαhα : iα = 1, Nα − 1, hα =

1
Nα

}
, α = 1, 2
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a boundary of which we denote as γ . On the grid ω we put the problem (4) in
conformity to the following difference scheme

Ay ≡
2∑

i,j=1

aij (x) yx̄ixj
(x) = F (x) , x ∈ ω, (5)

y (x) = 0, x ∈ γ.

Here nonindex notation has been used for difference derivatives (see [7])

yx1 (x) =
y (x1 + h1, x2)− y (x1, x2)

h1
,

yx̄1 (x) =
1
h1

[y (x1, x2)− y (x1 − h1, x2)] ,

yx̄1x1 (x) =
1
h2

1
[y (x1 + h1, x2)− 2y (x1, x2) + y (x1 − h1, x2)] .

Correspondingly, all other difference derivatives

yx̄1x2 (x) , yx1x̄2 (x) , yx̄2x2 (x)

have been defined. After simple transformations from an equality (5) it is possible
to obtain

a11 (x)
a22 (x)

y2
x̄1x1

(x) +
a12 (x)
a22 (x)

yx̄1x1 (x) [yx̄1x2 (x) + yx1x̄2 (x)] +

+
1
4

[yx̄1x2 (x) + yx1x̄2 (x)]2 = F (x)
yx̄1x1 (x)
a22 (x)

+
1
4

[yx̄1x2 (x) + yx1x̄2 (x)]2 −

−yx̄1x1 (x) yx̄2x2 (x) .

Hence, taking into consideration (2), we obtain

ν

μ

[
y2
x̄1x1

(x) +
1
4

(yx̄1x1 (x) + yx1x̄2 (x))2
]
≤

≤ 1
2

(√
ν

μ
yx̄1x1 (x)

)2

+
1
2
F 2 (x)
a2
22 (x)

μ

ν
+

+
1
4

[yx̄1x2 (x) + yx1x̄2 (x)]2 − yx̄1x1 (x) yx̄2x2 (x)

or

ν

μ

[
1
2
y2
x̄1x1

(x) +
1
4

(yx̄1x1 (x) + yx1x̄2 (x))2
]
≤ (6)

≤ μ

2ν3F
2 (x) +

1
4

[yx̄1x2 (x) + yx1x̄2 (x)]2 − yx̄1x1 (x) yx̄2x2 (x)
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Correspondingly, we obtain

ν

μ

[
1
4

(yx̄1x1 (x) + yx1x̄2 (x))2 +
1
2
y2
x̄2x2

(x)
]

(7)

≤ μ

2ν3F
2 (x) +

1
4

[yx̄1x2 (x) + yx1x̄2 (x)]2 − yx̄1x1 (x) yx̄2x2 (x)

From (6), (7), taking into consideration (5), we obtain

‖Ay‖2 =

∥∥∥∥∥∥
2∑

i,j=1

aij (x) yx̄ixj
(x)

∥∥∥∥∥∥
2

≥

ν4

2μ2

{
‖yx̄1x1‖

2 + ‖yx̄1x2 + yx1x̄2‖
2 + ‖yx̄2x2‖

2
}

(8)

≥ ν4

μ2 (yx̄1x1 , yx̄2x2) =
ν4

μ2 ‖B
∗y‖2∗ .

Let us explain notations we use in (8). Let us introduce space
0
Hh of grid

functions, defined on the grid ω , vanishing on γ . Scalar product in this space
we define as

(y, v) =
∑
ξ∈ω

h1h2y (ξ) v (ξ),

and a norm, generated by it, as

‖y‖ = (y, y)1/2 .

An operator B∗ is a linear grid operator which acts from
0
Hh into H∗

h by one
of the following formulas

a) B∗y = −yx̄1x̄2 ,∀y ∈
0
Hh,

b) B∗y = −yx1x2 ,∀y ∈
0
Hh,

c) B∗y = −yx̄1x2 ,∀y ∈
0
Hh,

d) B∗y = −yx1x̄2 ,∀y ∈
0
Hh .

Here H∗
h is Hilbert space of grid functions, defined on the grid ω̃ , with

scalar product (y, v)∗ =
∑
x∈ω̃

h1h2y (x) v (x) and corresponding generating norm

‖y‖2∗ = (y, y)∗ , where

ω̃ =

⎧⎪⎪⎨⎪⎪⎩
ω ∪ γ+1 ∪ γ+2 in the case a),
ω ∪ γ−1 ∪ γ−2 in the case b),
ω ∪ γ+1 ∪ γ−2 in the case c),
ω ∪ γ−1 ∪ γ+2 in the case d),

γ+1 (γ−1) is right (left) vertical boundary of the domain ω , γ+2 (γ−2) is a top
(bottom) horizontal boundary of this domain.
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Conjugate operator B : H∗
h →

0
Hh to operator B∗ is defined as follows

(B∗y, w)∗ = (y,Bw) , ∀y ∈
0
Hh,∀w ∈ H∗

h, (9)

where

By =

⎧⎪⎪⎨⎪⎪⎩
−yx1x2 in the case a),
−yx̄1x̄2 in the case b),
−yx1x̄2 in the case c),
−yx̄1x2 in the case d),

∀y ∈ H∗
h (10)

Further we will need a statement b) of the main lemma from [4] in a strength-
ened version.

Lemma 1. Let A be linear operator, which acts in Hilbert space H , B be linear
operator, which acts from H∗ ⊇ H into H . Then, if there exists A−1 and
‖B∗v‖∗ ≤ γ ‖Av‖ , ∀v ∈ H , where B∗ is an operator, conjugated to B , and
‖·‖∗ is a norm in the space H∗ , which is induced by the scalar product (·, ·)∗ of
the space H∗, then ∥∥A−1B

∥∥ ≤ γ (11)

Proof. We proceed from the relation

‖u‖ = sup
v 
=0
v∈H

(u, v)
‖v‖ , ∀u ∈ H. (12)

We place

u = A−1ϕ, v = Ay,

into (12), then we will have

∥∥A−1ϕ
∥∥ = sup

y 
=0
y∈H

(ϕ, y)
‖Ay‖ .

Let’s put ϕ = Bψ in this equality. Making use of the lemma condition and
Cauchy-Bunyakovsky inequality, we obtain

∥∥A−1Bψ
∥∥ = sup

y 
=0
y∈H

(Bψ, y)
‖Ay‖ = sup

y 
=0
y∈H

(ψ,B∗y)∗
‖Ay‖ ≤ sup

y 
=0
y∈H

‖ψ‖∗ ‖B∗y‖∗
‖Ay‖ ≤ γ ‖ψ‖∗ ,

∀ψ ∈ H∗,

which proves (11).
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For operators A,B all conditions of the statement b) of the main lemma from
[4], p. 54 are satisfied. Consequently∥∥A−1B

∥∥ ≤ μ

ν2 . (13)

For the difference Green function we write down boundary problem, which
corresponds to the scheme (5)

a11 (x)Ghx̄1x1
(x, ξ) + a12 (x)

[
Ghx̄1x2

(x, ξ) + Ghx1x̄2
(x, ξ)

]
+ (14)

+a22 (x)Ghx̄2x2
(x, ξ) = − 1

h1h2
δ (x1, ξ1) δ (x2, ξ2) , Gh (x, ξ) = 0, x ∈ γ,

where

δ (s, l) =
{

1, s = l,
0, s �= l.

The Green function G (x, ξ) is symmetric

Gh (x, ξ) = Gh (ξ, x)

and when x tends to ξ has singularity.
Lemma 2. The following estimate

∥∥Gh (x, ·)
∥∥

≤ μ

ν2 {min [x1x2;x1 (1− x2) ; (1− x1)x2; (1− x1) (1− x2)]}1/2 (15)

≡ μ

ν2 ρ
1/2 (x)

is satisfied.

Proof. Making use of the symmetry of the Green function, we write problem
(14) in the operator form

AξG
h (x, ξ) = BξH (x− ξ) , (16)

where

BξH (x− ξ) = −H (x1 − ξ1)ξ1 H (x2 − ξ2)ξ2 (17)
= −H (x1 − ξ1)ξ̄1 H (x2 − ξ2)ξ̄2
= −H (x1 − ξ1)ξ1 H (x2 − ξ2)ξ̄2
= −H (x1 − ξ1)ξ̄1 H (x2 − ξ2)ξ2 .

Here H (z) =
{

1, z ≥ 0,
0, z < 0 is a Heaviside function, operators Aξ, Bξ are defined

by the formulas (8), (10) by changing xα to ξα, α = 1, 2.
Consequently from (13), (16) we obtain∥∥Gh (x, ·)

∥∥ ≤ μ

ν2 ‖H (x− ·)‖ ,

which making use of (17) leads to (15).
Lemma is proved.
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3 Difference Scheme for the Problem and Investigation
of Its Accuracy in Weight Norm

We approximate the problem (1) with difference scheme of the following form

2∑
i,j=1

aij (x) yx̄ixj − f0 (x, y) = −f (x) , x ∈ ω, (18)

y (x) = 0, x ∈ γ.

Let us write the equation for the error

z (x) = y (x)− u (x) .

We will have

2∑
i,j=1

aij (x) zx̄ixj
= f0 (x, y)− f0 (x, u)− ψ (x) , x /∈ ω, (19)

z (x) = 0, x ∈ γ,

ψ (x) =
2∑

i,j=1

ηij (x, u), (20)

ηij (x, u) = aij (x)
[
ux̄ixj −

∂2u

∂xi∂xj

]
, i, j = 1, 2.

Making use of the Green difference function Gh (x, ξ) from sec. 2, we submit
the solution of the difference scheme (19), (20) implicitly as follows

z (x) =
∑
ξ∈ω

h1h2G
h (x, ξ) [f0 (ξ, u (ξ))− f0 (ξ, y (ξ))]

+
∑
ξ∈ω

h1h2G
h (x, ξ)ψ (ξ).

Therefore, making use of the lemma 2 and Lipschitz condition (3), we obtain

|z (x)| ≤ L
μ

ν2 ρ
1/2 (x) ‖z‖+

μ

ν2 ρ
1/2 (x) ‖ψ‖ . (21)

We use known inequality

(a + b)2 ≤ (1 + ε) a2 +
(

1 +
1
ε

)
b2, ε > 0

and the fact that

max
x∈Ω̄

ρ (x) =
1
4
.
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Consequently, from (21) we obtain the required weight estimate∥∥∥∥ z (x)
ρ1/2 (x)

∥∥∥∥ ≤ C ‖ψ‖ , (22)

where

C =
μ

ν2

(
1 +

1
ε

)1/2 [
1− (1 + ε)

L2μ2

4ν4

]1/2

,

which is satisfied under condition

L2μ2

4ν4 < 1. (23)

We estimate the norm of the local truncation error ψ (x) by estimating the
corresponding items it consists of (see. (20)).

We have

|η11 (x, u)| ≤ ‖a11‖0,∞,Ω

∣∣∣∣ux̄1x1 (x)− ∂2u (x)
∂x1∂x2

∣∣∣∣ = ‖a11‖0,∞,Ω |η̃11| (24)

≤M
|h|2√
h1h2

|u|4,2,ϕ(x) ,

|η12 (x) + η21 (x)| ≤ ‖a12‖0,∞,Ω

∣∣∣∣ux̄1x2 (x) + ux1x̄2 (x)− 2
∂2u (x)
∂x1∂x2

∣∣∣∣ (25)

= ‖a12‖0,∞,Ω |η̃12| ≤M
|h|2√
h1h2

|u|4,2,ϕ(x) ,

|η22 (x, u)| ≤ ‖a22‖0,∞,Ω

∣∣∣∣ux̄2x2 (x)− ∂2u (x)
∂x2

2

∣∣∣∣ = ‖a22‖0,2,∞ |η̃22| (26)

≤M
|h|2√
h1h2

|u|4,2,ϕ(x) ,

where M is constant independent of h1, h2 and u (x) , |h| = max
i=1,2

hi, ϕ (x) =

{(ξ1, ξ2) : xα − hα ≤ ξα ≤ xα + hα, α = 1, 2} , |u|4,2,ϕ(x) is a semi-norm in the
space W 4

2 (ϕ (x)) .
Here at obtaining the inequalities (24)-(26) the Bramble-Hilbert lemma (see

[4]) has been used. The fact that each of the linear functionals (concerning u (x)
) η̃11, η̃12 + η̃21, η̃22 is bounded in the space W 4

2 (ϕ (x)) and vanishes on the
polynomials of the third order serves as substantiation of the lemma, mentioned
above.

Now, according to (20) and (24)-(26), from a priori estimate (22) we come to
the statement
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Theorem 1. Let conditions (2), (3), (23) be satisfied, solution of the problem
(1) exists, is unique and belongs to the Sobolev space W 4

2 (Ω) . Then the difference
scheme (18) has a unique solution, accuracy of which is defined by the weight
estimate ∥∥∥ρ−1/2 (x) [y (x)− u (x)]

∥∥∥ ≤M |h|2 |u|4,2,Ω . (27)

Proof. To prove the theorem it is only enough to additionally ascertain the
existence of the unique solution of the problem (18). This fact can be ascertained
in the standard way by the fixed point principle, making use of the fact that
operator

F (x) y =
∑
ς∈ω

h1h2G
h (x, ξ) f0 (ξ, y (ξ))

at using the condition (23) is a contracted operator from
0
Hh into

0
Hh and it map

the sphere

S =
{
y (x) ∈

0
Hh :

∥∥∥∥ y (x)
ρ1/2 (x)

∥∥∥∥ ≤ r

}
into itself.

4 Numerical Experiments

We use difference scheme (18) to find an approximate solution of the following
model boundary problem:

Example 1. Solve the problem (1) with f0 (x, u) ≡ 0, coefficients

a11 (x1, x2) = (1 + x1)
2
, a12 (x1, x2) = a21 (x1, x2) =

1
2

(1 + x1) (1 + x2) , (28)

a22 (x1, x2) = (1 + x2)
2

and exact solution

u (x1, x2) = sinπx1 sinπx2

Let us note, that coefficients (28) satisfy condition (2) (ν = 1
2 , μ = 6 ) and

condition (3), becausef0 (x, u) = 0 .

Example 2. Solve the problem (1) with coefficients

a11 (x1, x2) = sin2 (πx1) + 1 (29)
a22 (x1, x2) = sin2 (πx2) + 1 (30)

a12 (x1, x2) = a21 (x1, x2) =
1
2

sin (πx1) sin (πx2) +
1
2
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f0 =
1
8
e−|u|

and exact solution

u (x1, x2) = ln (sinπx1 sinπx2 + 1)

The coefficients (29) also satisfy condition (2) (ν = 7
16 , μ = 3 ) and condition

(3)
(
L = 1

8

)
.

For the practical estimation of the rate of convergence we consider the fol-
lowing quantities

err = ‖z (x)‖0,∞,ωh
= ‖y (x)− u (x)‖0,∞,ωh

,

p = log2

∥∥∥ z(x)
ρ1/2(x)

∥∥∥
0,∞,ωh∥∥∥ z(x)

ρ1/2(x)

∥∥∥
0,∞,ωh/2

.

The results of calculations are shown in table 1. For computation of the
example Fortran PowerStation 4.0 has been used.

Table 1.

Example 1 Example 2
# err p err p
4 2.792 ∗ 10−3 5.782 ∗ 10−2

8 2.405 ∗ 10−3 1.23 1.458 ∗ 10−2 1.78
16 7.682 ∗ 10−4 1.77 3.686 ∗ 10−3 1.90
32 1.999 ∗ 10−4 1.91 9.241 ∗ 10−4 1.96
64 5.093 ∗ 10−5 1.96 2.315 ∗ 10−4 1.98
128 0.266 ∗ 10−5 1.98 8.597 ∗ 10−5 1.99

The experiments held showed the unimprovement of the theoretical weight a
priori estimates (27),by the order.
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Abstract. The parametrically driven damped nonlinear Schrödinger
equation serves as an amplitude equation for a variety of resonantly
forced oscillatory systems on the plane. In this note, we consider its nodal
soliton solutions. We show that although the nodal solitons are stable
against radially-symmetric perturbations for sufficiently large damping
coefficients, they are always unstable to azimuthal perturbations. The
corresponding break-up scenarios are studied using direct numerical sim-
ulations. Typically, the nodal solutions break into symmetric “necklaces”
of stable nodeless solitons.

1. Two-dimensional localised oscillating structures, commonly referred to as os-
cillons, have been detected in experiments on vertically vibrated layers of gran-
ular material [1], Newtonian fluids and suspensions [2, 3]. Numerical simulations
established the existence of stable oscillons in a variety of pattern-forming sys-
tems, including the Swift-Hohenberg and Ginsburg-Landau equations, period-
doubling maps with continuous spatial coupling, semicontinuum theories and
hydrodynamic models [3, 4]. These simulations provided a great deal of insight
into the phenomenology of the oscillons; however, the mechanism by which they
acquire or loose their stability remained poorly understood.

In order to elucidate this mechanism, a simple model of a parametrically
forced oscillatory medium was proposed recently [5]. The model comprises a
two-dimensional lattice of diffusively coupled, vertically vibrated pendula. When
driven at the frequency close to their double natural frequency, the pendula
execute almost synchronous librations whose slowly varying amplitude satisfies
the 2D parametrically driven, damped nonlinear Schrödinger (NLS) equation.
The NLS equation was shown to support radially-symmetric, bell-shaped (i.e.
nodeless) solitons which turned out to be stable for sufficiently large values
of the damping coefficient. These stationary solitons of the amplitude equation
correspond to the spatio-temporal envelopes of the oscillons in the original lattice
system. By reducing the NLS to a finite-dimensional system in the vicinity of
the soliton, its stabilisation mechanism (and hence, the oscillon’s stabilisation
mechanism) was clarified [5].

In the present note we consider a more general class of radially-symmetric
solitons of the parametrically driven, damped NLS on the plane, namely soli-

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 91–99, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Solutions of eq.(3): R0(r) (thin continuous line), R1(r) (thick line), R2(r)
(dashed)

tons with nodes. We will demonstrate that these solitons are unstable against
azimuthal modes, and analyse the evolution of this instability.

2. The parametrically driven, damped NLS equation has the form:

iψt +∇2ψ + 2|ψ|2ψ − ψ = hψ∗ − iγψ. (1)

Here ∇2 = ∂2/∂x2 + ∂2/∂y2. Eq.(1) serves as an amplitude equation for a wide
range of nearly-conservative two-dimensional oscillatory systems under paramet-
ric forcing. This equation was also used as a phenomenological model of nonlinear
Faraday resonance in water [3]. The coefficient h > 0 plays the role of the driver’s
strength and γ > 0 is the damping coefficient.

We start with the discussion of its nodeless solitons and their stability. The
exact (though not explicit) stationary radially-symmetric solution is given by

ψ0 = Ae−iθR0(Ar), (2)

where r2 = x2 + y2,

A2 = 1 +
√

h2 − γ2, θ =
1
2

arcsin
(γ
h

)
,

and R0(r) is the bell-shaped nodeless solution of the equation

Rrr +
1
r
R−R+ 2R3 = 0 (3)

with the boundary conditions Rr(0) = R(∞) = 0. (Below we simply write R
for R0.) Solutions of eq.(3) are well documented in literature [6]; see Fig.1.

3. To examine the stability of the solution (2) with nonzero h and γ, we linearise
eq.(1) in the small perturbation

δψ(x, t) = e(μ−Γ )t̃−iθ± [u(x̃) + iv(x̃)],
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where x̃ = Ax, t̃ = A2t. This yields an eigenvalue problem

L1u = −(μ + Γ )v, (L0 − ε)v = (μ− Γ )u, (4)

where Γ = γ/A2 and the operators

L0 ≡ −∇̃2 + 1− 2R2(r̃), L1 ≡ L0 − 4R2(r̃), (5)

with ∇̃2 = ∂2/∂x̃2 + ∂2/∂ỹ2. (We are dropping the tildas below.) For further
convenience, we introduce the positive quantity ε = 2

√
h2 − γ2/A2. Fixing ε

defines a curve on the (γ, h)-plane:

h =
√

ε2/(2− ε)2 + γ2. (6)

Introducing
λ2 = μ2 − Γ 2 (7)

and performing the transformation [9]

v(x) → (μ + Γ )λ−1v(x),

reduces eq.(4) to a one-parameter eigenvalue problem:

(L0 − ε)v = λu, L1u = −λv. (8)

We first consider the stability with respect to radially symmetric perturba-
tions u = u(r), v = v(r). In this case the operators (5) become

L0 = − d2

dr2 −
1
r

d

dr
+ 1− 2R2(r), L1 = L0 − 4R2(r). (9)

In the absence of the damping and driving, all localised initial conditions in the
unperturbed 2D NLS equation are known to either disperse or blow-up in finite
time [6, 7, 8]. It turned out, however, that the soliton ψ0 stabilises as the damping
γ is increased above a certain value [5]. The stability condition is γ ≥ γc, where

γc = γc(ε) ≡
2

2− ε
· Reλ(ε) Imλ(ε)√

(Imλ)2 − (Reλ)2
. (10)

We obtained λ(ε) by solving the eigenvalue problem (8) directly. Expressing ε
via γc from (10) and feeding into (6), we get the stability boundary on the
(γ, h)-plane (Fig.2).

4. To study the stability to asymmetric perturbations we factorise, in (8),

u(x) = ũ(r)eimϕ, v(x) = ṽ(r)eimϕ,

where tanϕ = y/x and m is an integer. The functions ũ(r) and ṽ(r) satisfy the
eigenproblem (8) where the operators (9) should be replaced by

L
(m)
0 ≡ L0 + m2/r2, L

(m)
1 ≡ L1 + m2/r2, (11)
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solutions are unstable to
continuous spectrum waves

Fig. 2. Stability diagram for two-dimensional solitons. The (γ, h − γ)-plane is used for
visual clarity. No localised or periodic attractors exist for h < γ (below the horisontal
axis). The region of stability of the soliton ψ0 lies to the right of the solid curve marked
“n = 0”. Also shown are the regions of stability of the solitons ψ1 and ψ2 with respect
to the radially-symmetric perturbations. (These lie to the right of the corresponding
curves in the figure)
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Fig. 3. The discrete eigenvalues of the linearised operator (8) for the one-node soliton,
ψ1. Panels (a) and (b) show the complex eigenvalues, Im λ vs Re λ. Arrows indicate
the direction of increase of ε. Panel (c) shows the real eigenvalues, as functions of ε
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respectively. This modified eigenvalue problem can be analysed in a similar way
to eqs.(8). It is not difficult to demonstrate that all discrete eigenvalues of (8)
(if any exist) have to be pure imaginary in this case, and hence the azimuthal
perturbations do not lead to any instabilities of the solution in question [5].

5. Besides the nodeless solution R0(r), the “master” equation (3) has solutions
Rn(r) with n nodes, n ≥ 1. (See Fig.1). These give rise to a sequence of nodal
solutions ψn of the damped-driven NLS (1), defined by eq.(2) with R0 → Rn. To
examine the stability of the ψn, we solved the eigenvalue problem (8) numerically,
with operators L

(m)
0,1 as in (11). The radial stability properties of the nodal

solitons turned out to be similar to those of the nodeless soliton ψ0. Namely, the
ψn solutions are stable against radially-symmetric perturbations for sufficiently
large γ. The corresponding stability regions for ψ1 and ψ2 are depicted in Fig.(2).
However, the azimuthal stability properties of the nodal solitons have turned out
to be quite different.

Both ψ1 and ψ2 solutions do have eigenvalues λ with nonzero real parts for
orbital numbers m ≥ 1. (See Fig.3 and 4.) Having found eigenvalues λ for each
ε, one still has to identify those giving rise to the largest growth rates
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Fig. 4. The discrete eigenvalues of the linearised operator (8) for the two-node soliton,
ψ2. Panels (a),(b), and (c) show the complex eigenvalues, Im λ vs Re λ. Panel (d) shows
the real eigenvalues, as functions of ε
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Table 1. Eigenvalues λ and corresponding growth rates ν for the solitons ψ1 (left
panel) and ψ2 (right panel). We included only the eigenvalues which can, potentially,
give rise to the largest growth rate in each “symmetry class” m. Some other eigenvalues
have been filtered out using the above selection rules

m ν Reλ Imλ m ν Reλ Imλ
0 -0.1620 1.5797 4.2181 0 -0.3361 2.3531 6.1585
0 -1.4827 0.0609 1.8743 0 -0.5877 0.1819 1.7847

0 -0.4168 0.3093 1.5572
1 -0.8255 0.2272 1.6198 1 -0.8089 0.3818 2.1021
1 2.79e-6 0.0033 0.0000 1 -0.4891 0.1111 1.6352

1 1.07e-5 0.0079 0.0000
2 -0.3012 0.2213 1.0602 2 -0.3497 0.3737 1.4597

2 -0.0328 0.2602 0.5128
3 0.0872 0.5821 0.0000 3 0.5406 1.8686 0.0000
4 0.3689 1.2399 0.0000 4 0.5286 1.8462 0.0000
5 0.2057 0.9076 0.0000 5 0.0263 0.3958 0.0000

6 0.1611 0.9898 0.0000
7 0.2490 1.2392 0.0000
8 0.2783 1.3133 0.0000
9 0.2288 1.1861 0.0000
10 0.0720 0.6567 0.0000

ν = Reμ− Γ (12)

for each pair (ε, γ) [or, equivalently, for each (h, γ)]. In (12), μ is reconstructed
using eq.(7). The selection of real eigenvalues is straightforward; in this case we
have the following two simple rules:

• If, for some ε, there are eigenvalues λ1 > 0, λ2 > 0 such that λ1 > λ2, then
ν1 > ν2 for this ε and all γ. That is, of all real eigenvalues λ one has to consider
only the largest one.
• If, for some ε, there is a real eigenvalue λ1 > 0 and a complex eigenvalue λ2,
with Reλ2 > 0 and λ1 > Reλ2, then ν1 > ν2 for this ε and all γ. That is, one
can ignore all complex eigenvalues with real parts smaller than a real eigenvalue
— if there is one.

The comparison of two complex eigenvalues is not so straightforward. In
particular, the fact that Reλ1 > Reλ2 does not necessarily imply that ν1 > ν2.
Which of the two growth rates, ν1 or ν2, is larger will depend on the imaginary
parts of λ, as well as on γ.

In figures 3 and 4, we illustrate the real and imaginary parts of the eigen-
values, arising for different m, for the solitons ψ1 and ψ2. The soliton ψ1 has
discrete eigenvalues λ associated with orbital numbers m = 0, 1, ..., 5 and the
soliton ψ2 with m = 0, 1, ..., 10.

In order to compare the conclusions based on the linearised analysis with
direct numerical simulations of the unstable solitons ψ1 and ψ2, we fix some h
and γ and identify the eigenvalue with the maximum growth rate in each case.
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Fig. 5. Evolution of the azimuthal instability of the one-node soliton. (a): the initial
condition, soliton ψ1 ; (b) and (c): dissociation of the ring-like “valley” into 4 nodeless
solitons; (d): divergence of the fragments. Here γ = 3.5 and h = 3.6; shown is Re ψ.
Note the change of the vertical scale in (d)

In the case of the soliton ψ1, we choose γ = 3.5 and h = 3.6; the corresponding
ε = 0.9146. The real and imaginary parts of λ for each m as well as the resulting
growth rates ν are given in Table 1 (left panel). The eigenvalue with the largest
Reλ is associated with m = 0; however, for the given ε and γ the resulting
ν < 0. (This is because we have chosen a point in the “radially stable” part of
the (γ, h)-plane, to the right of the “n = 1” curve in Fig.2.) On the contrary, the
growth rates corresponding to the real eigenvalues associated with m = 3, 4, 5
are positive for all γ. The maximum growth rate is associated with m = 4.
The corresponding eigenfunctions u(r) and v(r) have a single maximum near
the position of the minimum of the function R1(r); that is, the perturbation is
concentrated near the circular “valley” in the relief of ψ(x, y)|2. This observation
suggests that for γ = 3.4 and h = 3.5, the soliton ψ1 should break into a
symmetric pattern of 5 solitons ψ0: one at the origin and four around it.

Next, in the case of the soliton ψ2 we fix γ = 4.5 and h = 4.53; this gives
ε = 0.6846. The corresponding eigenvalues, for each m, are presented in Table 1
(right panel). Again, the eigenvalue with the largest Reλ is the one for m = 0 but
the resulting ν is negative. The largest growth rates (ν3 = 0.54 and ν4 = 0.53,
respectively) are those pertaining to m = 3 and m = 4. The corresponding eigen-
functions have their maxima near the position of the minimum of the function
R2(r). Therefore, the circular “valley” of the soliton ψ2 is expected to break into
three or four nodeless solitons ψ0. (Since ν3 is so close to ν4, the actual number
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Fig. 6. The evolution of the azimuthal instability of the two-node soliton ψ2. (a): the
initial condition; (b)-(c): the rapid dissociation of the “valley” into 4 nodeless solitons;
(c)-(d): a slower decay of the “ridge” into 8 solitons ψ0; (e)-(f): the annihilation of the
internal ring and the central soliton, and the repulsion of the persisting 8 solitons. Here
γ = 4.5 and h = 4.53; shown is Re ψ. Note the change of the vertical scale in (e)-(f)
w.r.t. that in (a)-(d)

of resulting solitons — three or four — will be very sensitive to the choice of
the initial perturbation.) Next, eigenfunctions pertaining to m = 5, 6, ...10 have
their maxima near the second, lateral, maximum of the function R2(r). The
largest growth rate in this group of eigenvalues arises for m = 8. Hence, the
circular “ridge” of the soliton ψ2 should break into 8 nodeless solitons, with this
process taking longer than the bunching of the “valley” into the “internal ring”
of solitons.

The direct numerical simulations corroborate the above scenarios. The ψ1
soliton with γ = 3.5 and h = 3.6 splits into a constellation of 5 nodeless solitons:
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one at the origin and four solitons of opposite polarity at the vertices of the square
centered at the origin. The emerging nodeless solitons are stable but repelling
each other, see Fig. 5. Hence, no stationary nonsymmetric configurations are
possible; the peripheral solitons escape to infinity. The ψ2 soliton with γ = 4.5
and h = 4.53 has a more complicated evolution. As predicted by the linear
stability analysis, it dissociates into 13 nodeless solitons: one at the origin, four
solitons of opposite polarity forming a square around it and eight more solitons
(of the same polarity as the one at the origin) forming an outer ring. (The fact
that the inner ring consists of four and not three solitons, is due to the square
symmetry of our domain of integration which favours perturbations with m = 4
over those with m = 3.) In the subsequent evolution the central soliton and the
nearest four annihilate and only the eight outer solitons persist. They repel each
other and eventually escape to infinity, see Fig.6.

In conclusion, our analysis suggests the interpretation of the nodal solutions
as degenerate, unstable coaxial complexes of the nodeless solitons ψ0.
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Abstract. An estimate confirming the supercloseness between the Ritz
projection and the corresponding eigenvectors, obtained by finite element
method, is hereby proved. This result is true for a large class of self-
adjoint 2m−order elliptic operators. An application of this theorem to
the superconvergence postprocessing patch-recovery technique for finite
element eigenvalue problems is also presented. Finally, the theoretical
investigations are supported by numerical experiments.
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1 Introduction

Let (λ, u(x)) be an exact eigenpair of a 2m−order eigenvalue problem: find
λ ∈ R, u(x) ∈ V such that

a(u, v) = λ(u, v), ∀v ∈ V, (1)

where V is a closed subspace of Hm(Ω), Hm
0 (Ω) ⊆ V ⊆ Hm(Ω), Hm(Ω)

and Hm
0 (Ω) being the usual m−order Sobolev spaces on the bounded domain

Ω, Ω ⊂ Rd, d = 1, 2, 3 with norm ‖ · ‖m,Ω (cf. Ciarlet [1]). In order to avoid
technical difficulties, we shall always assume that the boundary Γ of Ω is Lipshitz
continuous. The notation (·, ·) is adopted for the L2(Ω)−inner product and a(·, ·)
is the bilinear form on V × V specified below.

This paper deals with an aspect of superconvergence phenomena in finite ele-
ment (FE) method for the problem (1). Namely, we prove supercloseness between
the approximate eigenfinctions and the corresponding elliptic FE-solutions. Some
applications of this result are presented.

We assume that the bilinear form a(·, ·) satisfies the following conditions:

(i) The a−form is symmetric and coercive on V :

a(u, v) = a(v, u), ρ‖v‖2m,Ω ≤ a(v, v), ∀u, v ∈ V, (2)

where ρ is a positive constant.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 100–107, 2005.
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(ii) The a−form is continuous, i.e.

|a(u, v)| ≤ C‖u‖m,Ω‖v‖m,Ω , ∀u, v ∈ V.

The problem (1) has a countable infinite set of eigenvalues λi, all being strictly
positive and having finite multiplicity, without a finite accumulation point (see
[2, 3]).

The a−form could be generated by certain boundary values for the following
self-adjoint elliptic operator:

Au(x) =
∑

|α|≤m
(−1)|α|Dα {pα(x)Dαu(x)} , m ∈ N.

The coefficient functions pα(x) are assumed to be real-valued functions of
class C|α|(Ω) and pα(x) have all derivatives on Ω that are continuously pro-
longable on Ω.

Problem (1) is caused by the following linear eigenvalue problem:

Au(x) = λu(x), x ∈ Ω (3)

with the homogeneous boundary conditions

Bu(x) = 0, x ∈ Γ, (4)

where

B = {Bj}mj=1 , Bju(x) =
∑

|α|≤2m−1

sj,α(x)Dαu(x), j = 1, . . . ,m

are linearly independent conditions.
Problems (3), (4) is a general eigenvalue problem of order 2m. We assume that

the operators A and B are such that the symmetry and coerci8vity conditions
(2) of the a−form are satisfied. The one-dimensional case (d = 1 with Ω = (a, b))
allows 2m more general homogeneous boundary conditions.

Let us consider a family of regular finite element partitions τh of Ω which
fulfil standard assumptions [1], and suppose that this family satisfies the in-
verse assumptions ([1], p.140), i.e. there exists a constant ν > 0 such that
∀e ∈ τh,

h
he
≤ ν, where he is the diameter of e, h = maxe∈τh

he.
With a partition τh we associate a finite-dimensional subspace Vh of V ∩

Cm−1(Ω) such that the restriction of every function v ∈ Vh over every finite
element e ∈ τh is a polynomial of degree n at most.

We determine the approximate eigenpairs (λh, uh(x)) by the finite element
method:

λh ∈ R, uh ∈ Vh, a(uh, v) = λh(uh, v) ∀v ∈ Vh. (5)

It is well-known (see [4] ot [2]) that the rate of convergence to the eigenvalues
and eigenfunctions provided that n ≥ 2m− 1 is given by

|λ− λh| ≤ C(λ)h2(n+1−m)‖u‖n+1,Ω , (6)
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‖u− uh‖m,Ω ≤ C(Λ)hn+1−m‖u‖n+1,Ω . (7)

The solutions of (1) and (5) are related to the Rayleigh quotient:

λ =
a(u, u)
(u, u)

and λh =
a(uh, uh)
(uh, uh)

.

Let Rh : V → Vh be the elliptic or Ritz projection operator defined by:

∀u ∈ V, ∀v ∈ Vh a(u−Rhu, v) = 0.

If the function u(x) belongs to Hn+1(Ω) ∩ V then [4]

‖u−Rhu‖m,Ω ≤ Chn+1−m‖u‖n+1,Ω . (8)

2 Main Result

Let (λh, uh) be the FE approximation of any exact eigenpair (λ, u). We shall
estimate the difference uh − Rhu in Hm−norm of higher order of accuracy as
compared to the estimates (7) and 8). Thus, the Ritz projection of any eigen-
function (in the same finite element space) approximates the corresponding FE
eigenfunction of better precision. This special feature of both functions is called
to satisfy a superclose property, (cf. [5]). Such result is proved by Lin, Yan and
Zhou in [6] when eigenpairs of Laplacian operator and its FE-approximations
are considered.

Our goal is to prove this superclose property using a substantially different
approach. This estimate is valid for a large class of 2m−order self-adjoint elliptic
operators. It is also worthwhile noting that the superclose property is available
between the FE eigenfunction uh and its corresponding Lagrangian FE inter-
polant uI of the exact eigenfunction. This result is presented by the author in
[7] and it is used to prove that the points of superconvergence of the gradient for
the eigenfunctions of second-order elliptic operator are the same as in the case
of elliptic boundary value problems.

The following theorem contains the main result of this paper:

Theorem 1. Let the eigenfunction u(x) belong to Hn+1(Ω) ∩ V and let uh(x)
be the corresponding approximation obtained by (5). Then

‖uh −Rhu‖m,Ω ≤ Chα(m,n)‖u‖n+1,Ω , (9)

where α(m,n) = min {2(n + 1−m);n + 1 + s} , 0 ≤ s ≤ m.

Proof. Using (2) we have

ρ‖uh −Rhu‖2m,Ω ≤ a(uh −Rhu, uh −Rhu).
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Denote uh−Rhu = zh ∈ Vh. Using the orthogonal property of Rhu, it follows
that

ρ‖zh‖m,Ω ≤ λh(uh, zh)− a(Rhu, zh)

= (λh − λ)(uh, zh) + λ(uh, zh)− a(u, zh)

= (λh − λ)(uh, zh) + λ(uh − u, zh) + λ(u, zh)− a(u, zh)

= (λh − λ)(uh, zh) + λ(uh − u, zh)

≤ |λh − λ|‖uh‖0,Ω‖zh‖m,Ω + λ‖uh − u‖−s,Ω‖zh‖m,Ω .

Note that in the last step we use the duality in negative norms with 0 ≤ s ≤
m. The estimate (9) follows from (6) and the inequality [8]

‖u− uh‖−s,Ω ≤ Chn+1+s‖u‖n+1,Ω .

Remark 1. Obviously we have maximum of α(m,n) when s = m. Then 2m −
n− 1 ≤ −m, i.e. 3m ≤ n+ 1. The other extremal case s = 0 leads ”only” to the
superconvergence result ‖uh −Rhu‖m,Ω = O(hn+1). This is the case when one
uses the lowest possible degree n of the approximation polynomials in the FE
method, i.e. n + 1 = 2m.

Remark 2. The elliptic projectionRhu is closer to the approximate eigenfunction
uh than the FE-interpolant uI (see [7]). This is due to the fact that uI does not
verify the orthogonality with respect to the a−form.

3 Application

In this section a direct application of Theorem 1 to the Zienkiewich-Zhu patch
recovery technique will be presented [9]. This application concerns some ultra-
convergence properties of the eigenvalues and eigenfunctions, i.e. when the con-
vergence rate is at least two order higher than the optimal global rate. For this
aspect of the superconvergence analysis the reader is referred to the book by
Ainsworth-Oden ([10], Chapter 4, see also [11]).

To begin with we need the following lemma:

Lemma 1. Let (λ, u) be the solution of (1) such that ‖u‖0,Ω = 1. Then for any
w ∈ Hm

0 (Ω) and w �= 0, there holds∣∣∣∣a(w,w)
(w,w)

− λ

∣∣∣∣ ≤ C
‖w − u‖2m,Ω

(w,w)
. (10)

Proof. Denote w − u = ϕ ∈ Hm
0 (Ω). Then w = u + ϕ.
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The relation (10) is equivalent to

|a(u + ϕ, u + ϕ)− λ(u + ϕ, u + ϕ)| ≤ C‖ϕ‖2m,Ω ∀ϕ ∈ Hm
0 (Ω).

It follows

|a(u, u) + 2a(u, ϕ) + a(ϕ,ϕ)− λ(u, u)− 2λ(u, ϕ)− λ(ϕ,ϕ)|

= |a(u, u) + a(ϕ,ϕ)− λ− λ(ϕ,ϕ)|.
Having in mind that a(u, u) = λ, we have

|a(u + ϕ, u + ϕ)− λ(u + ϕ, u + ϕ)| = |a(ϕ,ϕ)− λ(ϕ,ϕ)|

≤ C1‖ϕ‖2m,Ω + λ‖ϕ‖20,Ω

≤ C‖ϕ‖2m,Ω .

The last inequality proves the estimate (10).

Now, let us consider a higher order interpolation of the original finite ele-
ment solution to achieve higher order accuracy. The interpolated FE solution
resulting from the postprocessing uses some superclose properties (see [9, 10]).
The special interpolation operator is noted by I2h and it is related to the patch
recovery technique [6, 11, 12]. So, the interpolation I2h is defined on the mesh
of size 2h with certain ”vertices-edges-element” conditions. Thus the postpro-
cessed FE-solution has increased order of accuracy without increasing the degree
of elements.

It is assumed that by the construction, for any u ∈ Hk+1(Ω), k ≥ n + 1,

‖I2hRhu− u‖m,Ω ≤ Chk‖u‖k+1,Ω . (11)

Denote

β = β(m,n) = min {α(m,n); k} and β̃(m,n) = max {α(m,n); k} .

We show that the ultraconvergence (superconvergence) error estimates for
eigenvalue approximations for 2m−order self-adjoint eigenvalue problem are a
consequence of two approaches. First, we use the superclose property of the
Ritz projection of the eigenfunction Rhu and the corresponding FE solution uh
(Theorem 1). The second one is the patch recovery postprocessing approach.

Theorem 2. Let (λ, u) be an eigenpair of the problem (1) and let (λh, uh) be its
finite element approximation obtained from (5). Assume that the estimate (11) is
fulfilled as a consequence of recovery postprocessing technique and u ∈ H β̃+1(Ω).
Then

‖I2huh − u‖m,Ω ≤ Chβ‖u‖
β̃+1,Ω

, (12)∣∣∣∣a(I2huh, I2huh)(I2huh, I2huh)
− λ

∣∣∣∣ ≤ Ch2β‖u‖2
β̃+1,Ω

. (13)
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Proof. For the first estimate (12) we obtain:

‖I2huh − u‖m,Ω ≤ ‖I2huh − I2hRhu‖m,Ω + ‖I2hRhu− u‖m,Ω

≤ ‖I2h‖ ‖uh −Rhu‖m,Ω + ‖I2hRhu− u‖m,Ω .

Consider the interpolation operator I2h : Vh → Vh. This operator has a finite
range, i.e. dim range(I2h) <∞. Therefore it is compact. Thus

‖I2h‖ =
supvh∈Vh

‖I2hvh‖m,Ω
‖vh‖m,Ω

≤ C = const.

Using the result of Theorem 1 and (11) we get:

‖I2huh − u‖m,Ω ≤ Chα(m,n)‖u‖n+1,Ω + Chk‖u‖k+1,Ω .

This inequality proves estimate (12).
For the eigenvalues we apply the result of Lemma 1:∣∣∣∣a(I2huh, I2huh)(I2huh, I2huh)

− λ

∣∣∣∣ ≤ C
‖I2huh − u‖2m,Ω
‖I2huh‖20,Ω

≤ Ch2β‖u‖2
β̃+1,Ω

.

4 Numerical Results

Here follows an illustration of the present theory. Consider the problem

−Δu = λu, x ∈ Ω,

u|Γ = 0,

where Ω = (0, l)× (0, l) and Γ = ∂Ω.
The first exact eigenpairs of this problem are:

λ1 =
2π2

l2
, u1(x, y) = C sin

π

l
x sin

π

l
y;

λ2 =
5π2

l2
, u2(x, y) = C sin

π

l
x sin

2π
l
y;

λ3 =
5π2

l2
, u3(x, y) = C sin

2π
l
x sin

π

l
y;

λ4 =
8π2

l2
, u4(x, y) = C sin

2π
l
x sin

2π
l
y.

The coefficient C = 2
l is determined by the normalization∫

Ω

u2
j (x, y) dx dy = 1.
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Table 1 gives the results when l = 1 for biquadratic meshes (i.e. n = 2 above)
of Ne identical 9-nodes rectangular elements (Ne = 16; 36; 64). We present the
finite element approximation λh,j of the eigenvalues

λ1 = 19.7392088022, λ2,3 = 49.3480220054, λ4 = 78.9568352087,

and their improvements λh,j by postprocessing patch recoveries. The values of
λh,j have been obtained by using interpolated finite elements unifying four el-
ements in the patch. It is readily seen that a superclose property arises on the
coarse mesh.

Table 1.

Ne 16 36 64

λh,1 19.7493180513 19.7412403886 19.7398555788
λh,1 19.7392377680 19.7392108553 19.7392102567

λh,2 49.6506604280 49.4117157727 49.3688522084
λh,2 49.3494876511 49.3488302530 49.3482370004

λh,3 49.7000190559 49.4339097637 49.3921333268
λh,3 49.3990486874 49.3710485246 49.3584525122

λh,4 102.195699803 99.9313207004 98.5022915765
λh,4 93.8779184523 90.6475349121 88.7411349267

Table 2 illustrates the supercloseness between the eigenfunctions when the
same patch recovery strategy is applied.

Table 2.

Ne 16 36 64

‖u1 − uh,1‖2,Ω 0.14 6.1 × 10−2 3.2 × 10−2

‖u1 − I2huh,1‖2,Ω 7.2 × 10−3 1.9 × 10−3 1.1 × 10−3

‖u2 − uh,2‖2,Ω 0.77 0.33 0.19
‖u2 − I2huh,2‖2,Ω 5.2 × 10−2 3 × 10−2 1.9 × 10−2

‖u3 − uh,3‖2,Ω 0.82 0.39 0.26
‖u3 − I2huh,3‖2,Ω 0.29 0.19 0.12

‖u4 − uh,4‖2,Ω 6.79 6.43 6.15
‖u4 − I2huh,4‖2,Ω 4.46 4.13 3.42
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Abstract. Interpolated one-dimensional finite elements are constructed
and applied to the fourth-order self-adjoint elliptic boundary-value prob-
lems. A superconvergence postprocessing approach, based on the patch-
recovery method, is presented. It is proved that the rate of convergence
depends on the different variational forms related to the variety of the
corresponding elliptic operators. Finally, numerical results are presented.

2000 Subject Classification: 65N30, 65N25

Keywords: finite elements, eigenvalue problem, superconvergence, post-
processing.

1 Introduction

Several types of superconvergence finite element methods have been studied in
the last two decades; see for example [1, 2] and the citations therein. This paper
dwells upon a superconvergence property of postprocessing type [3]. This proce-
dure increases the order of convergence of the original finite element solution in
case of the fourth-order elliptic problem on the single space. Such a postprocess-
ing is no less than a higher order interpolation on a coarser mesh of the original
finite element solution.

Our aim is to give explicite postprocessing procedure which to be used in
practical calculations. Let us also note that the superclose phenomena for the
fourth-order elliptic problem we present is similar to patch-recovery technique,
introduced by Zienkiewich-Zhu in 1991 [4].

Let Hm(Ω) be the usual Sobolev space for the positive integer m [5], provided
with the norms and seminorms ‖ · ‖m,Ω and | · |m,Ω , respectively.

Consider the following model problem for fourth-order self-adjoint elliptic
operator (Ω ≡ (0, l), l > 0):

a(u, v) = b(f, v), ∀v ∈ V, (1)

where V = H2(0, l) and

a(u, v) =
∫ l

0
(u′′v′′ + pu′v′ + quv) dx. (2)

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 108–115, 2005.
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It is required that the coefficients p ≥ 0 and q ≥ 0 are real constants.
Suppose that the bilinear a−form is coercive on V [5]. Obviously it is sym-

metric. The bilinear b−form contains the first derivatives of the functions at
most. It is symmetric and coercive on H1(0, l).

The one-dimensional fourth-order problems comprise many important me-
chanical applications. For example, different kind of problems concerning the
displacements and stresses of beam-mass systems or cable-mass systems could
be mentioned [6]. Variational aspects of the one-dimensional fourth-order prob-
lems are presented in [7].

Consider a family of regular finite element partitions τh of [0, l] which ful-
fill standard assumptions (see [5]). The nodes of any partition are sj , j =
0, 1, . . . , 2k. Then we define the subintervals Tj = [sj−1, sj ], j = 1, . . . , 2k, such
that τh =

⋃2k
j=1 Tj . The following denotations are adopted:

hj = sj − sj−1, xj =
sj−1 + sj

2
, h = max

1≤j≤2k
hj .

With a partition τh we associate a finite-dimensional subspace Vh ⊂ V ∩
C1[0, l] such that the restriction of every function v ∈ Vh on every interval
Tj ∈ τh is a polynomial of degree n at most.

The patch-recovery technique in considered cases requires n ≥ 4. For the
sake of practical application we provide the investigation of the lowest redundant
finite elements, i.e. n = 4.

The discrete problem corresponding to (1) is

a(uh, v) = b(f, v), ∀v ∈ Vh. (3)

The proof of superconvergence result consists of two main steps:

(i) Obtaining in the same finite element space an interpolation which approxi-
mates of higher order the solution u(x). Thus an interpolant ph has a special
construction and it is called to satisfy a superclose property, cf. [8];

(ii) Construction of higher order interpolation π2h of the original finite element
solution to achieve better accuracy. The interpolated finite element solution
results from the postprocessing [3].

2 Operator ph - Estimates and Properties

In the begining introduce the operator ph : C1(0, l) → Vh under the following
conditions (degrees of freedom):

phv(sj) = v(sj), j = 0, . . . , 2k,

d phv

dx
(sj) =

dv

dx
(sj), j = 0, . . . , 2k,∫

Tj

phv(x) dx =
∫
Tj

v(x) dx, j = 1, . . . , 2k.
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Obviously, phv(x) consists of piecewise polynomials of degree four at most.
The basic functions {ϕi}5i=1 determined the operator phon the reference ele-

ment [0, 1] are:⎛⎜⎜⎜⎜⎝
ϕ1(t)
ϕ2(t)
ϕ3(t)
ϕ4(t)
ϕ5(t)

⎞⎟⎟⎟⎟⎠ =
1
2

⎛⎜⎜⎜⎜⎝
−30 64 −36 0 2
−5 12 −9 2 0
60 −120 60 0 0

−30 56 −24 0 0
5 −8 3 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

t4

t3

t2

t
1

⎞⎟⎟⎟⎟⎠ , t ∈ [0, 1].

We adopt the following denotations:

v̂1,j = v(sj−1), v̂2,j =
dv

dx
(sj−1),

v̂3,j =
∫
Tj

v(x) dx, v̂4,j = v(sj), v̂5,j =
dv

dx
(sj).

Hence the presentation of any function reads:

v(x)|Tj = v̂1,j .ϕ1(
x− xj
hj

+
1
2
) + v̂2,j .hj .ϕ2(

x− xj
hj

+
1
2
)

+v̂3,j
1
hj

.ϕ3(
x− xj
hj

+
1
2
) + v̂4,j .ϕ4(

x− xj
hj

+
1
2
) + v̂5,j .hj .ϕ5(

x− xj
hj

+
1
2
).

Let us introduce the error function for any finite element Tj ∈ τh:

E(x) =
1
2

[
(x− xj)2 −

(
hj
2

)2
]
.

The following identities are important for proving the superclose property of
operator ph:

x− xj = 1
90

[
E3(x)

](5) ;

(x− xj)2 = 1
1260

[
E4(x)

](6) + h2
j

28 ;

(x− xj)3 = 1
18900

[
E5(x)

](7) + h2
j

5400

[
E3(x)

](5) ;

(x− xj)4 = 1
311850

[
E6(x)

](8) + h2
j

9240

[
E4(x)

](6) + h4
j

336 .

(4)

Consequently, two other presentations are needed:

(x− xj)3 = 1
420

[
E4(x)

](5) + h2
j

840

[
E3(x)

](5) ;

(x− xj)4 = 1
4725

[
E5(x)

](6) + h2
j

7560

[
E4(x)

](6) + h4
j

336 .

(5)

The crucial point in our investigations is the following lemma:
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Lemma 1. Let u(x) be the sufficiently smooth solution of the problem (1). Then
for any v ∈ Vh the following estimates are valid:
if p = q = 0 then a(phu− u, v) = 0, u ∈ H2(0, l) else

if p = 0 then a(phu− u, v) ≤ Ch6‖u‖7,(0,l)‖v‖2,(0,l), u ∈ H7(0, l) else

a(phu− u, v) ≤ Ch5‖u‖6,(0,l)‖v‖2,(0,l), u ∈ H6(0, l).

Proof. For x ∈ Tj and for every v ∈ Vh, there holds

v(s)(x) =
4∑
k=s

(x− xj)k−s

(k − s)!
v(k)(xj), s = 0, 1, 2. (6)

Consider the bilinear form a(U, v), v ∈ Vh, where U = phu− u.

Case 1. p = q = 0. From (2), it follows

a(U, v) =
∫ l

0
U ′′v′′ dx.

We use the properties of the interpolant ph as well as the equality (6) when
s = 2. Integrating by parts in the interval Tj reveals that∫

Tj

U ′′v′′ dx = 0,

consequently a(phu− u, v) = 0.

Case 2. p = 0. Then from (2)

a(U, v) =
∫

(0,l)
[U ′′v′′ + qUv] dx.

The first term in the right-hand side is calculated in the previous case. Thus
for the second one we use the expansion (6) with s = 0:∫

Tj

U.v dx =
4∑
k=0

∫
Tj

U(x)
(x− xj)k

k!
v(k)(xj) dx. (7)

We transform each term in the right-hand side of (7). The definition of the
operator ph gives ∫

Tj

U(x).v(xj) dx = 0. (8)

Using the relations (4) and integrating by parts we obtain successively∫
Tj

U(x).(x− xj).v′(xj) dx = − 1
90

∫
Tj

U (5)(x).E3(x).v′(xj) dx; (9)
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Tj

U(x).
(x− xj)2

2!
.v′′(xj) dx =

1
2520

∫
Tj

U (6)(x).E4(x).v′′(xj) dx; (10)∫
Tj

U(x).
(x− xj)3

3!
.v′′′(xj) dx = − 1

113400

∫
Tj

U (7)(x).E5(x).v′′′(xj) dx

−
h2
j

32400

∫
Tj

U (5)(x).E3(x).v′′′(xj) dx. (11)

In order to avoid the requirement for the increase of smoothness of the solu-
tion u(x), we apply the second equality of (5) for the last term in (8):∫

Tj

U(x).
(x− xj)4

4!
.vIV (x) dx =

1
113400

∫
Tj

U (6)(x).E5(x).vIV (x) dx

+
h2
j

181440

∫
Tj

U (6)(x).E4(x).vIV (x) dx. (12)

Finally, we use the equality

v(s)(xj) =
4∑
k=s

(xj − x)k−s

(k − s)!
v(k)(x), s = 1; 2; 3

in combination with the inverse inequality. Inserting (8)-(12) into (7) after sum-
ming with respect to Tj ∈ τh leads to

a(U, v) ≤ C.h6‖u‖7,(0,l)‖v‖2,(0,l).

Case 3. This is a general situation, namely a(U, v) =
∫ l
0 [U ′′v′′+pU ′v”+qUv]dx.

It remains to estimate
∫ l
0 pU

′v′ dx. From (6) for s = 1, it follows∫
Tj

U ′v′ dx =
4∑
k=1

∫
Tj

U ′(x)
(x− xj)k−1

(k − 1)!
v(k)(xj) dx, Tj ∈ τh.

Integrating by parts reveals that∫
Tj

U ′v′ dx = −
4∑
k=2

∫
Tj

U(x)
(x− xj)k−2

(k − 2)!
v(k)(xj) dx. (13)

As a consequence of the properties of the operator ph we get for each term
in the right-hand side of (13):∫

Tj

U(x)v′′(xj) dx = 0; (14)∫
Tj

U(x)(x− xj)v′′′(xj) dx =
1
90

∫
Tj

U (5)(x)E3(x)v′′′(xj) dx; (15)∫
Tj

U(x)
(x− xj)2

2
vIV (x) dx =

1
2520

∫
Tj

U (6)(x)E4(x)vIV (x) dx, (16)

where for the last two equalities the relations (4) are used.
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It should be noted that v′′′(xj) = v′′′(x) + (xj − x)vIV (x).
¿From the equalities (14)-(16) after summing on Tj ∈ τh and using the inverse

inequality we obtain ∫ l

0
pU ′v′ dx ≤ C.h5‖u‖6,(0,l)‖v‖2,(0,l). (17)

For the third term of a(U, v) we apply the first equality of (5) instead of (11).
This is due to the fact that in (17) the requirement of smoothness is u(x) ∈
H6(0, l). Thus, it could be written∫

Tj

U(x).
(x− xj)3

3!
.v′′′(xj) dx = − 1

2520

∫
Tj

U (5)(x).E4(x).v′′′(xj) dx

+
h2
j

5040

∫
Tj

U (5)(x).E3(x).v′′′(xj) dx.

After summarizing on the elements Tj ∈ τh, j = 1, . . . , 2k for this case we
have

a(U, v) ≤ C.h5‖u‖6,(0,l)‖v‖2,(0,l),
which completes the proof.

Remark 1. If a(u, v) =
∫ l
0 αu

′′v′′ dx, α = const. > 0, then ph is an elliptic
projection with respect to this a−form. Namely, for any u ∈ H2(0, l),

a(phu− u, v) = 0 ∀v ∈ Vh.

Remark 2. The results of Lemma 1 are valable when some additional terms are
added to the a−form [6]. For example, consider the problem

ã(u, v) = (f, v),

where ã(u, v) = a(u, v) +C1u
′(0)v′(0) +C0u(0)v(0). It is evident that ã(U, v) =

a(U, v).

The results of Lemma 1 may be recorded as the following theorem:

Theorem 1. Let uh be the finite element solution of (3) and let phu be the
interpolation of the exact solution u(x) of (1) determined in Lemma 1. Then,
the following estimates hold:
‖phu− uh‖2,(0,l) = 0 if p = q = 0;

‖phu− uh‖2,(0,l) ≤ C.h6‖u‖7,(0,l) if p = 0;

‖phu− uh‖2,(0,l) ≤ C.h5‖u‖6,(0,l) if p �= 0.

Proof. Having in mind that phu − uh ∈ Vh, from the Vh−ellipticity of a(·, ·) it
can be written

C‖phu− uh‖22,(0,l) ≤ a(phu− uh, phu− uh) = a(phu− u, phu− uh).

By substituting v = phu − uh in the results of Lemma 1 we complete the
proof.
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3 Main Result

The superclose properties of the interpolant ph permit to construct a patch-
recovery operator π2h : C1(0, l) → V 2h, where

V 2h =
{
v : v|T2j−1∪T2j

∈ P7, j = 1, . . . , k
}
.

Consider the intervals T2j−1 = [s2j−2, s2j−1] and T2j = [s2j−1, s2j ], j =
1, . . . , k. Then the following set can be introduced

τ2h =
{
T j = T2j−1 ∪ T2j , j = 1, . . . , k

}
.

On each finite element T j we define the operator π2h : C1(0, l) → V 2h such
that

π2hv(si) = v(si), i = 2j − 2, 2j − 1, 2j;
dπ2hv

dx
(si) =

dv

dx
(si), i = 2j − 2, 2j − 1, 2j; (18)∫

Tj

π2hv(x) dx =
∫
Tj

v(x) dx, i = 2j − 1, 2j.

¿From the basic properties (18) it easily follows

π2h ◦ ph = π2h, (19)

as well as the approximation result for any v(x) ∈ H7(0, l):

‖π2hv − v‖2,(0,l) ≤ C.h6‖v‖7,(0,l). (20)

We need also the boundness of the operator π2h, i.e. if π2h : Vh → V 2h, then
this operator has a finite range. It follows that dimR(π2h) <∞. Therefore, it is
compact. Finally

‖π2h‖ ≤ sup
vh∈Vh

‖π2hvh‖2,(0,l)
‖vh‖2,(0,l)

≤ C = const. (21)

Our superconvergence result is contained in the following theorem:

Theorem 2. Let u(x) and uh(x) be the solutions of (1) and (3), respectively.
Supposing that the conditions of Lemma 1 are fulfilled, the following estimates
hold:
‖π2huh − u‖2,(0,l) ≤ C.h5‖u‖6,(0,l) when p �= 0 and

‖π2huh − u‖2,(0,l) ≤ C.h6‖u‖7,(0,l) otherwise.

Proof. It follows from (19) and (20) that

‖π2huh − u‖2,(0,l) ≤ ‖π2huh − π2hu‖2,(0,l) + ‖π2hu− u‖2,(0,l)

= ‖π2huh − π2h ◦ phu‖2,(0,l) + ‖π2hu− u‖2,(0,l)

≤ ‖π2h‖.‖uh − phu‖2,(0,l) + ‖π2hu− u‖2,(0,l).

In order to complete the proof we apply (21) and the result of Theorem 1.
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4 Numerical Example

To illustrate our theoretical results, we consider the following simple problem:

yIV = x3(1− x)3, x ∈ (0, 1),

y(x)|x=0;1 = y′(x)|x=0;1 = 0.

The exact solution is the function u(x) = 1
7! (2x

2−3x3+6x7−9x8+5x9−x10).
Polynomials of degree four define the interpolation functions of each element.

Using the finite element solution uh we construct a-posteriori interpolated pro-
cedure by defining π2huh.

The results in the table below show that the calculations with h = 1
16 using

the operator π2h are comparable with the finite element solution obtained when
step h is four time smaller.

h 1/16 1/32 1/64
‖u− uh‖2,Ω 2.2× 10−7 2.8× 10−8 3.5× 10−9

‖u− π2huh‖2,Ω 2.8× 10−9 4.9× 10−11 7.9× 10−13
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Modelling of the Elastic Line for Twist Drill
with Straight Shank Fixed in Three-Jaw Chuck
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Abstract. The aim of this study is to present a new approach for in-
vestigation of an important problem of mechanical engineering. Namely,
the model of twist drill embeded in three-jaw chuck is discussed. This
problem could be considered as a variant of a beam on the Winckler’s
base which is under the influence of a cross-force.

Our principal aim is to deduce the general mathematical model for
this type of constructions. In order to determine the dynamic stresses of
the drill using any variational numerical methods we present the corre-
sponding variational formulations. These presentations are characterized
by mixed formulation. So, the mixed finite element method is convenient
for this kind of problems. The possibility for symmetrization of the weak
formulation of the model problem is also discussed.

Keywords: twist drill, mathematical model, variational formulation

1 Introduction

The model of continuous beam on elastic base of Winckler’s type is well-known
in engineering practice (see [6]). Usually, it is assumed that the coefficient of the
Winckler’s base is a constant at any direction, orthogonal to the axis of the beam.
For example, this model is applied to the cantilever straight or taper beams which
are fixed in straight or taper holes, respectively [5]. A good illustration to this
kind of model is a drill with taper shank fixed at the tailstock of lathe.

Normally in engineering practice it is either the cutting tool with straight
shank or the workpiece that is fixed in the three-jaw drill chuck. The free end-
point of the drill/workpiece is under impact of the transverse cutting force. In
the case of twist drill, for example, such force results in a bending moment at
any cross-section. When drilling follows the pattern ”rotative tool - stationary
workpiece”, according to the principle of inversion the transverse force rotates
round the axis of the tool. This class of problems presents a model that could
be refered to: ”Beam on the Winckler’s type base with variable rigidity”. The
authors solved this problem in [2], when bending is in the main and nonchanging
plane on inertia (see also [1]). The general case is a beam with continuous and
slow changing cross section whereby the main planes of inertia corresponding to
the various cross sections are different.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 116–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Modelling of the Elastic Line for Twist Drill 117

It corresponds to twist drills, when both of the main axes of inertia in the
corresponding different cross-sections describe two twisting surfaces.

Accordingly, the principal aim of this paper is to present a new approach for
determining of dynamic stresses when constrained frequencies in steady state are
considered. The beam (drill) is partially chucked at the elastic base with variable
rigidity and its free end is loaded by transverse force which rotates round the
axis with constant angular velosity.

Special emphasis is put on mathematical modelling as well as on the varia-
tional aspects of the considered problem.

2 General Mathematical Model for the Elastic Line

Consider a straight beam with length L partially located on an elastic founda-
tion. The beam is composed of two parts (see Figure 1). At the free part with
length l two groves are cut with a screw pitch of both twisting lines that equals s.
A straight beam is represented by the part with length L−l. Then the coefficient
of the base is not the same in any direction perpendicular to the beam axis.

Fig. 1.

The center CA of the cross-section A is dislocated within a distance |−→f | from
the x−axis due to an unknown force P (see Figure 2a). The beam rotates with
an angular velocity ω = const. In general, the two vectors −→f and −→

P are not
colinear.

Now we present an inversion approach: The considered system rotates with
angular velocity ω. Then the beam is fixed and the vector −→f (or −→P respectively)
rotates with angular velocity ω.

The general coordinates are the displacements v and w of the center of gravity
of the variable cross-section in the direction of the main axes of inertia η and ζ
(Figure 2b). In the straight part x ∈ (l, L) the same considerations are adopted
for variability of η and ζ inspite of the fact that all central axes for straight cross-
section are main axes of inertia. The goal is to ensure a continuity of variation
of η and ζ at the point x = l.
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Fig. 2.

Let the straight beam section rest on elastic supports. These supports are
spatially located and infinitely close from each other in the direction of the beam
axis. It is necessary to determine the stiffness matrix of the elastic foundation in
the coordinate system Cηζ (Figure 3). For this purpose, we consider any cross-
section uniformly supported by n springs (supports). The i−th spring has the
stiffness Ci, i = 1, . . . , n. Springs axes intersect at the center of the gravity of the
cross-section and they form equal angles (Figure 3). The stiffness at the node C
in the direction Oη (or Oζ) will present the coefficient of the Winckler’s base.
This coefficient depends on the angle θ and consequently - on the abscissa x.

Fig. 3.

Let us consider the i−th spring presented in Figure 4. The projections Rη,i
and Rζ,i of the reactions at the point C of the simultaneous displacements vi =
1, wi = 1, are:

Rη,i = Ci [cosϕi cosϕi + sinϕi cosϕi] ,
Rζ,i = Ci [cosϕi sinϕi + sinϕi sinϕi] .

(1)

Nodal displacements can be noted by {δi} = [viwi]T . Hence, the relation (1)
could be written in matrix form: {Ri} = [Kii] .{δi}, where

[Kii] = Ci

(
cos2 ϕi sinϕi cosϕi

sinϕi cosϕi sin2 ϕi

)
,
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ϕi = 2π
n i + β − θ, and β is the angle between y−axes and the first spring, i.e.

which corresponds to i = 1 (Figure 3). In coupling the matrices of all the n
springs, for the global stiffness matrix we obtain:

[K] =
n∑
i=1

Ci

(
cos2 ϕi sinϕi cosϕi

sinϕi cosϕi sin2 ϕi

)
.

The general mathematical model for the elastic line is deduced under the
following conditions:

– The elastic line is a function of the abscissa x and the time-variable t;
– The displacement functions v, w of the centers of gravity for the variable

sections are determined in the direction of main axes of inertia η, ζ;
– There is a linear dependence between displacements and deformations. This

allows for the curvatures in the main planes of inertia xη and xζ to be defined
only through the second derivative with respect to x:

Kxη =
∂2v

∂x2 , Kxζ =
∂2w

∂x2 ;

– The bending moments are proportional to the curvatures:

Mη = −KxηEJη, Mζ = KxζEJζ ,

where E is the modulus of elasticity and Jη(x) and Jζ(x) are axial moments
of inertia.

– There is a relation between the bending moments and distributed loads in
the main planes of inertia:

∂2Mη

∂x2 = −qζ ,
∂2Mζ

∂x2 = −qη.

– The load of inertia is a result of the transverse oscillations in xη and xζ−
plane respectively with intensities:

qη = ρF (x)
∂2v

∂t2
, qζ = ρF (x)

∂2w

∂t2
,

where ρ is the density and F (x) is a cross-section area of the beam.

The distributed load of reaction from the Winckler’s type base has an inten-
sity Cη and Cζ in the directions of η and ζ respectiveely

Cη = (A + B cos ax + D sin ax) v + (D cos ax−B sin ax)w,

Cζ = (A−B cos ax−D sin ax)w + (D cos ax−B sin ax) v,

where a = 4π
s . Note that the relation between x, θ and the screw pitch s is

presented by θ = 2π
s x.
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For any x ∈ (0, L) (see Figure 1) the bending moments act on the corre-
sponding cross-section

Mη = Pη(x) sin ax− Pζ(x) cos ax,

Mζ = Pη(x) cos ax + Pζ(x) sin ax.

Let us define the continuous functions of displacements V (x; t) and W (x; t)
respectively:

V (x; t) =
{
V (x; t), x ∈ [0, l]× [0, T ],
V̂ (x; t), x ∈ (l, L]× [0, T ],

W (x; t) =
{
W (x; t), x ∈ [0, l]× [0, T ],
Ŵ (x; t), x ∈ (l, L]× [0, T ].

The main moments of inertia Jη, Jζ and the corresponding areas of cross-
sections are:

Jη(x) =
{
Jη, x ∈ [0, l],
Ĵη, x ∈ (l, L],

Jζ(x) =
{
Jζ , x ∈ [0, l],
Ĵζ , x ∈ (l, L],

F (x) =
{
F , x ∈ [0, l],
F̂ , x ∈ (l, L].

We assume that the distributive damping is negligeable.
The general mathematical model of the elastic line of the beam model is:

EJζ
∂4V

∂x4 + ρF
∂2V

∂t2
− (2Pζ − Pηax)a cos ax + (2Pη − Pζax)a sin ax = 0,

EJη
∂4W

∂x4 − ρF
∂2W

∂t2
+ (2Pη + Pζax)a cos ax + (2Pζ − Pηax)a sin ax = 0,

0 < x < l; (2)

EĴζ
∂4V̂

∂x4 + ρF
∂2V

∂t2
− (A + B cos ax + D sin ax)V̂ − (D cos ax−B sin ax)Ŵ

−(2Pζ − Pηax)a cos ax + (2Pη − Pζax)a sin ax = 0,

EĴη
∂4Ŵ

∂x4 − ρF
∂2W

∂t2
+ (A−B cos ax−D sin ax)Ŵ + (D cos ax−B sin ax)V̂

+(2Pη + Pζax)a cos ax + (2Pζ − Pηax)a sin ax = 0, l < x < L.

We consider the equation (2) with initial conditions

∂jV

∂tj
(x; 0) = V

j
(x),

∂jW

∂tj
(x; 0) = W

j
(x),

∂j V̂

∂tj
(x; 0) = V̂ j(x),

∂jŴ

∂tj
(x; 0) = Ŵ j(x), j = 0; 1.

(3)

The system (2) formally can be united using the unit Heviside function η(x):

∂2

∂x2

(
EJζ(x)

∂2V

∂x2

)
+ ρF (x)

∂2V

∂t2
− (2Pζ −Pηax)a cos ax+ (2Pη −Pζax)a sin ax

− [η(x− l)− η(x)] [(A + B cos ax + D sin ax)V + (D cos ax−B sin ax)W ] = 0,

(4)
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∂2

∂x2

(
EJη(x)

∂2W

∂x2

)
−ρF (x)

∂2W

∂t2
+(2Pη+Pζax)a cos ax+(2Pζ−Pηax)a sin ax

+ [η(x− l)− η(x)] [(A−B cos ax−D sin ax)W + (D cos ax−B sin ax)V ] = 0.

Consider the boundary conditions related to the equation (4):

∂2V

∂x2 (0; t) = 0,
∂2W

∂x2 (0; t) = 0,
∂3V

∂x3 (0; t) = Pη,
∂3W

∂x3 (0; t) = Pζ ,

∂3V

∂x3 (l; t) = Pζ sin al + Pη cos al,
∂3W

∂x3 (l; t) = Pζ cos al − Pη sin al,

∂2V

∂x2 (L; t) = 0,
∂2W

∂x2 (L; t) = 0,
∂3V

∂x3 (L; t) = 0,
∂3W

∂x3 (L; t) = 0.

(5)

We add also the conditions of smoothness of the functions V,W . The functions
V (s)(x, t),W (s)(x, t), s = 0, 1 are continuous ∀x ∈ [0, L], t > 0. In particular

V
(s)

(l; t) = V̂ (s)(l; t),W
(s)

(l; t) = Ŵ (s)(l; t), s = 0, 1. (6)

The last equations are conforming conditions between the unknown functions
V , V̂ and W, Ŵ .

Thus the model problem for a beam on the Winckler’s type base is expressed
by the fourth-order differential equation (4) and with initial and boundary con-
ditions (3) and (5)-(6) respectively.

3 Variational Formulation

Any variational numerical method (for example, finite element method) requires
to present the considered problem (4)-(5) with initial conditions (3), in weak
form. Let Hk be the usual Sobolev space for positive integeeer k [4].

Our aim here is to present a new approach in order to obtain a weak formu-
lation of the considered problem. That is a possibility of symmetrization of the
variational formulation. In order to obtain free vibrations of this problem one
sets Pη = Pζ = 0. We multiply both equation of (4) by v(x) and w(x) ∈ H2[0, L]
respectively. Integrating by parts and using (5) reveals that

−
∫ L

0
EJζ(x)

∂2V

∂x2

∂2v

∂x2 dx +
∫ L

l

[A + B cos ax + D sin ax]V v dx

+
∫ L

l

[D cos ax−B sin ax]Wv dx +
[
EĴζ

∂2V

∂x2 (l+)− EJζ
∂2V

∂x2 (l−)
]
∂v

∂x
(l)

=
d2

dt2

∫ L

0
ρF (x)V v dx, (7)
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0
EJη(x)

∂2W

∂x2

∂2w

∂x2 dx +
∫ L

l

[A−B cos ax−D sin ax]Wwdx

+
∫ L

l

[D cos ax−B sin ax]V w dx +
[
EĴη

∂2W

∂x2 (l+)− EJη
∂2W

∂x2 (l−)
]
∂w

∂x
(l)

=
d2

dt2

∫ L

0
ρF (x)Wwdx.

Variational formulation (7) is not symmetric in general due to the fact that
the functions Jη(x), Jζ(x), ∂

2V
∂x2 and ∂2W

∂x2 are discontinuous at the point x = l.
Now we propose a smoothness procedure to the coefficient functions as well as
to the unknown functions in (4)-(5).

Let ε be a positive number approximating the zero. Introduce the functions
(s = η; ζ)):

J̃s(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Js, x ∈ [0, l − ε],
3∑
i=0

kis(x− l)i, x ∈ (l − ε, l + ε),

Ĵs, x ∈ [l + ε, L],

where k0
s = Js−Ĵs

2 , k1
s =

3
(
Ĵs−Js

)
4ε , k2

s = 0, k3
s = Js−Ĵs

2ε .

Thus the coefficients kis, i = 0, . . . , 3 ensure relations ∂j J̃s

∂xj (l ± ε) = ∂jJs

∂xj (l ±
ε), j = 0; 1. By analogy it could be defined the function F̃ (x) corresponding to
F (x).

Next, for t ∈ [0, T ] let us define the functions:

Ṽ (x; t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V (x; t), x ∈ [0, l − ε],
7∑
i=0

mi
1(x− l)i, x ∈ (l − ε, l + ε),

V̂ (x; t), x ∈ [l + ε, L],

W̃ (x; t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W (x; t), x ∈ [0, l − ε],
7∑
i=0

mi
2(x− l)i, x ∈ (l − ε, l + ε),

Ŵ (x; t), x ∈ [l + ε, L],

where the coefficients mi
j , i = 0, . . . , 7, j = 1; 2 are determined in such a way that

∂3Ṽ

∂x3 (l; t) =
∂3V

∂x3 (l; t) = 0,
∂3W̃

∂x3 (l; t) =
∂3W

∂x3 (l; t) = 0.

Consequently, the following equality are valid almost everywhere for x ∈ [0, L]
and ε → 0, s = η, ζ: J̃s(x) = Js(x), F̃ (x) = F (x), Ṽ (x; t) = V (x; t), W̃ (x; t) =
W (x; t).



Modelling of the Elastic Line for Twist Drill 123

Symmetric variational formulation of considered problem can be obtained by
using the functions defined above and integrating by parts:

−
∫ L

0
EJ̃ζ(x)

∂2Ṽ

∂x2

∂2v

∂x2 dx +
∫ L

l

[A + B cos ax + D sin ax] Ṽ v dx

+
∫ L

l

[D cos ax−B sin ax] W̃v dx =
d2

dt2

∫ L

0
ρF̃ (x)Ṽ v dx,

(8)∫ L

0
EJ̃η(x)

∂2W̃

∂x2

∂2w

∂x2 dx +
∫ L

l

[A−B cos ax−D sin ax] W̃w dx

+
∫ L

l

[D cos ax−B sin ax] Ṽ w dx =
d2

dt2

∫ L

0
ρF̃ (x)W̃w dx.

Obviously, this presentation is symmetric. It is appropriate to consider the
problem (8) using the mixed formulation (see, for example [3]). Many of the con-
cepts for the mixed methods originated in solid mechanics where it was desirable
to have a more accurate approximation of certain derivatives of the displacement.

The mixed method in which there are two approximation spaces for each of
both equations (8) and the reaults in this aspect will be the subject of separate
investigations.

4 Numerical Example

Consider a twist drill with straight shank. This beam has the following param-
eters (see Figure 1): l = 88 mm;L = 132 mm; diameter d = 10 mm; screw pitch
of the twisting line s = 54 mm. The main axial moments of inertia of the cross-
section are (see Figure 2): J1 = Jη = 0.0041d4 and J2 = Jζ = 0.025d4. The fol-
lowing material characteristics are used: Young modulus E = 2.1× 1011 Pa;μ =
0.3 is the Poisson ratio; density ρ = 7850 kg/m3. The coefficient of Winckler’s
base is K = 105 N/mm2.

The center of gravity variation of cross-section A (see Figure 1) is represented
by the function: J = |−→f | sinωt, z = |−→f | cosωt, where ω = 105 s−1, |−→f | =
1 mm, t ∈ [0, 0.06] s. The coefficient of material hysteresis is 0.01.

The Winckler’s type base when x ∈ (0, l) has coefficient K = 105 N/mm2.
This base is reduced by three (n = 3) equidistant groups of springs, i.e. the angles
are 120◦. The number of springs in each group is m. We present the following
problem: Find the maximal normal stress σx at the critical point x = l.

Calculations are made when the number of springs is m = 30. The axial
rigidity of each spring is

Km =
K(L− l)

n.m
= 48888.9 N/mm.
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The finite element procedure has been implemented. The beam domain is
discretized using finite elements of type BEAM3D. Normal stresses are calculated
by the formula

σx(x, η, ζ, t) = E.ζ
∂2W (x; t)

∂x2 − E.η
∂2V (x; t)

∂x2 .

The maximal stress is at the point of section with abscissa x = l at the
moment t = t� when the vector −→f is orthogonal to the main axis of inertia
Cζ. Then maxσx = 451.3 MPa. The critical point of this section is a point of
intersection obtained by the second main axis of inertia Cη and the contour of
the section.
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Abstract. In this paper a steady-state rolling problem with nonlinear
friction, for rigid-plastic, rate sensitive and slightly compressible materi-
als is considered. Its variational formulation is given and existence and
uniqueness results, obtained with the help of successive iteration meth-
ods are presented. Considering the slight material compressibility as a
method of penalisation, it is further shown, that when the compress-
ibility parameter tends to zero the solution of the rolling problem for
incompressible materials is approached.

1 Introduction

In spite the significant advances made in the theoretical, computational and
experimental study of the rolling processes [1 - 6], they are still far from a com-
plete mechanical and mathematical description. It was recently found, that the
rolling problems could be stated analogously to the frictional contact problems in
elasticity [7, 8] and thus the rich theory and methods of variational inequalities
[9 - 12], to be applied.

In this paper we consider a steady-state rolling problem, assuming a rigid-
plastic, rate-sensitive and slightly compressible material model and a nonlinear
friction law to hold. For the corresponding variational problem, existence and
uniqueness results obtained with the help of successive iteration methods are
presented. Considering the slight material compressibility as a method of pe-
nalization, it is further shown that when the compressibility parameter tends to
zero, the solution of the rolling problem for incompressible materials is obtained.

2 Statement of the Problem

We consider an isotropic, plastically deformable, during rolling, metallic body
occupying an open bounded domain Ω ⊂ R

k(k = 2, 3), (Fig.1). The boundary Γ
of the domain is supposed sufficiently smooth and consists of four open disjoint
subsets, i.e. Γ = Γ1∪Γ2∪Γ3∪Γ4. The boundaries Γ1∪Γ2 are free of tractions, Γ3

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 125–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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is the boundary of symmetry and Γ4 is the contact boundary. The coordinates
of any point of Ω̄ = Ω ∪ Γ are x = {xi}. Throughout this work the standard
indicial notation and summation convention are employed.

Fig. 1. Illustration of a steady-state rolling process

The material is assumed slightly compressible according [3], as the following
yield criterion and associated flow rule hold:

F (σij , ε̇ij) ≡ σ̄2 − σ2
p( ˙̄ε) = 0, ε̇ij =

3
2

˙̄ε
σ̄

(
sij +

2
9
dσ

H
δij

)
, (2.1)

where d > 0 is the compressibility parameter, assumed small constant, σp( ˙̄ε) is
the strain-rate dependent, uniaxial yield limit.

σ̄ =

√
3
2
sijsij + dσ2

H
, ˙̄ε =

√
2
3
ėij ėij +

1
d
ė2

V
, (2.2)

are the equivalent stress and the equivalent strain-rate expressions, where

sij = σij − δijσH
, ėij = ˙̄εij −

1
3
ε̇

V
δij , 1 ≤ i, j ≤ k, (2.3)

are the components of the deviatoric stress and deviatoric strain-rate tensors,
σij and ε̇ij are the components of the stress and strain-rate tensors, σ

H
= 1

3σii
and ε̇

V
= ε̇ii are the hydrostatic stress and the volume dilatation strain-rate.

From the flow rule, the following relation between the hydrostatic stress and
the volume dilatation strain-rate holds:

σ
H

=
ε̇

V

d

σ̄
˙̄ε

=
ε̇

V

d

√
3
2sijsij√
2
3 ėij ėij

(2.4)

Let us consider the following problem:

(P1) Find the velocity u = {ui} and stress σ = {σij} , 1 ≤ i, j ≤ k, fields
satisfying the equations and relations

- equations of equilibrium

σij,j = 0, in Ω (2.5)
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- constitutive equations

σij =
σp
˙̄ε

[
2
3
ε̇ij +

(
1
d
− 2

9

)
δij ε̇V

]
, (2.6)

- Cauchy conditions for strain-rate

ε̇ij =
1
2
(ui,j + uj,i), (2.7)

- boundary conditions

σijnj = 0, on Γ1 ∪ Γ2 (2.8)

σ
T

= 0, u
N

= 0, on Γ3 (2.9)

u
N

= 0, σ
N
≤ 0 and (2.10)

if |σ
T
| < τf (u) then u

T
− u

R
= 0,

if |σ
T
| = τf (u) then ∃λ ≥ 0

such that u
T
− u

R
= −λσ

T
(u) on Γ4. � (2.11)

Remark 2.1. The following notations are used above: δij is Kronecker’s symbol;
n = {ni} is the unit normal vector outward to Γ ; u

N
= uini, u

T i
= ui −

u
N
ni and σ

N
= σijninj , σ

T i
= σijnj − σ

N
ni are the normal and tangential

components of the velocity and the stress vector on Γ ;

τf (u) = min
{
μf (x)σh

N
(u), mf (x)τp( ˙̄εh(u))

}
(2.12)

is the nonlinear Coulomb-Siebel friction law, where μf (x) and mf (x) are the
coefficient of friction and friction factor, σh

N
(u) ≥ 0 and ˙̄εh(u) are the appro-

priately molified on Γ4 normal stress and equivalent strain-rate [4-6], τp( ˙̄εh(u))
σp( ˙̄εh(u))/

√
3 is the shear yield limit for the material of Γ4; u

R
is the rolling

velocity. The yield limit σp( ˙̄ε) : [0,∞) → [0,∞) is assumed monotonously in-
creasing and continuously differentiable function of ˙̄ε. Moreover it is supposed
that, there exist positive constants Λ1, Λ2, such that

0 < Λ1 ≤
dσp
d ˙̄ε

≤ σp
˙̄ε
≤ Λ2 <∞. � (2.13)
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3 Variational Statement

Let us denote by V and H the following Hilbert spaces

V =
{
v : v ∈ (H1(Ω))k, v

N
= 0 on Γ3 ∪ Γ4

}
, H = (H0(Ω))k,

V ⊂ H ≡ H′ ⊂ V′,

with inner products and norms respectively

(u,v) =
∫
Ω

(uivi + ui,jvi,j)dx, (u,v)0 =
∫
Ω

uividx,

‖u‖1 = (u,u)1/2, ‖u‖0 = (u,u)1/20 ,

where with prime the dual spaces are denoted. We further assume

μf (x), mf (x) ∈ L∞(Γ4).

Multiplying (2.5) by (v − u) ∈ V in the inner product sense, applying Green,s
formula and taking into account the boundary conditions, we obtain∫
Ω

σij(u)(ε̇ij(v)− ε̇ij(u))dx+
∫
Γ4

τf (u)|v
T
−u

R
|dΓ−

∫
Γ4

τf (u)|u
T
−u

R
|dΓ ≥ 0.

(3.1)
Let us denote

a(w;u,v) =
∫
Ω

σp(w)
˙̄ε(w)

[
2
3
ε̇ij(u)ε̇ij(v) +

(
1
d
− 2

9

)
ε̇

V
(u)ε̇

V
(v)

]
dx (3.2)

and
j(u,v) =

∫
Γ4

τf (u)|v
T
− u

R
|dΓ. (3.3)

Then the variational statement of the problem P1 is the following one:

(P2) Find u ∈ V, satisfying for all v ∈ V the variational inequality

a(u;u,v − u) + j(u,v)− j(u,u) ≥ 0. (3.4)

Remark 3.1. Let us remind the properties of the functionals that constitute
this inequality [4, 5]. The form a(w;u,v) is nonlinear with respect to w, and
linear, continuous and symmetric with respect to u and v. It also follows from
(2.13) that there exist constants α1 > 0, α2 > 0, such that for all u,v,w ∈ V

a(w;u,u) ≥ α1

∫
Ω

ε̇ij(u)ε̇ij(u)dx, a(w;u,v) ≤ α2

∣∣∣∣∫
Ω

ε̇ij(u)ε̇ij(v)dx
∣∣∣∣ . (3.5)

Using (3.5) and Korn,s inequality [7, 8, 12]∫
Ω

ε̇ij(u)ε̇ij(u)dx +
∫
Ω

uiuidx ≥ cK‖u‖21 ∀u ∈ (H1(Ω))k, (3.6)
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for the strain-rates, where cK > 0 is a constant, we have that the form a(u;u,u)
is V-elliptic and bounded, i.e. there exists constants c1 > 0 and c2 > 0, such
that

a(u;u,u) ≥ c1‖u‖21, a(w;u,v) ≤ c2‖u‖1‖v‖1 ∀u,v,w ∈ V. (3.7)

Moreover, for all u,v ∈ V there exist constants m > 0 and M > 0, such that

a(v;v,v − u)− a(u;u,v − u) ≥ m‖v − u‖21, (3.8a)

|a(v;v,v)− a(u,u,v)| ≤M‖v − u‖1‖v‖1. (3.8b)

For any fixed u ∈ V the functional V � v : j(u,v) → R is proper, convex and
lower semicontinuous and for all u,v,w ∈ V there exist constants cf > 0 and
c > 0, depending on the friction coefficient, or factor, such that

0 ≤ j(u,v) ≤ cf‖u‖1‖v − u
R
‖1, (3.9)

|j(u,w) + j(w,v)− j(u,v)− j(w,w)| ≤ c‖w − u‖1‖w − v‖1. � (3.10)

4 Existence, Uniqueness and Convergence

Here we shall briefly present existence and uniqueness results for the problem
P2, obtained by proving the convergence of the successive linearization methods
- the secant-modulus method [5] and the method of contractions [4]. Further we
shall show that when compressibility parameter d → 0, the rolling problem for
incompressible materials is approached.

Theorem 4.1. Let the conditions (2.13) and the properties given in Remark 3.1
hold. Then for a sufficiently small friction coefficient, or factor, the problem P2
has an unique solution u ∈ V.

Proof: Uniqueness. Let u1,u2 ∈ V be two solutions of (3.4). Then we have

a(u1;u1,v − u1) + j(u1,v)− j(u1,u1) ≥ 0, (4.1a)

a(u2;u2,v − u2) + j(u2,v)− j(u2,u2) ≥ 0. (4.1b)

Setting v = u2 in (4.1a) and v = u1 in (4.1b), after adding and rearranging the
inequalities and taking into account Remark 3.1, we obtain that for a sufficiently
small coefficient of friction, or friction factor holds

0 ≥ − (j(u1,u2) + j(u2,u1)− j(u1,u1)− j(u2,u2)) +
a(u1;u1,u1 − u2)− a(u2;u2,u1 − u2) ≥ (m− c)‖u1 − u2‖21 > 0, (4.2)

which yields u1 ≡ u2.



130 T.A. Angelov

Existence. Let us consider the following problems:

(P3) For an arbitrary initial u0 ∈ V find un+1, n = 0, 1, ... satisfying for all
v ∈ V

a(un;un+1,v − un+1) + j(un,v)− j(un,un+1) ≥ 0; (4.3)

(P4) For an arbitrary initial u0 ∈ V find un+1, n = 0, 1, ... satisfying for all
v ∈ V

(un+1,v − un+1) + ρj(un,v)− ρj(un,un+1) ≥

(un,v − un+1)− ρa(un;un,v − un+1), (4.4)

where 0 < ρ < 2(m− c)/(M2 − c2), M > m > c.

These problems have unique solutions un+1 for every n = 0, 1, 2, ..., [4, 5, 9, 10]
and the sequence {un+1} is such that

‖un+2 − un+1‖1 ≤ q‖un+1 − un‖1 ≤ ... ≤ qn+1‖u1 − u0‖1. (4.5)

But for sufficiently small friction coefficient, or factor and d, we have 0 < q < 1
and

lim
n→∞

‖un+2 − un+1‖1 = 0, (4.6)

which implies that {un} is a fundamental sequence. Therefore there exists an
element u ∈ V, such that

lim
n→∞

‖u− un‖1 = 0. (4.7)

Further, taking limit at n → ∞ in (4.3) and (4.4) and having in mind the
continuity properties of the functionals, it can be shown that u satisfies the
inequality (3.4), which completes the proof. �

Let us construct, for all sufficiently small compressibility parameters d > 0,
a sequence {ud} of solutions of problem P2. Since this sequence is bounded in
V, there exists a subsequence, also denoted {ud}, which is weakly convergent at
d→ 0, to an element u ∈ V. We shall further show that u ∈ W ⊂ V, where

W = {v : v ∈ V, vi,i = 0 in Ω}

and the following result for the problem for incompressible materials holds.

Theorem 4.2. At d → 0, u ∈ W is the unique solution of the problem (3.4)
for all v ∈ W.

Proof: For ud ∈ V and all v ∈ V, from (3.4) it follows

a(ud;ud,ud) + j(ud,ud)−
9− 2d

9d

∫
Ω

σp(ud)
˙̄ε(ud)

ε̇
V
(ud)ε̇V

(v)dx ≤

∫
Ω

2
3
σp(ud)
˙̄ε(ud)

ε̇ij(ud)ε̇ij(v)dx + j(ud,v). (4.8)
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Since the first two terms in the left-hand side of (4.8) are nonnegative, we have

−
∫
Ω

σp(ud)
˙̄ε(ud)

ε̇
V
(ud)ε̇V

(v)dx ≤

9d
9− 2d

[∫
Ω

2
3
σp(ud)
˙̄ε(ud)

ε̇ij(ud)ε̇ij(v)dx + j(ud,v)
]
. (4.9)

Let us consider the left-hand side and define the operator β : V → V′

〈β(ud),v〉 =
∫
Ω

σp(ud)
˙̄ε(ud)

ε̇
V
(ud)ε̇V

(v)dx. (4.10)

Since it is bounded, hemicontinuous and monotone, it can be shown that at
d→ 0 we have β(ud) → β(u) weakly in V′, i.e.

σp(ud)
˙̄ε(ud)

ε̇
V
(ud) →

σp(u)
˙̄ε(u)

ε̇
V
(u). (4.11)

Further, since the right-hand side of (4.9) is bounded, taking d→ 0 in (4.9), we
obtain for all +v,−v ∈ V

−
∫
Ω

σp(u)
˙̄ε(u)

ε̇
V
(u)ε̇

V
(v)dx ≤ 0,

∫
Ω

σp(u)
˙̄ε(u)

ε̇
V
(u)ε̇

V
(v)dx ≤ 0. (4.12)

Therefore we have ∫
Ω

σp(u)
˙̄ε(u)

ε̇
V
(u)ε̇

V
(v)dx ≡ 0 ∀v ∈ V (4.13)

and hence ε̇
V
(u) ≡ 0, i.e u ∈ W. Let us now show that this u ∈ W is a solution

of (3.4) for all v ∈ W. For all w ∈ W we have that

a(w;w,w − ud) + j(w,w)− j(w,ud)
a(w;w,w − ud) + j(w,w)− j(w,ud)−
[a(ud;ud,w − ud) + j(ud,w)− j(ud,ud)] +
[a(ud;ud,w − ud) + j(ud,w)− j(ud,ud)] ≥ (m− c)‖w − ud‖21 ≥ 0(4.14)

and taking d→ 0 we obtain

a(w;w,w − u) + j(w,w)− j(w,u) ≥ 0, ∀w ∈ W. (4.15)

Setting w = u + t(v − u)), t ∈ [0, 1], ∀v ∈ W we obtain

0 ≤ a(u + t(v − u);u + t(v − u), t(v − u)) +
j(u + t(v − u),u + t(v − u))− j(u + t(v − u),u) ≤
ta(u + t(v − u);u + t(v − u),v − u) +
(1− t)j(u + t(v − u),u) + tj(u + t(v − u),v)− j(u + t(v − u),u)
ta(u + t(v − u);u + t(v − u),v − u) +
tj(u + t(v − u),v)− tj(u + t(v − u),u). (4.16)

=

=
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For t �= 0 it follows that

a(u + t(v − u);u + t(v − u),v − u)+

j(u + t(v − u),v)− j(u + t(v − u),u) ≥ 0 (4.17)

and taking t→ 0 we finally obtain

a(u;u,v − u) + j(u,v)− j(u,u) ≥ 0, ∀v ∈ W, (4.18)

which is the variational statement of the rolling problem for incompressible ma-
terials. Repeating further the uniqueness part of Theorem 4.1 we obtain that u
is the unique solution of this problem. �
Remark 4.1. The problem P2 can be solved numerically, combining the con-
ventional finite element method and the algorithms, defined by problems P3
and P4. The computational experiments show that a transition from slight ma-
terial compressibility to material incompressibility is obtained, taking values of
d from 10−2 to 10−6. More details about the computational treatment of the
steady-state rolling problem are presented in [6]. �
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Abstract. The elastic electron back-scattering is a problem that is im-
portant for many theoretical and experimental techniques, especially in
the determination of the inelastic mean free paths. This effect arises
when a monoenergetic electron beam bombards a solid target and some
of the electrons are scattered without energy loss.The description of the
flow can be written as an integral equation and may be solved by Monte
Carlo methods.

In this paper we investigate the possibility of improving the conver-
gence of the Monte Carlo algorithm by using scrambled low-discrepancy
sequences. We demonstrate how by taking advantage of the smoothness
of the differential elastic-scattering cross-section a significant decrease
of the error is achieved. We show how the contribution of the first few
collisions to the result can be evaluated by an appropriate integration
method instead of direct simulation, which further increases the accu-
racy of our computations without increase of the computational time. In
order to facilitate these techniques, we use spline approximation of the
elastic cross-section, which is more accurate than the widely used tables
of Jablonski.

1 Introduction

Elastic electron backscattering problems arise in cases when a monoenergetic
electron beam bombards a solid target. Most of the emitted electrons have very
low energies but some of them possess the same energy as the incident beam.

The elastic electron backscattering effect plays an important role in many
theoretical and experimental techniques. The meaning of elastic electron colli-
sions has been recognized in Auger Electron Spectroscopy - AES (see, e.g., [13]
for details). Their role in X-ray photo-electron Spectroscopy - XPS consists in
detecting photo-electrons that are ejected from the material by incident X-rays.

Usually the solid is considered as a semi-infinite medium with properties,
depending on the physical characteristics of the material. Often metal targets

� Supported by the Ministry of Education and Science of Bulgaria under contracts
NSF I-1201/02 and I-1405/04.
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are preferable because of their electrical conductivity. In both XPS and AES,
the detected electrons have well known energies which characterize the electron
structure of the atoms constructing the target. The escape of the ejected elec-
trons depends on ”the average of distance measured along the trajectories, that
particles with a given energy travel between inelastic collisions in a substance”.
This parameter is called inelastic mean-free-path - IMFP and was published by
Committee E-42 on Surface Analysis of the American Society for Testing and
Materials in [16]. The typical energy range for XPS and AES is from 100 eV to a
few keV. The IMFP values for various materials can be obtained from the NIST
(National Institute of Standards and Technology) database described in [12].
The problem for calculating the elastic backscattering probability for a given
experimental setting, considering the IMFP as a parameter, can be solved by
Monte Carlo simulation. In practice the people, who make experiments, calcu-
late the yield for various values of the IMFP, obtaining the so-called “calibration
curve”, and compare them with the measured intensity of the elastic peak. The
standard Monte Carlo simulation technique may require several hours of CPU
time in order to attain the desired precision.

The model of the interaction between electrons and randomly distributed
ionic cores consists in more than one elastic and inelastic collisions. One of the
most used techniques is to interpret inelastic collisions as absorption events and
realization of such one is presented in [8]. An extensive survey of the various
theoretical models and simulation algorithms is presented in [10]. Some variance
reduction schemes for solving such problems are discussed in papers [3] and [8]. In
this paper we investigate the possibility to obtain even better precision by using
low-discrepancy sequences and by using more involved numerical integration
schemes.

The problem of the modeling of the electron transport was described in terms
of the Boltzmann transport equation for the stationary problem in a homoge-
neous medium:

Ω̄∇̄Φ
(
r̄, Ω̄

)
+ ΣtΦ(r̄, Ω̄) =

∫
4π

Σel(Ω̄′ → Ω̄)Φ(r̄, Ω̄′)dΩ̄′, z ≥ 0 (1)

and the boundary condition for vacuum-medium is

Φ(x, y, z = 0, Ω̄) =
J0

|μ0|
δ(Ω̄ − Ω̄0), Ω̄l̄z ≥ 0. (2)

The electron flux Φ
(
r̄, Ω̄

)
depends on the spatial variable r̄ = (x, y, z), (where

z is the depth) and on the angular variable Ω̄ = (θ, φ). The total cross-section
Σt = Σel +Σin, where Σel is the differential elastic scattering cross-section and

Σin =
1
λin

. In the boundary condition the incident electron current is denoted

with J0, μ = cos θ and μ0 = α, where α is the incident angle.
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From the equations (1) and (2) follows the integral form:

Φ
(
r̄, Ω̄

)
=

J0

|μ0|
δ(Ω̄ − Ω̄0)e

− zΣt
|μ0| +

∞∫
0

{H(μ)H(z − z′) + H(−μ)H(z′ − z)}

× e
− Σt(z−z′)

|μ0|

|μ| dz′
∫
4π

Σel(Ω̄′ → Ω̄)Φ
(
r̄ − Ω̄(z − z′)

μ
, Ω̄′

)
dΩ̄′.

The average number of collisions that electrons undergo depends on the ma-
terial of the target, the electron energy and the experimental setting. Appri-
ory tests show that the biggest yield is obtained from electrons that are de-
tected after only a few collisions. In order to attend to this fact we divide the
electrons based on the number of collisions: electrons that escape after having
one collision, after having two collisions and after having three or more colli-
sions.

The contribution of electrons, that undergo exactly one collision, can be rep-
resented as a two-dimensional integral. For the electrons, that undergo exactly
two collisions, the integral becomes 5-dimensional. We estimate the contribution
of these two groups of electrons with our quasi-Monte Carlo method for integra-
tion of smooth functions. In order to work with sufficiently smooth functions,
we develop a spline interpolation of the elastic cross-sections, which is described
in Sec. 2. The use of the quasi-Monte Carlo integration method is discussed in
Sec. 3.1. The contribution of the collisions after the first two is evaluated with
standard quasi-Monte Carlo method. Details are given in Sec. 3.2. Numerical
tests are given in Sec. 4 and our conclusions are given in Sec. 5.

2 Spline Approximation of the Elastic Cross Section

In order to be able to apply our integration method [4], we need to work with
sufficiently smooth functions. The elastic cross-section, which is used for sam-
pling the scattering angles, is given with an analytical expression, which con-
tains coefficients, obtained from the 3-rd version of the NIST database (see
[11]).

The computational procedure is cumbersome and thus can not be used di-
rectly in our program. We tabulated interpolations of these functions for various
materials and energies, which are sufficiently accurate and easy to compute. We
used 3-rd order splines, and we approximated both the density function ϕ and

the function ψ, which is the inverse of

x∫
0

ϕ (t) dt. These approximations were

obtained using the Spline Toolbox from MATLAB r©. We made sure that the
derivative of the spline approximation of ψ is an approximation to (ϕ(x))−1.
Since computing a spline in a given point is fast, and since we can use an arbi-
trary number of nodes for the spline, we can achieve any needed precision of the
approximations. In our computations we used about 200 nodes.
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3 Description of the Quasi-Monte Carlo Algorithms

In this section we present our quasi-Monte Carlo approach.
The electron flux Φ

(
r̄, Ω̄

)
can be expanded as a Neumann series of terms

corresponding to electrons undergoing n elastic collisions:

Φ
(
r̄, Ω̄

)
=

∞∑
n=0

Φ(n) (r̄, Ω̄)
,

where Φ(0)
(
r̄, Ω̄

)
= J0

|μ0|δ(Ω̄ − Ω̄0)e
− zΣt

|μ0| .

The term Φ(n)
(
r̄, Ω̄

)
is obtained from Φ(n−1)

(
r̄, Ω̄

)
in accordance with the

following equation:

Φ(n)
(
r̄, Ω̄

)
=

∞∫
0
{H(μ)H(z − z′) + H(−μ)H(z′ − z)} e

− Σt(z−z′)
|μ0|

|μ| dz′

×
∫
4π

Σel(Ω̄′ → Ω̄)Φ(n−1)(r̄ − Ω̄′(z−z′)
μ , Ω̄′)dΩ̄′

Our problem is to compute numerically a certain functional of the solution, which
in turn can be considered as an infinite sum of multi-dimensional integrals.

3.1 Quasi-Monte Carlo Numerical Integration

The rate of convergence of the standard Monte Carlo method for numerical
integration in the unite cube E

s is O(N− 1
2 ). One of the most used techniques

for improving the variance is to use low-discrepancy sequences instead of pseudo-
random numbers. The discrepancy of a sequence of N real numbers x1, . . . , xN ∈
E
s is defined by

DN = sup
J⊂ E

s

∣∣∣∣A(J,N)
N

− |J |
∣∣∣∣ ,

where |J | is the volume of J and A(J,N) is the number of all points of xi
which are in J. The supremum is taken over all rectangular boxes J ⊂ E

s

with walls parallel to the walls of the unit cube E
s. It is the most important

quantitative measure of the quality of distribution of a sequence. An infinite
sequence with theoretical bound on its discrepancy of order O

(
N−1 logsN

)
is called low-discrepancy sequence. More about the theoretical foundations of
quasi-Monte Carlo methods can be read in [14, 9]. When such a sequence is used
for numerical integration (of functions with bounded variation in the sense of
Hardy and Krause), the order of convergence is also O

(
N−1 logsN

)
. Despite

the logarithmic factor, the observed order of convergence in practice is close to
O(N−1).

For functions that belong to the set

W k (M,Es) =
{
f :

∣∣∣∣ ∂rf

∂xi11 . . . ∂xiss

∣∣∣∣ ≤M, i1 + . . . is = r ≤ k, s ≥ 1, k ≥ 0
}
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the optimal order of convergence for deterministic and Monte Carlo methods is
presented in [6, 7]. It depends on the number of the bounded derivatives k and
is equal to O(N− 1

2 − k
s ). A method, which achieves such order of convergence,

is given in [2]. In our paper [4]we consider a quasi-Monte Carlo version of this
method and we find that the use of Sobol and Halton sequences can offer in-
creased accuracy for the same CPU time. In order to apply these methods for
our problem, we consider the first two terms of the Neumann expansion of the
solution as multidimensional integrals. The yield from the first collision is esti-
mated with a two-dimensional integral and the yield from the second collision
is estimated with a 5-dimensional integral. It should be noted that some meth-
ods for analytical or semi-analytical approximation of these integrals are known
(see in [10]), but it will be shown in the Sec. 4 that the CPU time for accu-
rate estimation of these integrals with our method is negligible in the context of
the whole computation, and therefore it is preferable to the inaccurate approxi-
mation methods. We also observed, that using the Halton sequences we obtain
much better accuracy that with pseudo-random numbers. In our numerical tests
we observed that the numerical integration of the 5-dimensional integral does
not offer increased accuracy over the simple simulation, which is probably due
to the insufficient smoothness of the sub-integral function.

3.2 Quasi-Monte Carlo Estimation of the Yield from the Rest of
the Collisions

The terms in the Neumann series expansion apart for the first two are estimated
with a standard quasi-Monte Carlo integration method. We set an expected max-
imal dimension s, which should be less than 400. Then for each new trajectory of
a point we generate the corresponding point of the Sobol or Halton sequence with
s dimensions, and then for each sampling instead of pseudo-random numbers we
use the next coordinate of the sequence. If more than s coordinates are required
(which should be practically impossible for s = 400) then pseudo-random num-
bers are used. The yield from all the sampled trajectories is averaged. We use
scrambled sequences, so that some error estimates can be computed, if needed
(see, e.g., [15]). The generation of the terms of the sequences is done in an effi-
cient manner, described in [1, 5]. Our numerical tests showed that the error of
the quasi-Monte Carlo integration is of the same order of magnitude as with
pseudo-random numbers. The CPU time for the two versions is also almost the
same, therefore other factors like ease of programming, efficient parallelization,
reproducibility of the results should determine which method should be used.

4 Numerical Results

In this section various tests of the Monte Carlo and quasi-Monte Carlo methods
are performed. In order to compare our new algorithm A with the algorithm B
from [3], we present timing and error results in the following tables. It should be
noted that algorithm B is already well optimized both as a theoretical method
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Table 1. Timing results

Method Z En MC S H

A 13 4.68 4.97 4.96
B 300 4.84 5.13 5.08

A 47 4.59 4.85 4.86
B 500 4.72 5.01 4.98

A 29 5.64 5.89 5.88
B 5000 5.76 6.05 6.00

A 79 4.80 5.18 5.08
B 1000 4.96 5.28 5.22

Table 2. Comparison of Monte Carlo and quasi-Monte Carlo (Sobol and Halton)
versions

Method r Z = 13 Z = 29 Z = 47 Z = 79

A MC 0.00022356 0.00006088 0.00036549 0.00015564
500 S. 0.00083010 0.00029592 0.00074327 0.00044927

H. 0.00000332 0.00007950 0.00000776 0.00001390
B MC 0.00176780 0.00409764 0.00802412 0.00209105

500 S. 0.01275007 0.00734996 0.00872082 0.00650686
H. 0.01271623 0.00829104 0.00529357 0.00842323

and as a computer program and is in orders of magnitude faster than the stan-
dard Monte Carlo simulation. The CPU times needed for all calculations for our
algorithm A in comparison with the algorithm B can be seen in Table 1. The
differences in CPU times are small and actually depend on the time that we are
able to spend optimizing the computer code. The same can be said about the
comparison between Monte Carlo and quasi-Monte Carlo versions.

We show the difference in accuracy between the algorithms A and B in Table 2
and 3. The approximated relative error of the pseudo-random versions and the
quasi-Monte Carlo versions of both algorithms for fixed energy 500eV and atomic
numbers Z 13, 29, 47, 79 corresponding to the materials aluminum - Al, copper -
Cu, silver - Ag, gold - Au is given in Table 2. We observe that the Sobol sequences
do not offer any noticeable improvement over the Monte Carlo version, whereas
the new algorithm A with the Halton sequences is far superior than any version
of the algorithm B. That is why in Table 3 we do not give results with the Sobol
sequences.

As an example we have underlined two numbers, so that one can see the
improvement that is observed. We do not show here the experiments that we
performed trying to integrate the 5-dimensional integral, that represent the con-
tribution of the second collision to the yield, since the results are inferior to
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Table 3. Relative error for different atomic numbers and energies

Method Energ. r Z = 13 Z = 29 Z = 47 Z = 79

A 100 MC 0.00008113 0.00105891 0.00007185 0.00014770
H. 0.00003145 0.00168857 0.00001128 0.00010663

B 100 MC 0.00284069 0.00039360 0.00117820 0.00197760
H. 0.00363741 0.00001094 0.00265598 0.00525238

A 300 MC 0.00016334 0.00022043 0.00022872 0.00008240
H. 0.00000558 0.00003802 0.00001464 0.00006128

B 300 MC 0.00195670 0.00092463 0.00404158 0.00372215
H. 0.00535491 0.00807821 0.00340646 0.01149586

A 500 MC 0.00022356 0.00006088 0.00036549 0.00015564
H. 0.00000332 0.00007950 0.00000776 0.00001390

B 500 MC 0.00176780 0.00409764 0.00802412 0.00209105
H. 0.01271623 0.00829104 0.00529357 0.00842323

A 1000 MC 0.00029650 0.00010843 0.00014338 0.00011919
H. 0.00000214 0.00000888 0.00000986 0.00001217

B 1000 MC 0.01533568 0.00166389 0.00092363 0.00824760
H. 0.01441186 0.01137595 0.01170708 0.01085379

A 5000 MC 0.00006405 0.00014850 0.00009808 0.00013698
H. 0.00000178 0.00000433 0.00001113 0.00005188

B 5000 MC 0.04280197 0.01696603 0.02436516 0.01659595
H. 0.08779829 0.06721549 0.03756459 0.04871933

the simple simulation approach. Further investigation is needed to see if these
computations can be performed more effectively. In any case this contribution is
significantly smaller than the contribution of the first collision.

5 Concluding Remarks

We observe that by applying our quasi-Monte Carlo integration method we ob-
tain accurate estimates of the first term of the Neumann series expansion of the
solution, so that the error in their computation is negligible with respect to the
total error. This approach is preferable to the analytical or semi-analytical ap-
proximation of these terms, discussed in [10], because the error can be decreased
arbitrarily.

The application of the method for estimating the contribution of the second
collision does not offer increased accuracy due to lack of smoothness in the
sub-integral function. We also observe advantage of using the Halton sequence
instead of pseudo-random numbers for computing this integral. For computing
the contribution of the rest of the collisions we do not observe any noticeable
improvement (or worsening) when the Halton or Sobol sequences are used, and
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the quasi-Monte Carlo method can be preferable in some parallel settings because
of the possibility the have reproducible results - we can obtain the same result
for any number of processors. It should be noted that both algorithms A and B
can be parallelised efficiently, if needed.
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Abstract. A numerical algorithm is proposed to solve a class of fourth
order singularly perturbed two point boundary value problems (BVP).
The method starts by transforming the BVP into a system of two second
order ordinary differential equations with appropriate boundary condi-
tions. The interval over which the BVP is defined will be subdivided
into three disjoint regions. The system will then be solved separately on
each subinterval. We combine the obtained solutions to get the solution
of the BVP over the entire interval. For the inner regions, the boundary
conditions at the end points are obtained through the zero order asymp-
totic expansion of the solution of the BVP. Examples will be solved to
demonstrate the method and its efficiency.

1 Introduction

The problem under consideration is a fourth order and has the form

− εx(4)(t) + a(t)x′′(t)− b(t)x(t) = −f(t); t ∈ (0, 1) (1)

subject to
x(0) = α, x(1) = β, x′′(0) = −γ, x′′(1) = −η, (2)

where ε > 0 is a small positive perturbation parameter, a(t), b(t) and f(t) are
sufficiently smooth functions such that

a(t) ≥ k1 > 0; 0 ≥ b(t) ≥ −k2; k2 > 0,

k1 − 2k2 ≥ k3 > 0 for some k3.

These conditions are needed to guarantee that the problem is not a turning
point problem in addition it is needed together with the maximum principle for
stability analysis.

Such singularly perturbed boundary value problems are common in applied
sciences. They often occur in different shapes and format in optimal control, fluid
dynamics and conviction-diffusion equations, see for example O’Mally[11] and
Braianov and Vulkov[2, 3]. The presence of the perturbation parameter leads to
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difficulties when classical numerical techniques are used to solve such problems.
Convergence in such cases will not be uniform due to the presence of boundary
layers, see Kevorkian and Cole[7], Nayfeh[10] and O’Mally[11, 12]. Treatment
of problems with importance in fluid dynamics also can be found in Feckan[5],
Miller, O’Riordan and Shishkin[8], Natensan and Ramanujam[9], Angelova and
Vulkov[1] and O’Mally[12].

Several authors considered the numerical treatment of these problems. For
example, Gartland[6] considered graded-mesh difference schemes with the ex-
ponentially fitted higher order differences. Finite element method based on a
standard Cm−1 splines and finite element method but for convection-reaction
type problems were considered by Sun and Stynes[15]. An excellent collection of
works of many authors can be found in Samarskii, Vabishchevich and Vulkov[14].

The system in (1)-(2) is transformed to a second order system of the form

− x
′′
1 (t)− x2(t) = 0

−εx′′
2 (t) + a(t)x2(t) + b(t)x1(t) = f(t), t ∈ (0, 1), (3)

subject to
x1(0) = α, x1(1) = β, x2(0) = γ, x2(1) = η.

This system is the one we are going to use for computation and analysis from here
on. We will consider two types of finite difference schemes; namely, the classical
and the fitted finite difference schemes. The region [0, 1] will be divided into three
regions, left inner region, outer region and right inner region and the boundary
value problem will be treated on each. This means that boundary conditions are
needed which will be derived through the use of the zeroth order asymptotic
expansion which results from using a standard perturbation technique.

The outline of this paper is will be as follows. In Section 2, we will present
standard perturbation techniques in order to obtain appropriate boundary con-
ditions for the different regions mentioned early. The numerical schemes will be
presented and analyzed in Section 3. Finally and in Section 4, we will present
some numerical examples to show the efficiency of the numerical methods when
applied to our problem.

2 Approximation of the Solution

We will employ standard perturbation ideas to obtain an approximation to the
solution of (1)-(2). For that reason, let

x(t, ε) = x0 + εx1 + O(ε2)
= (y0 + z0 + w0) + ε(y1 + z1 + w0) + O(ε2), (4)

with y0 = (y01, y02), z0 = (z01, z02) and w0 = (w01, w02). Substituting back into
(1)-(2) and matching the corresponding powers of ε, will lead to the zeroth order
asymptotic expansion given by y

ZE
= (y0 + z0 +w0) where y0 is the solution to

− y
′′
01(t)− y02(t) = 0
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a(t)y02(t) + b(t)y01(t) = f(t), t ∈ (0, 1), (5)

subject to
y01(0) = α, y01(1) = β.

The left layer correction z0 is given by

z01 = 0

z02 = (α− β − y02(0) + y02(1)) e−
√

a(1)√
ε .

e
−t

√
a(0)√

ε[
1− e

(√
a(0)+

√
a(1))√

ε

] (6)

The right layer correction w0 is given by

w01 = 0

w02 = (η − γ − y02(0) + y02(1)) e−
√

a(0)√
ε .

e
−(1−t)

√
a(1)√

ε[
1− e

(√
a(0)+

√
a(1))√

ε

] . (7)

These corrections will be used to obtain boundary values for the three differ-
ent regions.

3 The Numerical Scheme:

We will consider the exponentially fitted finite difference scheme in addition to
the classical finite difference scheme which will start with. To descretize (3), we
replace the second derivative term using the central difference formula. For that
reason and as usual, we subdivide the interval [a, b] into N−equal subintervals
of size h where h = b−a

N , a = x0 < x1 < x2 < ..... < xN = b with xi = x0 + ih.
Then (3) can be written in the form

L1xi : = −x1i+1 − 2x1i + x1i−1

h2 − x2i = 0

L1xi : = −εx2i+1 − 2x2i + x2i−1

h2 + a(ti)x2i + b(ti)x1i = f(ti);

i = 0, 1, 2, ....., N − 1, (8)

with x10 = α, x1N = β, x20 = γ and x2N = η.
While the exponentially fitted finite difference scheme will be

L1xi : = −x1i+1 − 2x1i + x1i−1

h2 − x2i = 0

L1xi : = −εσi(ρ)
x2i+1 − 2x2i + x2i−1

h2 + a(ti)x2i + b(ti)x1i = f(ti);

i = 0, 1, 2, ....., N − 1, (9)

with x10 = α, x1N = β, x20 = γ and x2N = η, where
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σi(ρ) =
ρ2a(ti)

4 sin
[
h2ρ

√
a(ti)/2

] ; ρ =
h√
ε
. (10)

This latter scheme and similar schemes are detailed in Doolan, Miller and
Schilders[4].

If yi is any mesh function satisfying L1yi ≥ 0 and L2yi ≥ 0 subject y10 ≥ 0,
y1N ≥ 0, y20 ≥ 0 and y2N ≥ 0. Then the discrete maximum principle implies
that yi = (y1i, y2i) ≥ 0 for i = 1, 2, ...., N, see Natesan and Ramanujam[9]. This
serves as a basis for a needed stability result given by the following.

Lemma 1. If yi is any mesh function of (8) or (9), then

‖yi‖ ≤ K max
{
|y10| , |y20| , |y1N | , |y2N | , max

i
|L1yi| , max

i
|L2yi| ,

}
(11)

where ‖yi‖ = max {|y1i| , |y2i|} ; i = 0, 1, ....., N and K constant.

Proof. Let us define two mesh functions

u+
i =

(
u+

1i, u+
2i

)
=

[
k1(1 + d)

(
1− t2i

2

)
+ y1i, k1 + y2,i

]
(12)

and

u−
i =

(
u−

1i, u−
2i

)
=

[
k1(1 + d)

(
1− t2i

2

)
− y1i, k1 − y2,i

]
, (13)

where 0 < d� 1 and
k1 = K max {|y10| , |y20| , |y1N | , |y2N | , maxi |L1yi| , maxi |L2yi| , } . Now

using this definition we have L1u
+
i ≥ 0, L1u

−
i ≥ 0, L2u

+
i ≥ 0, L2u

−
i ≥ 0

and u∓
10 ≥ 0, u∓

1N ≥ 0, u∓
20 ≥ 0, u∓

2N ≥ 0. These are the conditions of the
discrete maximum principle which means u+

i ≥ 0 and u−
i ≥ 0. Now following

the discussion before the Lemma with the references there the result follows.

Following the results obtained in Roos and Stynes[13] on the schemes given by
(8) and (9) applied to similar problems, one can show that the schemes converges
at the inner grid points with O(h) convergence rate. Note also that (9) converges
uniformly over the interval.

4 Numerical Details and Examples

Since there are boundary layers, it is logical to subdivide the interval [0, 1] into
three subintervals; namely, [0, cε] left inner region, [cε, 1 − cε] outer region and
[1− cε, 1] right inner region where c > 0 and cε� 1. This means three boundary
value problems need to be solved in the respective region. To do so there is a
need for boundary conditions at the points cε and 1− cε. This can be done using
the zeroth order asymptotic expansion done in Section 2. This leads to the three
boundary value problems defined as follows:
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1. On [0, cε] :
Solve (2); that is,

− x′′
1(t)− x2(t) = 0

−εx′′
2 + a(t)x2(t) + b(t)x1(t) = f(t); t ∈ (0, cε) (14)

subject to the boundary conditions

x1(0) = α, x2(0) = γ, x1(cε) = β1 and x2(cε) = η1, (15)

where α and γ are as before while

β1 = y01(cε) + z01(cε) + w01(cε)
η1 = y02(cε) + z02(cε) + w02(cε). (16)

The exponentially fitted scheme used is the one given by (9) with β replaced
by β1 and η replaced by η1 given above by (14). Also we use a step size
h1 = cε

N , ti = ih1.
2. On [cε, 1− cε]:

Using exponentially fitted difference scheme given by (9), solve (14) for t ∈
(cε, 1− cε) subject to the boundary conditions

x1(cε) = α1, x2(cε) = γ1, x1(1− cε) = β1 and x2(1− cε) = η1, (17)

where β1 and η1 are as given by (14) before while

α1 = y01(cε) + z01(cε) + w01(cε)
γ1 = y02(cε) + z02(cε) + w02(cε). (18)

We use a step size h2 = 1−2cε
N , ti = cε + ih2.

3. On [1− cε, 1] :

Again using the scheme given by (9), solve (12) subject to the boundary
conditions

x1(1− cε) = α1, x2(1− cε) = γ1, x1(1) = β and x2(1) = η, (19)

where α1 and γ1 are as given by (15). We use h2 = 1−(1−cε)
N = cε

N and ti = ih1
same as before in point one. Note that the resulting systems are linear and are
solved usually using self correcting LU decomposition. We start with a specific
value of c then increase it until the difference between the solutions obtained
from the three problems is small enough. Then the solutions will be combined
to obtain a solution for the problem.

For numerical testing we consider the following examples:

Example 1. We consider the following examples for numerical testing:

− εy(4)(t) + 4y′′(t) = 1 (20)
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Fig. 1.

Fig. 2.

subject to
y(0) = 1, y(1) = 1, y′′(0) = −1, y′′(1) = −1. (21)

Note that to obtain y0, z0, w0 given by (4) and hence yZE , the system in (5)
will be solved first. It is a simple linear second order differential equation with
a(t) = 1, b(t) = 0 and f(t) = 1. Once y0 = (y01, y02) is computed, one can obtain
z0 = (z01, z02) and w0 = (w01, w02) at t = cε and t = 1 − cε from (6) and (7)
respectively. This gives the boundary conditions for the three different problems
in the three different regions; namely, left, right and inner regions. Doing so, the
solutions obtained for the different regions with ε = 0.01 and c = 3 are given in
Figures 1-4.

Example 2. The second example is given as follows:

− εy(4)(t) + 4y′′(t) + y(t) = −f(t) (22)

subject to
y(0) = 1, y(1) = 1, y′′(0) = −1, y′′(1) = −1 (23)

where

f(t) = −2− t(1− t)
8

− 5ε
16

+
5ε
16
{e

−2t√
ε − e

−2(1+t)√
ε + e

−2(1−t)√
ε − e

−2(2−t)√
ε }/[1− e

−4√
ε ].

(24)
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Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.
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Again the solution for the different regions with ε = 0.001 and c = 3 are
given in Figures 4-6.

The examples show that a method which is usually applied to second order
differential equations proved to be suitable and efficient for fourth order equa-
tions due to the special boundary conditions imposed. It is easy to implement
and gives fairly accurate results.
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Runge-Kutta Methods
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Abstract. A general framework for proving an order of convergence for
set-valued Runge Kutta methods is given in the case of linear differen-
tial inclusions, if the attainable set at a given time should be approxi-
mated. The set-valued method is interpreted as a (set-valued) quadrature
method with disturbed values for the fundamental solution at the nodes
of the quadrature method. If the precision of the quadrature method and
the order of the disturbances fit together, then an overall order of con-
vergence could be guaranteed. The results are applied to modified Euler
method to emphasize the dependence on a suitable selection strategy
(one strategy leads to an order breakdown).

Keywords: set-valued Runge-Kutta methods, linear differential inclu-
sions, selection strategies, modified Euler.

1 Introduction

In this article we restrict our attention to the case of linear differential inclusions
(LDI). For motivations and connections to other areas, see e.g. [8].

Problem 1. Consider the linear differential inclusion (LDI)

x′(t) ∈ A(t)x(t) + B(t)U (f. a. e. t ∈ I = [t0, T ] ) , (1)
x(t0) ∈ X0 (2)

with matrix functions A : I → IRn×n, B : I → IRn×m and sets X0 ∈ C(IRn), U ∈
C(IRm). Hereby, C(IRn) denotes the set of nonempty, convex, compact subsets of
IRn.

The fundamental solution of the corresponding matrix differential equation

X ′(t) = A(t)X(t) (f. a. e. t ∈ I ) ,

X(τ) = I .

is denoted by Φ(·, τ) for τ ∈ I, where I ∈ IRn×n is the unit matrix.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 149–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Definition 1. The attainable set R(t, t0, X0) at a given time t ∈ I for Problem
1 is defined as

R(t, t0, X0) = {x(t) | x : I → IRn is an absolutely continuous
solution of (1)–(2)} .

The Aumann integral introduced in [1] is an important tool for the following.

Definition 2. Consider a set-valued function F : I → IRn with images in C(IRn)
which is measurable and integrably bounded (see [1]).

Then, Aumann’s integral is defined as

T∫
t0

F (t)dt :=
{ T∫
t0

f(t)dt | f(·) is an integrable selection of F (·)
}

.

It serves as a tool for reducing the approximation of the attainable set at
time T to a problem of studying a set-valued quadrature method (see (7)).

Notation 2. The arithmetic operations of sets

λ · C := {λ · c | c ∈ C } (scalar multiple) ,

C + D :={ c + d | c ∈ C, d ∈ D } (Minkowski sum) ,

A · C := {Ac | c ∈ C } (image under a linear mapping)

are defined as usual for C,D ∈ C(IRn), λ ∈ IR, A ∈ IRk×n.
We denote with dH(C,D) the Hausdorff-distance of these two sets. The support
function for C in direction l ∈ IRn is defined as

δ∗(l, C) := max
c∈C

〈l, c〉.

Lemma 1. Let C,D ∈ C(IRn), l ∈ IRn, λ ≥ 0 and A,B ∈ IRm×n. Then,

δ∗(l, C + D) = δ∗(l, C) + δ∗(l,D), δ∗(l, λC) = λδ∗(l, C) , (3)
dH(C,D) = sup

‖l‖2=1
|δ∗(l, C)− δ∗(l,D)| , (4)

dH(AU,BU) ≤ ‖A−B‖ · ‖U‖ with ‖U‖ := sup
u∈U

‖u‖2 , (5)

dH((A + B)U,AU + BU) ≤ ‖A−B‖ · ‖U‖ . (6)

In Problem 1, the attainable set at time T

R(T, t0, X0) = Φ(T, t0)X0 +

T∫
t0

Φ(T, t)B(t)Udt (7)

could be rewritten as a sum of the transformed starting set and Aumann’s inte-
gral of Φ(T, ·)B(·)U (cf. e.g. [6]), where Φ(T, t) is the corresponding fundamental
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solution. Scalarization of (7) by support functions and applying the calculus rules
in (3) and [4] yields for l ∈ Sn−1 (i.e., l ∈ IRn with ‖l‖2 = 1)

δ∗(l,R(T, t0, X0)) = δ∗(l, Φ(T, t0)X0) +

T∫
t0

δ∗(l, Φ(T, t)B(t)U)dt . (8)

2 Quadrature and Combination Methods

Notation 3. For a given interval I := [t0, T ] and a function f : I → IRn

consider the point-wise quadrature formula

Q(f ; [t0, T ]) :=
s∑

μ=1

bμf(t0 + cμ(T − t0))

for the approximation of
∫
I
f(t)dt, where bμ ∈ IR are the weights and cμ ∈

[0, 1] determine the nodes (μ = 1, . . . , s). Introducing the step-size h = T−t0
N for

N ∈ IN and applying the quadrature formula on each sub-interval [tj , tj+1] with
tj = t0 + jh, j = 0, . . . , N − 1, we arrive at the iterated quadrature formula

QN (f ; [t0, T ]) := h
N−1∑
j=0

Q(f ; [tj , tj+1]) = h
N−1∑
j=0

s∑
μ=1

bμf(tj + cμh) .

Definition 3. Consider a point-wise quadrature formula of Notation 3. Using
the arithmetic operations of Notation 2, we introduce for a set-valued function
F : I ⇒ IRn with images in C(IRn) the iterated set-valued quadrature formula

QN (F ; [t0, T ]) := h

N−1∑
j=0

s∑
μ=1

bμF (tj + cμh). (9)

These set-valued quadrature methods are studied by several authors, cf. e.g.
[12, 6, 4, 9, 2]. Essential for reaching the same order of convergence as in the
pointwise case is the smoothness of the function t 
→ δ∗(l, F (t)) uniformly in
l ∈ Sn−1 due to the scalarization as in (8). To express the smoothness in a
weaker sense, the averaged modulus of smoothness τk(f ;h), presented e.g. in
[11], is used which is a L1-norm of the local modulus of smoothness expressed
as a certain supremum of the k-th finite difference of the function f(·).

Theorem 4. Let F : I ⇒ IRn with images in C(IRn) be measurable and bounded.
Consider a point-wise quadrature formula with precision p− 1, p ∈ IN (cf. [11])
and the set-valued iterated form (9) with step-size h = T−t0

N , N ∈ IN.
Then, the set-valued quadrature formula fulfills

dH(
∫
I

F (t)dt,QN (F ; I)) ≤ (1 +
s∑

μ=1

bμ
T − t0

) ·Wp · sup
‖l‖2=1

τp(δ∗(l, F (·)), 2
p
h) .
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Proof. For the point-wise result see [2–Satz 1.2.11] which is based on [11–Theorem
3.4]. Apply this result for the function t 
→ δ∗(l, F (t)) for each l ∈ Sn−1 and use
the equivalent expression (4) in Lemma 1 for the Hausdorff distance. � 

Set-valued quadrature methods could be used to approximate attainable set
at the time T , if the values of the fundamental solution are known at the inte-
gration nodes tj + cμh, μ = 1, . . . , s, j = 0, . . . , N − 1. Otherwise, these values of
the fundamental solution needs to be approximated carefully so that the order
of convergence of the quadrature method is not destroyed. Compare the next
proposition with a result in [4] formulated with global disturbances.

Proposition 1. Let us consider Problem 1, set h := T−t0
N , N ∈ IN and the set-

valued quadrature method with precision p−1, p ∈ IN, studied in Theorem 4 with
τp(δ∗(l, Φ(T, ·)B(·)U), h) ≤ Chp uniformly in l ∈ Sn−1. For j = 0, . . . , N − 1
let the approximations Φ̃(tj+1, tj) of the values of the fundamental solution resp.
Ũμ(·) of the images of Φ(tj+1, ·)B(·)U for t = tj + cμh fulfill:

Φ̃(tj+1, tj) = Φ(tj+1, tj) +O(hp+1) ,

dH(Ũμ(tj + cμh), Φ(tj+1, tj + cμh)B(tj + cμh)U) = O(hp) (μ = 1, . . . , s) .

[O(hq) is understood uniformly in j and μ.] Then, the combination method

XN
j+1 = Φ̃(tj+1, tj)XN

j + h

s∑
μ=1

bμŨμ(tj + cμh) (j = 0, . . . , N − 1) , (10)

XN
0 ∈ C(IRn) with dH(X0, X

N
0 ) = O(hp) (11)

defined above satisfies the global estimate

dH(R(T, t0, X0), XN
N ) = O(hp) . (12)

Especially, if approximations of the values of the fundamental solution

Φ̃μ(tj+1, tj + cμh) = Φ(tj+1, tj + cμh) +O(hp) (μ = 1, . . . , s) ,

then the estimation (12) above also holds with the following setting:

Ũμ(tj + cμh) = Φ̃μ(tj+1, tj + cμh)B(tj + cμh)U (μ = 1, . . . , s) .

3 Set-Valued Runge-Kutta Methods

Explicit Runge-Kutta methods could be expressed by the Butcher array (cf. [5])

c1 0 0 . . . 0 0 0
c2 a21 0 . . . 0 0 0
...

...
... . . .

...
...

...
cs−1 as−1,1 as−1,2 . . . as−1,s−2 0 0
cs as,1 as,2 . . . as,s−2 as,s−1 0 with c1 := 0 .

b1 b2 . . . bs−2 bs−1 bs
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For a starting value ηN0 ∈ XN
0 and j = 0, . . . , N − 1, ν = 1, . . . , s let us define

ηNj+1 = ηNj + h

s∑
ν=1

bνξ
(ν)
j , (13)

ξ
(ν)
j = A(tj + cνh)

(
ηNj + h

ν−1∑
μ=1

aν,μξ
(μ)
j

)
+ B(tj + cνh)u(ν)

j , u
(ν)
j ∈ U . (14)

XN
j+1 and XN

0 consist of all possible iterates ηNj+1 in (13)–(14) resp. chosen
starting values ηN0 and form the set-valued Runge-Kutta method. Additional
restrictions on the selections u

(ν)
j ∈ U for ν = 1, . . . , s need to be imposed

on each subinterval Ij = [tj , tj+1] to increase the order of convergence in the
set-valued case. These restrictions define different selection strategies.

Modified Euler Method

The modified Euler method resp. the method of Euler-Cauchy/Heun could be
described by the Butcher array as

0 0 0
1
2

1
2 0
0 1

resp.
0 0 0
1 1 0

1
2

1
2

.

In [14], the method of Euler-Cauchy is discussed in detail with the result that
for this method, one could use either constant selections or two free selections
at each subinterval [tj , tj+1] and reach order of convergence 2 under suitable
smoothness conditions. In [13], the proofs are presented for the same method
even in the case of strongly convex nonlinear differential inclusions.

Lemma 2. If we consider Problem 1, then the modified Euler method could be
rewritten for the constant selection strategy ”u(1)

j = u
(2)
j ” as the combination

method (10) of Proposition 1 with the iterated midpoint rule and

Q(Φ(tj+1, ·)B(·)U ; [tj , tj+1]) := hΦ(tj+1, tj +
h

2
)B(tj +

h

2
)U ,

Φ̃(tj+1, tj) := I + hA(tj +
h

2
) +

h2

2
A(tj +

h

2
)A(tj) ,

Ũ1(tj +
h

2
) :=

(
B(tj +

h

2
) +

h

2
A(tj +

h

2
)B(tj)

)
U .

For two free selections u
(1)
j , u

(2)
j ∈ U we have the iterated trapezoidal rule and

Q(Φ(tj+1, ·)B(·)U ; Ij) :=
h

2
(
Φ(tj+1, tj)B(tj)U + Φ(tj+1, tj+1)B(tj+1)U

)
,

Φ̃(tj+1, tj) := I + hA(tj +
h

2
) +

h2

2
A(tj +

h

2
)A(tj) ,

Ũ1(tj) := B(tj +
h

2
)U + hA(tj +

h

2
)B(tj)U , Ũ2(tj+1) := B(tj +

h

2
)U .
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Proposition 2. Assume that A′(·) and B(·) are Lipschitz in Problem 1 and
that δ∗(l, Φ(T, ·)B(·)U) is absolutely continuous with a L1-representative of the
derivative with bounded variation uniformly in l ∈ Sn−1.

Then, the modified Euler method in Lemma 2 with p = 2 in (11) and constant
selection converges at least with order 2, whereas the modified Euler method with
two independent selections converges at least with order 1.

Proof. Both quadrature methods have precision 1 (cf. [2], [12]), yielding order
of convergence 2 in Theorem 4, if the disturbances would be of order O(h2).
For constant selections the result follows from Proposition 1 together with (5)
and careful Taylor expansions in the estimations below:

Φ̃(tj+1, tj) = Φ(tj+1, tj) +O(h3),

dH(Ũ1(tj +
h

2
),

(
I +

h

2
A(tj +

h

2
)
)
B(tj +

h

2
)U) = O(h2) ,

dH(
(
I +

h

2
A(tj +

h

2
)
)
B(tj +

h

2
)U, Φ(tj+1, tj +

h

2
)B(tj +

h

2
)U) = O(h2)

In the case of two free selections, the reasoning is similar, but only accuracy
O(h) is possible in general (due to (15) and (16)):

dH(Ũ1(tj), (I + hA(tj))B(tj)U) ≤ dH(B(tj +
h

2
)U, (I + hA(tj))B(tj)U)

+ dH(hA(tj +
h

2
)B(tj)U, {0IRn}) = O(h) , (15)

dH((I + hA(tj))B(tj)U,Φ(tj+1, tj)B(tj)U) = O(h2) ,

dH(Ũ2(tj+1), Φ(tj+1, tj+1)B(tj+1)U) = O(h) . � (16)

The assumptions in Proposition 2 could be weakened by demanding only the
bounded variation of A′(·) and B(·). Clearly, for the strategy with two free se-
lections, only A(·) needs to be Lipschitz, B(·) should be bounded and δ∗(l, Φ(T, ·)
B(·)U) be of bounded variation uniformly in l ∈ Sn−1.

Since in general (even for the time-independent case, compare also (6)),

(B +
h

2
AB)U �=

(
BU +

h

2
ABU

)
=

1
2
(
BU + hABU + BU

)
, (17)

dH
(
(B +

h

2
AB)U,

1
2
(
BU + (BU + hABU)

))
= O(h) , (18)

both selection strategies for modified Euler differ. The proof of (18) uses a similar
trick as in (15). This phenomena is also observed in the context of discretization
by Runge-Kutta methods of nonlinear optimal control problems in [7]. In this
work, additional assumptions on the coercitivity (not fulfilled in Problem 1) and
on the smoothness of the optimal control leads to the accuracy up to O(h2) for
state and control variables using different proof ideas.

Scalarization as in (8) or direct methods for optimal control problems in [3]
lead to numerical implementations of both selection strategies. For the scalar-
ization approach, support functions of left-hand and right-hand sides of the



Selection Strategies for Set-Valued Runge-Kutta Methods 155

equation (10) are calculated. This leads to an iterative method (cf. [2] for more
details), if one restricts the computation of the support functions (or points) to
a finite number of normed directions l(j) ∈ IRn, j = 1, . . . ,M .

Example 1. (cf. [4]) Let n = 2, m = 1, I = [0, 1], set A(t) =
(

0 1
0 0

)
, B(t) =

(
0
1

)
and U = [−1, 1]. Since (17) is fulfilled here, both selection strategies for modified
Euler differ (cf. Figure 1). In Figure 1, the reference set (the combination method

−0.5 0 0.5

−1

−0.5

0

0.5

1

−0.5 0 0.5

−1

−0.5

0

0.5

1

Fig. 1. modified Euler with constant (left picture) resp. 2 free selections (right one)
(step sizes h = 1, 0.5, 0.25, 0.125, 0.0625)

”iterated trapezoidal rule and Euler/Cauchy” with N = 10000 in [2]) is plotted
with supporting points in M = 200 directions with a thicker solid line, whereas
the result for each calculated step size is depicted with dotted (h = 1, 0.125),
dashed-dotted (h = 0.5, 0.0625) and dashed lines (h = 0.25). One may recognize
the different speed of convergence (2 resp. 1) even by the picture. This is under-
lined by the computed estimations of the order of convergence in Table 1. Hence,
the possible order breakdown to O(h) in Proposition 2 for modified Euler with
two free selections can occur for certain examples.

Table 1. convergence estimation of modified Euler for both selection strategies

Hausdorff distance estimated order Hausdorff distance estimated order
N to reference set of convergence to reference set of convergence
1 0.21434524 0.75039466
2 0.05730861 1.90311 0.36454336 1.04156
4 0.01517382 1.91717 0.17953522 1.02182
8 0.00384698 1.97979 0.08841414 1.02192

16 0.00096510 1.99498 0.04419417 1.00042
(constant selections) (2 free selections)
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4 Conclusions

The presented framework may give a structural outline to proofs for linear differ-
ential inclusions with possibly non-optimal order of convergence for a set-valued
Runge-Kutta method with a chosen selection strategy. For the modified Euler
method, the better selection strategy is formed by the constant selections which
fits to the underlying (set-valued) quadrature method (i.e., the midpoint rule).

For the (classical) Runge-Kutta method of order 4 with Butcher array

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

first experiments show that the selection strategy with three free selections u(ν)
j ,

ν = 1, 2, 4 and u
(2)
j = u

(3)
j lead to a set-valued method of at least order 3

under sufficient smoothness conditions. This fits best to the Simpson’s rule as
the underlying set-valued quadrature method. All presented selection strategies
can be carried over to the case of nonlinear differential inclusions.
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Abstract. In this paper we give an overview of the numerical methods
for the solution of the Landau-Lifshitz-Gilbert equation. We discuss ad-
vantages of the presented methods and perform numerical experiments
to demonstrate their performance. We also discuss the coupling with
Maxwell’s equations.

1 Introduction

Numerical simulations based on Landau-Lifshitz-Gilbert (LLG) equation are
widely used in the magnetic recording applications. The LLG equation, describ-
ing the time evolution of magnetization in a ferromagnetic material, can be
written in a normalized form

∂tm = γMs (hT ×m + αm× (hT ×m)) in Ω × (0, T ), (1)

where hT = − 1
μ0M2

s

∂E

∂m
is the total field, E is the total free energy in the

ferromagnet, Ms is the saturation magnetization, α is the damping constant, γ
is the gyromagnetic ratio and μ0 is the permeability of vacuum. The first term
on the right-hand side causes the precession of m around hT and the second
term is the damping term. The magnetization m satisfies an initial condition
m(0) = m0 and Neumann boundary condition

∂m

∂ν
= 0 on ∂Ω, (2)

where ν is the outward unit vector to the boundary.
We take hT = H/Ms + Ha + Hex, where H is the magnetic field usually

obtained from the Maxwell’s equations. Since we are only concerned with the
numerical methods for LLG equation, we will assume H to be a known function.
The term Ha is the anisotropy field which, in the case of uniaxial anisotropy in

the direction of unit vector p, takes the form Ha =
K

μ0M2
s

(p ·m)p; the exchange

field Hex =
A

μ0M2
s

Δm arises due to the exchange interaction between the spins

(K, A are the anisotropy and exchange constants).
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c© Springer-Verlag Berlin Heidelberg 2005



Numerical Methods for the Landau-Lifshitz-Gilbert Equation 159

A scalar multiplication of (1) by m gives ∂tm ·m = 1
2∂t|m|2 = 0. This di-

rectly implies the conservation of magnitude of magnetization |m(t)| = |m(0)| =
1, which is a crucial conservation property of the LLG equation. A typical way
for solving LLG equations is to first discretize it in space by finite elements or
finite differences and than to solve numerically the resulting system of ODE’s in
time by an appropriate method. It’s not difficult to argue that standard time-
discretization methods fail to preserve the magnitude of magnetization.

2 Overview of Numerical Methods for LLG

2.1 Projection Methods

The idea of projection methods is simple: first solve LLG by a standard method
and then project the solution onto a unit sphere to enforce the constraint
|m| = 1.

For simplicity we consider LLG in a dimensionless form

mt = −m×Δm− α m× (m×Δm). (3)

We took hT = Δm, but the extension to the general case is straightforward.
From the vector cross product formula a× (b× c) = (a · c)b− (a · b)c and from
the fact that ∇|m|2 = 0 we can rewrite the damping term entering (3),

m× (m×Δm) = −Δm− |∇m|2m.

Then (3) can be rewritten in an equivalent form

mt − αΔm = α|∇m|2m−m×Δm. (4)

The variational formulation of the equation (4) along with the boundary condi-
tion (2) reads as

(mt,ϕ) + α(∇m,∇ϕ) = α(|∇m|2m,ϕ) + (m×∇m,∇ϕ) ∀ϕ ∈ V. (5)

This problem is nonlinear. However it is possible to avoid solving the nonlinear
system by a suitable linearization, while maintaining the accuracy.

Let us denote by mj the approximation of the solution of (5) at the time tj .
Then, starting from given mj−1, m∗

j−1 we compute mj , m∗
j by the following

algorithm [1]:
1. Obtain mj from backward Euler approximation of (5), viz.

(
mj −m∗

j−1

τ
,ϕ) + α(∇mj ,∇ϕ) = α(|∇mj−1|2mj ,ϕ) + (m∗

j−1 ×∇mj ,∇ϕ).

(6)
2. Project mj onto a unit sphere to get m∗

j as

m∗
j =

mj

|mj |
. (7)

The previous semi-implicit scheme is linear and first order accurate.
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Another method for the LLG equation, introduced in [2], is based on a split-
ting procedure. At a time point t = tj , we first obtain the solution of the gyro-
magnetic part and this is combined with the projection scheme from [3] for the
damping part. The gyromagnetic part of (4) reads

mt = −m×Δm, (8)

while the damping part is

mt − αΔm = α|∇m|2m.

The splitting method consists of two steps:

1. Given the solution mj−1 of (4) from the previous time level we discretize
(8) by the backward Euler method. The resulting nonlinear system is solved
by a Gauss-Seidel based technique (for more details see [2]) in order obtain the
approximate solution m∗

j of (8).
2. Having m∗

j , we can use the projection method from [3], consisting of(
m∗∗

j −m∗
j

τ
,ϕ

)
+ α(∇m∗∗

j ,∇ϕ) = 0,

and

mj =
m∗∗

j

|m∗∗
j |

.

The computations in [2] show that the method is stable and faster than a 4-th
order Runge-Kutta method.

In [4] the authors propose a backward Euler finite element scheme for the LLG
equation, which also uses a projection to conserve |m|. The system of nonlinear
equations resulting from the implicit discretization of the LLG equations is solved
by a GMRES-based method. It is shown in [5] that this method can use larger
time steps than an Adams method.

Since the projection type methods don’t conserve the norm of magnetiza-
tion |m| in an implicit way, it can be used as an error indicator during the
computations.

2.2 Norm-Conservative Methods

In this section we present another type of methods, where |m| is automatically
conserved. These methods are also able to conserve some other physical proper-
ties of the micromagnetic systems (cf. [6], [7], [8]).

The LLG equation can be rewritten in the form

mt = a(m)×m, (9)

where a(m) = γMs (hT − αhT ×m).
We can discretize the previous equation at t = tj using the midpoint rule

mj −mj−1

τ
= aj−1/2 ×

mj + mj−1

2
, (10)

where aj−1/2 denotes the approximation of vector a(m) at the time tj − τ/2.
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After scalar multiplication of (10) by (mj + mj−1) we obtain that

|mj | − |mj−1|
τ

= 0,

from which we see that the midpoint rule conserves |m|.
A possible choice could be aj−1/2 =

a(mj) + a(mj−1)
2

. The resulting scheme
reads as follows

mj −mj−1

τ
=

a(mj) + a(mj−1)
2

× mj + mj−1

2
, (11)

and we have to solve a nonlinear system. In [9] a scheme based on the idea of
midpoint rule was introduced. The authors constructed an explicit solution for
the nonlinear system for materials with uniaxial anisotropy in the absence of
exchange field. When the exchange field is included, an explicit solution to the
scheme presented in [9] no longer exists and the system has to be solved for
instance by Newton’s method [6].

In [10] the value of aj−1/2 is extrapolated form the values on the previous time
levels by the formula aj−1/2 = 3

2a(mj−1) − 1
2a(mj−2) + O(τ2). The resulting

2nd order scheme is explicit

mj −mj−1

τ
=

(
3
2
a(mj−1)−

1
2
a(mj−2)

)
× mj + mj−1

2
. (12)

We only have to solve a linear system of dimension 3× 3 at every spatial mesh
point to obtain the values of mj . In [8], the previous method is compared with
implicit and explicit Euler methods, and is shown to be more accurate.

In [11] the authors present two explicit first order schemes for LLG equation
which conserve |m|. They use the fact that for a constant vector a the following
linear ODE along with initial data m(0) = m0

mt = a×m,

can be solved analytically:

m = m
‖
0 + m⊥

0 cos (|a|t) +
a

|a| ×m⊥
0 sin (|a|t) , (13)

where m0 = m
‖
0 + m⊥

0 , m
‖
0 is parallel to a and m⊥

0 is perpendicular to a.
Having the solution mj−1 at time level t = tj−1 we set a = a(mj−1) in (9)

mt = a(mj−1)×m. (14)

We obtain mj by means of (13) in the time interval (tj−1, tj), taking mj−1 as
the initial data.

The second method is based on the analytical solution of the nonlinear ODE
(when h is constant): mt = h×m+αm× (h×m). We set h = γMshT (mj−1)
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on the time interval (tj−1, tj) and proceed analogously as in the first method
(for more details see [11]).

In [12], [7] the authors use the Lie Group formalism to develop methods which
conserve the modulus of magnetization. Formally, a numerical method of order
k for the equation (9) can be written as follow

mj = Exp(A)mj−1, (15)

where A is an update determined by a(m). By a suitable choice of this update
A we can construct explicit or implicit methods of desired order.

The function Exp is an algorithmic exponential of the Lie group SO(3) (for
more details and different constructions of the update, see [12], [7]). With the
exact matrix exponential we have

exp(A)mj−1 = mj−1 +
sin(|A|)
|A| A×mj−1 +

1− cos(|A|)
|A|2 A× (A×mj−1).

When we take A = τa(mj−1) in the previous equation we arrive at a method
which is equivalent to method (13). Algorithms of arbitrary order can also be
constructed using the Cayley transform, which is a second order approximation
of the exact exponential, viz

cay(A) =
(
I − 1

2 skew[A]
)−1 (

I + 1
2 skew[A]

)
,

where I is the identity matrix and

skew[x = (x1, x2, x3)] =

⎛⎝ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞⎠ .

When we put A = τ
2 (a(mj) + a(mj−1)), we get a method equivalent to the

implicit midpoint rule (11).
With the schemes from this section we can no longer use |m| as an error

indicator. A self consistency error control scheme which can be used along with
norm-conservative methods was suggested in [13].

3 Numerical Experiments

We will consider a numerical example of a conducting thin film subjected to an
in-plane circularly polarized magnetic field, which was suggested in [14]. This
problem can be reduced to a 1D problem on the interval (0, δ), where δ is the
thickness of the film. In order to obtain the magnetic field H = (H1,H2,H3),
the LLG equation has to be coupled with the eddy current equation. This, in
the 1D case takes the form

μ0∂tHi −
1
σ

∂2Hi

∂z2 = −μ0∂tMi i = 1, 2, (16)

and H3 = −M3. We take the vector M = (M1,M2,M3) = Msm.
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We solve (16) along with with the boundary condition

H(t) = Hs (cos(ωt), sin(ωt), 0) z = 0, z = δ. (17)

The total field in the LLG equation takes the form hT =
H

Ms
+

2A

μ0M2
s

∂2m

∂z2 .

The calculations were performed with the following parameters: γ = 2.211×
105, α = 0.01, Ms = 8 × 105, σ = 4 × 106, δ = 1.5 × 10−6, A = 1.05 × 10−11,
ω = 2π × 109, Hs = 4.5 × 103, μ0 = 4π × 10−7. Moreover a uniform initial
condition for the LLG equation was used: m0 = (1, 0, 0). It is expected that
the solution of the system (1), (16) with the boundary conditions (2), (17) is
periodic in time (Fig. 1).

1
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7E-9 1E-86E-9

Fig. 1. x-component of H on the bound-
ary (dashed line) and x-component of the
magnetization in the points at distance δ/6
(solid line) and δ/2 (dotted line) from the
boundary, respectively
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Fig. 2. Unstable solution

The time discretization of the example was performed with the methods
described by (6)-(7), (10), (12), (14), and with the classical 4-th order Runge-
Kutta method. We will refer to this methods as PR1, MPim, MPex, EXP1, RK4,
respectively. For the time discretization of (16) we used the Crank-Nicholson
scheme. which allowed us to use larger time steps for some of the methods.
The space discretization was done by standard finite-differences. The nonlinear
system in MPim was solved by the Broyden’s method.

Although the performance of the methods for the LLG equation is influ-
enced by the coupling with (16), we observed that the errors induced by the
discretization of (16) had minor influence on the computation, when compared
to the effect of the discretization of the LLG equation. However, some meth-
ods were able to use slightly larger time steps when we discretized (16) by the
Crank-Nicholson scheme, compared to the situation where we used backward
Euler approximation of (16). In practice the magnetic field H is not known and
the LLG equation has to be coupled with Maxwell’s equations in an appropri-
ate form.
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In our experiments we first fixed the mesh parameter h = δ/50 and looked for
the largest time step (τmax) for which we could obtain an acceptable numerical
solution without oscillations. Then, we decreased the value of h to see if the
stability of the method was sensitive to the mesh refinement. An example of an
unstable solution computed with MPex (h = δ/60, τ = 6 × 10−12) is depicted
in Fig. 2. The results of the numerical experiments can be found in Table 1 (by
h-sensitive we denote the methods, for which we needed to decrease τ , when we
decreased h in order to avoid big changes of the modulus or oscillations). In some
cases, the computation of the magnetic field from Maxwell’s equation at every
time level is a more computationally intensive task than the approximation of
the LLG equation. In such a case, the possibility of using larger times steps, gives
an obvious advantage. Schemes, which are h-insensitive, can be useful when we
want to use adaptive strategies.

The methods MPex and EXP1 conserved |m| with an error of order 10−15.
The method MPim conserved |m| up to the truncation error of the Broyden’s
iterations. With the residue of the Broyden’s iteration about 10−10, the resulting
magnitude drift was of order 10−9 and it decreased when we increased Boryden’s
precision. The method MPim allowed us to use larger time steps than the explicit
methods. We expect that more sophisticated nonlinear strategies could speed up
the method and give better results.

The projection method PR1 was the only method for which the choice of the
time step was independent of the mesh parameter h. The error in the magnitude,
when τ = τmax, was of order 10−3 and decreased with smaller values of τ .
Without the projection step (7) the method would blow-up for greater values of
τ . From the explicit methods, the RK4 method could use the largest time-steps,
however the magnitude drift was of order 10−7.

Table 1. Performance of the methods

method τmax h-sensitive
EXP1 9 × 10−13 yes
MPex 6 × 10−12 yes
RK4 1 × 10−11 yes
MPim 1 × 10−11 yes
PR1 1.4 × 10−11 no

4 Summary

In this paper we have given a comparative overview of various methods for
solving the LLG equation of micromagnetics. One of principal goals in micro-
magnetic computations is to maintain the constraint |m| = 1. The projection
methods enforce this constraint explicitly at every time level by projecting the
solution onto a unit sphere. They seem to be stable with respect to the space
discretization and allow us to use large time steps. They might be a good choice
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when mesh adaptivity is involved. The explicit norm-conservative schemes need
to use smaller time steps than the projection methods, but they satisfy the
constraint |m| = 1 nearly precisely. Because of their fast implementation they
have been explored and used in practice. The implicit norm-conservative meth-
ods can use larger time steps than explicit methods for the cost of non-linearity
of the resulting discrete system. Although the classical RK4 performed quite
well in our numerical example, in more complex problems, we still need to use
the projection or small time steps to satisfy the norm constraint. The explicit
norm-conservative methods of higher order should be a better choice for their
capability of maintaining the physical constraints.
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Abstract. The experiments, used to measure the cold plasma iono-
sphere parameters, generate mathematical problems, that usually are
“ill posed”. There are two basic approaches to solve such problems: de-
terministic, developed by Tickonov, and Hubber’s “robust estimation”.
In this paper another approach the modified Newton method applied to
approximate data by experiment aimed to measure such parameters is
discussed. In this case we used the nonlinear Least Square Method. The
numerical results show that the last method is stable and has a larger
region for convergence than other methods. Some important numerical
calculations are given in the paper.

1 Introduction

This paper briefly describes the methods to analyze the experimental data, ob-
tained by cylindrical electrostatic probe on board of ”Bulgaria-1300” satellite.
The primary purpose of the cylindrical electrostatic probe is to provide accu-
rate measurements of electron temperature Te. A secondary role is to provide
measurements of the electron and ion concentrations, Ne and Ni , encountered
along the orbits of the satellite.

2 Theoretical Background

The probe is assumed to behave as an idealized cylindrical Langmuir probe
and produces as an output so called ”volt-ampere characteristics” - measured
values of the current of the probe’s collector as a function of the applied stepwise
voltage. Fig.1a identifies the various regions of the current characteristics. The
ion-saturation at the left occurs when the probe is sufficiently negative to cut
off all resolvable thermal-electron current. The amplitude of the ion current, Ii,
depends of Ni, and its slope is a function of ion mass Mi. As the probe is made
less negative, the electron current increases exponentially at a rate determined
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entirely by Te. When the probe is swept positive the amplitude of the electron-
saturation current depends only upon Ne. It is very important to point out a
prior uncertainty of the derived mathematical problem - the point where the
volt-ampere curve swept positive is undetectable, as far as the applied voltage
to the probe is, in fact, a sum of the generated by the instrument stepwise plus
satellite potential, which is unknown.

The probe, launched on board of B − 1300, provide volt-ampere curves that
do not always correspond to the theoretical expectation. We shall not try to
diagnose the reasons of the discrepancy of the probe but will just point out two
general disagreements with theoretical expectations:

- very short ion-saturation region ( more than 80% of the curves)
- the shape of the curve in electron-saturation region do not correspond to

the expected behavior of cylindrical probe.

Thus, the regions that could be used to analyze V − A curves, are elec-
tron retardation and partially ion-saturation. Some notes about accuracy of the
measurements should be made here. In addition to the noise, typical for any ex-
periment, errors generated by the work of other experiments, different condition
along the orbit, ionosphere irregularities etc., occurs. Especially roundup errors
due to telemetry system should be noted, as far the values of the volt-ampere
curves lies into (−10−4, 7.10−5), and for each scale, by means of exponent, mea-
sured values are encoded by telemetry with 8-bit word, supplying approximately
3 significant digits in each scale. So, requirements for ”normally distributed er-
rors” when least-square techniques are to be used, are only partially fulfilled.

3 Numerical Method

Let us denote by X the stepwise voltage, applied to the probe, and by Y mea-
sured values of volt-ampere characteristic. Now, denoting V = X+S, S - satellite
potential, and considering the position where V =0 as known (i.e. S is known),
the analysis of the data, traditionally [1], is accomplished by a four-parameter
fit to the portion of the curves where V ≤ 0 using an equation of the form

Y (V ) = A + BV + C exp(V D), (1)

where A + BV represents a linear approximation of the ion-current component
and C exp(V D) - electron-current on the electron retardation region. The precise
formulae for Ii is given by

Ii = eLNiW
√

1 + kT i/MiW 2 + 2eV/MiW 2, (2)

where L is the probe area projected normal to W, W is the satellite velocity,
e is the electron or ion charge, k is the Boltzmann’s constant, Ti is the ion
temperature, Mi is the ion mass and V is the probe potential relative to the
plasma. As for the electrons, the exact formulae is

Ie = eLNe
√

kTe/2Me exp(eV/kTe). (3)
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In these notation full current on the probe will be I = Ie− Ii, Y (V ) = I corre-
spondingly. The fitting procedure will provide values for Te, A, B and C, which
regardless the notes about error distribution, could be acceptable. When S is un-
known, it has to be evaluated by the fitting procedure, and serious difficulties had
to be considered. First, some of the parameters to be estimated are nonlinearly
dependent, so differences between exact values and those of the certain stage of
the iteration process, could be accumulated by the others. Second, varying S in
order to find proper value, results in rejecting or including new point into the
set to be approximated. New point is entering into computation with its own
accuracy, and if it is bad enough, cumulative least-square error will be greater
than previous, and this value of S will be rejected. Applying sophisticated meth-
ods (”robust” estimation [2]) to determine appropriate weight function improves
the situation significantly, but the practice show, that the problem still remain
unsolved. However, a method that will be proposed here seems to be not so
depending from the single erroneous observation. Let us rewrite the problem (1)
in the following manner.

Y (X − ϕ) = −A + B(X − ϕ) + C exp(e(X − ϕ)/kTe), (4)

where X is such that Y = 0 when X = 0, and all the parameters to be estimated
are positive. In this notation ϕ is known as plasma potential. Then for X = 0
we will have

−A−Bϕ + C exp(−eϕ/kTe) = 0.

This equation could be solved by means of ϕ, i.e.

exp(−eϕ/kTe) = A/C(1 + Bϕ/A)

−eϕ/kTe = ln(A/C) + ln(1 + Bϕ/A) ≤ ln(A/C)

+Bϕ/A, (B < A)

−ϕ = A/(A + kTe/eB)kTe/e ln(A/C)

(5)

Here A and C could be estimated using (2) and (3), and assuming N = Ni = Ne
and T = Ti = Te , one can get

ϕ = −A/(A + BkT/e)kT/2e ln(2Me/πMi(1 + W 2Mi/kT )),

which could be simplified

ϕ = −kT/2e ln(2Me/πMi(1 + W 2Mi/kT )). (6)

The last formulae slightly overestimate (6), especially for large values of T , but
proves to be convenient in computations. Now, let us note by J the number of
the point where Y = 0, and note by K the largest number, for which VI =
h ∗ (I − J)− ϕ is les or equal to 0. We obtain the system

YI = −A + BVI + LNe
√

kT/2πMe exp(eVI/kT ),

I = 1, 2, . . .K,
(7)
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where V is undependent variable, A, B, N and T are unknown quntities that
have to be determined. Different methods for solving the nonlinear data ap-
proximation are considered in the monography [3], page 617. For solving the
system (7) we apply the Continuous Analogue of Newton Method (CANM)
[4], [5]. Let us now denote left part of (7) by F (A,B,N, T, V ). Let us denote
a1 = A, a2 = B, a3 = N, a4 = T . Then the CANM system is described as
follows

∂F (an1 , a
n
2 , a

n
3 , a

n
4 , Vi)

∂a1
ân1 +

∂F (an1 , a
n
2 , a

n
3 , a

n
4 , Vi)

∂a2
ân2+

∂F (an1 , a
n
2 , a

n
3 , a

n
4 , Vi)

∂a3
ân3 +

∂F (an1 , a
n
2 , a

n
3 , a

n
4 , Vi)

∂a4
ân4 =

−(F (an1 , a
n
2 , a

n
3 , a

n
4 , Vi)− Yi), i = 1, 2, . . . ,K.

(8)

In these formulas a0
1, a

0
2, a

0
3, a

0
4 are initial data and ân1 , â

n
2 , â

n
3 , â

n
4 have to be cal-

culated.

Let us denote by Cn,K×4 matrix with elements Cnij =
∂F (an1 , a

n
2 , a

n
3 , a

n
4 , Vi)

∂aj
,

i = 1, 2, . . . ,K, j = 1, 2, 3, 4, (ân)T = (ân1 , â
n
2 , â

n
3 , â

n
4 ), are vectors with 4 compo-

nents and zn is a vector with components zni = F (an1 , a
n
2 , a

n
3 , a

n
4 , Vi)− Yi,

i = 1, 2, . . . ,K. Then the system (8) can be rewrite

Cnân = −zn.

This system is solved using the least square method

(Cn)TCnân = −(Cn)T zn.

Now we find the next approximation to the solution an+1
j = anj + τnâ

n
j , j =

1, 2, 3, 4. Here τn is a iteration step, 0 < τn ≤ 1 and n is iteration number.

4 Conclusion

On fig. 1b and fig. 1c approximation plot for curves considered as ”low noised”
and ”noised” are provided. For the curve of Fig. 1b the 57 (K = 57) experimental
points are used, 51 (K = 51) - for Fig.1c and initial data for both cases are the
same A = Y1, B = 0, N = 106, T = 3500. It needed less then 150 iterations
to calculate the unknown parameters A, B, N, T with an accuracy 10−5 (
τ = 0.1) for each case. As result for most important parameters N and T we
find the following values N = 3.66572, T = 1.988 (Fig.1b) and N = 5.2504,
T = 3.954 (Fig.1c).

The described method seems to provide better stability, by means of sin-
gle or grouped erroneous measurements, then standard optimization methods,
which are directed entirely by the level of the sum of squares for error. Another
advantage of the method is the possibility to obtain, applying (6), correct val-
ues for N from electron retardation region, important when electron saturation
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part of the curve is corrupt or short. As a disadvantage of the method a bigger
computational time should be noted.
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Abstract. It is customary to perform modal analysis on mechanical
systems without due regards to their stress state. This approach is of
course well accepted in general but can prove inadequate when dealing
with cases like spinning blade turbines or stretched strings, to name but
these two examples.

It is believed that the stress stiffening can change the response fre-
quencies of a system which impacts both modal and transient dynamic
responses of the system. This is explained by the fact that the stress
state would influence the values of the stiffness matrix.

Some other examples can be inspired directly from our daily life, i.e.,
nay guitar player or pianist would explain that tuning of his playing
instrument is intimately related to the amount of tension put on its cords.
It is also expected that the same bridge would have different dynamic
responses at night and day in places where daily temperature fluctuations
are severe.

These issues are unfortunately no sufficiently well addressed in vibra-
tion textbooks when not totally ignored.

In this contribution, it is intended to investigate the effect of pre-
stress on the vibration behavior of simple structures using finite element
package ANSYS. This is achieved by first performing a structural analysis
on a loaded structure then make us of the resulting stress field to proceed
on a modal analysis.

Keywords: Pre-stress, Modal analysis, Vibrations, Finite elements,
ANSYS.

1 Scope

In this investigation, we are concerned by the effect of pressure loads on the
dynamic response of shell structures.

A modal analysis is first undertaken to ascertain for the eigen-solutions for an
unloaded annulus shell using a commercial finite element package ANSYS ([1]).

In the second phase, a structural analysis is performed on the shell. Dif-
ferent pressure loads are applied and the resulting stress and strain fields are
determined.
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In the third phase, these fields are then used as pre-stress and new modal
analyses are performed on the pre-loaded shell.

The details on geometry, boundary conditions, and loading conditions are
depicted in the procedure section.

2 Theory

The equation of motion ([3]) for a body is given in tensorial notation by

∇.σ + f = ρ
∂2u

∂t2
(1)

where σ represents the second order stress tensor, f the body force vector, ρ the
density and u the displacement field.

Expressed in indicial notation (1) can be recast as

σji,j + fi = ρi,tt (2)

From the theory of elasticity, we know that the generalized Hookes law relates
the nine components of stress to the nine components of strain by the linear
relation:

σij = cijklekl (3)

where ekl are the infinitesimal strain components, σij are the Cauchy stress
components and cijkl are the material parameters.

Furthermore, for an isotropic material ([3]) (3) simplifies to

σij = 2μeij + λδijekk (4)

where μ and λ are the so called Lame constants.
For boundary-value problems of the first kind, it is convenient and customary

to recast (1) in terms of the displacement field ū, amenable to finite element
treatment.

(λ + μ)grad(divu) + μ∇2u + f = ρü (5)

These equations are the so called Navier equations of motion ([3]).
For the 3-D elasticity problem, this equation becomes an elliptic boundary

problem. We can recall that the it is possible to find a weak form or a Galerkin
form ([4]) i.e.,

L(u, v) = (f, v) instead of Lu = f (6)

where Lu = f is the generalization of the differential equation and L is a linear
operator and (,) stands for the dot product.

The finite element solution: the differential equation is discretized into a series
of finite element equations that form a system of algebraic equations to be solved:

[K]{u} = {F}
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where [K] is the stiffness matrix, {u} is the nodal displacement vector and {F}
is the applied load vector. These equations are solved in ANSYS ([1]) either by
the method of Frontal solver or by the method of Conjugate gradient solver.

Modal analysis consists in solving an associated eigenvalue problem in the
form [

[k]− ω̄2[M ]
]
{u} = {0} (7)

where [K] is the stiffness matrix and [M ] is the consistent mass matrix that is
obtained by

[M ] =
∫
v

ρ[N ]T [N ]dv (8)

[N ] being the shape functions matrix.
For the prestressed modal analysis, the stiffness matrix [K] is being corrected

to take into account the stress field.

3 Procedure

In the preprocessor of ANSYS ([1]) geometric modelling of our eigenvalue prob-
lem (modal analysis) and then of our boundary value problem (static analysis)
is being defined: an annulus with internal radius r1 = 0.5m and external radius
r2 = 0.8m. A corresponding finite element model is obtained by meshing the
geometric model using 60 elements.

Element type chosen: ANSYS shell 63 see fig.(3) in appendix for ample descrip-
tion.

Thickness:0.003m
Elastic properties:
Youngs modulus of elasticity: 193 GPa
Poissons ratio:0.29
Material density: 8030 kg/m3
Constraints: mixed type boundary conditions

For r = r1, the six translations and rotations are being set to zero, i.e. ū =
{0, 0, 0, 0, 0, 0}.

3.1 Modal Analysis: Stress Free Modal Analysis

In the solution processor of ANSYS, modal analysis type is first chosen with
Lanczos ([9]) extraction and expansion method. The eigen solutions obtained
are analyzed and presented in the general postprocessor. The first five modes of
vibration are tabulated in tables 1 and 2. The mode shapes are also included in
the appendix.

3.2 Static Analysis

Static type analysis is now selected. Ten different sets of pressure loads are being
applied to the annulus on its outer boundary i.e., r = r2. Details can be seen on
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tables 1 and 2. For each loading case, prestress effect is being activated in the
analysis option of the program. The resulting stress field is then applied when
it comes to performing subsequently modal analysis on the annulus.

3.3 Modal Analysis with Prestress Effect

Once the stress field is being established from the above static analysis, it is
applied as prestress to the shell structure through the activation of this option
in the subsequent modal analysis. This procedure is reproduced for the twenty
different preloading cases.

4 Results

The results of the different analyses i.e., modal analysis of the stress free annulus
the static analysis and then the modal analysis of the preloaded structure, are
all summarized and displayed in tabular form see tables 1 and 2 in the appendix.

To ascertain the effect of the prestress level on the modes of vibration, some
further calculations are done and presented in tables 3 and 4 in the appendix.

Plots of prestress level versus percent increase or decrease in frequencies are
plotted respectively in figures 1 and 2.

5 Comments on Results

5.1. Prestress produces no effect on the mode shapes of vibration of the shell
structure.

5.2. By examining the results presented in tables 1 and 2, it is evident that the
frequencies are impacted by preloading. The effect of such preloading seems
to be more apparent on the first modes than on the higher ones. The plotted
curves of figures 1 and 2 are here to corroborate these conclusions.

5.3. A closer look at these curves discloses that there seems to be a linear
correlation between the prestress level and the percent frequency increase or
decrease for each mode of vibration.

5.4. Tensile preloading produces an increase in frequency whereas compressive
preloading results in a decrease in frequency.

6 Conclusions

Three pieces of conclusions can be inferred from this study:

6.1. The mode shapes of vibration of the structure are not sensitive to
preloading.

6.2. Prestressing seems to impact the dynamic behavior of the structure.
6.3. Tensile prestress acts as a stiffener and enhances the dynamic character-

istics of the structure resulting in frequency increase. Whereas compressive
prestress has a converse effect on the structure by reducing its frequencies.
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Appendix

Table 1. The first five modes against the tensile prestress levels

Mode Tensile Prestress in N/m
0 103 2.103 4.103 8.103 16.103 32.103 64.103 105 2.105 3.105

Frequency in kHz
1 2.602 2.603 2.604 2.606 2.610 2.618 2.633 2.664 2.698 2.789 2.876
2 2.634 2.635 2.636 2.638 2.642 2.649 2.665 2.695 2.729 2.821 2.904
3 2.656 2.657 2.658 2.660 2.664 2.672 2.688 2.718 2.752 2.844 2.932
4 2.790 2.791 2.792 2.794 2.798 2.805 2.821 2.852 2.885 2.977 3.065
5 2.839 2.840 2.841 2.843 2.847 2.855 2.870 2.901 2.935 3.027 3.115

Table 2. The first five modes against the compressive prestress levels

Mode Pressure Prestress in N/m
0 103 2.103 4.103 8.103 16.103 32.103 64.103 105 2.105 3.105

Frequency in kHz
1 2.602 2.601 2.600 2.598 2.594 2.587 2.571 2.539 2.502 2.396 2.285
2 2.634 2.633 2.632 2.630 2.626 2.618 2.602 2.570 2.533 2.428 2.316
3 2.656 2.655 2.654 2.652 2.648 2.641 2.625 2.593 2.556 2.450 2.338
4 2.790 2.789 2.788 2.786 2.782 2.774 2.758 2.726 2.690 2.585 2.474
5 2.839 2.838 2.837 2.835 2.831 2.823 2.807 2.775 2.739 2.634 2.523

Fig. 1. % Frequency increase versus Prestress



Prestressed Modal Analysis Using Finite Element Package ANSYS 177

Table 3. The percent frequency increase against prestress levels

Mode Tensile Prestress in N/m
103 2.103 4.103 8.103 16.103 32.103 64.103 105 2.105 3.105

% increase in frequency
1 0.038 0.077 0.154 0.307 0.615 1.191 2.383 3.689 7.187 10.530
2 0.038 0.076 0.152 0.304 0.569 1.177 2.316 3.607 7.099 10.250
3 0.038 0.075 0.151 0.301 0.602 1.205 2.184 3.614 7.078 10.391
4 0.036 0.072 0.143 0.287 0.538 1.111 2.222 3.405 6.702 9.857
5 0.035 0.070 0.141 0.282 0.563 1.092 2.184 3.381 6.622 9.722

Table 4. The percent frequency decrease against prestress levels

Mode Pressure Prestress in N/m
103 2.103 4.103 8.103 16.103 32.103 64.103 105 2.105 3.105

% decrease in frequency
1 0.038 0.077 0.154 0.307 0.576 1.191 2.421 3.843 7.917 12.183
2 0.038 0.076 0.152 0.304 0.607 1.215 2.430 3.834 7.821 12.073
3 0.038 0.075 0.151 0.301 0.565 1.167 2.372 3.765 7.756 11.973
4 0.036 0.072 0.143 0.287 0.573 1.147 2.294 3.584 7.348 11.326
5 0.035 0.070 0.141 0.282 0.563 1.127 2.254 3.522 7.221 11.131

Fig. 2. % Frequency Decrease versus Pressure Level



178 R. Bedri and M.O. Al-Nais

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3

4Fig.



Computer Realization of the Operator Method
for Solving of Differential Equations
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Abstract. The operator method for solving of differential equations and
their systems is presented in the paper. Practical applicability of the
method – methodology, parallelization of the computational algorithm
and the complex solution of concrete differential equations – is described.

Keywords: Operator method, generalized differential operator, differ-
ential equations.

1 Introduction

The operator methods allow reduction differential equations to the algebraic
ones. Introductory remarks on the operator computational methods can be
found in the works of L.Euler (1646-1716), G.W.Leibniz (1707-1783) and oth-
ers. The modern ”algebraic” form was ”prescribed” to operator calculus only
by O.Viskov, M.Rahula, V.Maslov, Ph. Fensilver, R.Schott and other mathe-
maticians. O. Viskov, using specially selected examples, showed that many clas-
sical analysis problems ”contain” internally algebraic structures, [1]. Finding
of the latter structures simplifies solution of a particular complicated problem.
M.Rahula has developed the calculus methodic of Lie-Cartan, i.e. has shown
that nonlinear differential equations can be described using ordinary geometri-
cal constructions, [2]. V.Maslov introduced specific operator structures for the
description of the solutions of some popular classical differential equations, [3].
Up-to-date modern conception of operator calculus has been presented by Ph.
Fensilver and R.Schott in [4]. In this paper, the highly modern structures of op-
erator calculus as well as areas of their practical applicability are described. On
the other hand, technological progress makes it possible to develop and employ
new powerful computational algorithms. The latter algorithms, in their turn,
guarantee more precise solutions of the differential equations.

Often, approximate solutions of differential equations (or their systems) are
sought using Runge-Kutta, Adams or some other numerical methods. Those
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c© Springer-Verlag Berlin Heidelberg 2005
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solutions are presented tabularly and are characterized by a fixed degree of ac-
curacy. Sometimes, it is not sufficient. The operator method appears to be a
successful extension of numerical methods. In applying an operator method, the
sought-for solutions are represented as operator series, where from polynomials
of various degrees – approximate solutions – are obtained. Desirable accuracy
is available. To say more, various characteristics of differential equations (their
systems) can be found out and analyzed. Finally, application of several inde-
pendent methods (say, numerical and operator approaches) to solving of a more
complicated differential equation facilitates avoidance of errors of various types.

2 The General Part

Operator relationships described in [5] are generalized for numerical realization:

2.1 Solutions of N-th Order Differential Equation

Let a differential equation

y(n)
x = P (x, y, y′

x, y
′′
x , . . . , y

(n−1)
x ),

y(v; s1, s2, . . . , sn−1) = s1, (y(x; s1, s2, . . . , sn−1))′
x|x=v = s2,

(y(x; s1, s2, . . . , sn−1))′′
x|x=v = s3, . . ., (y(x; s1, s2, . . . , sn−1))n−1

x |x=v = sn−1

be given. Then its solution y(x; s1, s2, . . . , sn−1) is written:

y(x; s1, s2, . . . , sn−1) =
+∞∑
k=0

pk(s1, s2, . . . , sn−1, v)
(x− v)k

k!
, (1)

where pk(s1, s2, . . . , sn−1, v) =
(Dv + s2Ds1 + s3Ds2 + . . . + sn−1Dsn−2 + P (v, s1, s2, . . . , sn−1))ks1. There Dv,
Ds1 , Ds2 , . . ., Dsn−2 , D are differencial operators and P (x, y, y′

x, y
′′
x , . . . , y

(n−1)
x )

is a polynomial or a function.

Example 1. Let a differential equation y′ = y2, y(v) = s be given. Using operator
expression of solution (1) we get that y = y(x, s) =

∑+∞
k=0 pk

(x−v)k

k! , when pk =
pk(s, v) = (Dv + s2Ds)ks.

Then p0 = s, p1 = 1 · s2, p2 = 1 · 2s3, . . . , pn = n!sn+1, i.e. y = y(x, s) =
s
∑+∞
k=0 s

k(x− v)k, or y = s
1−s(x−v) , when |s(x− v)| < 1.

Such analysis of solutions is possible on the occasion, when it is written in
the operator form.

2.2 Solutions of a Second Order Differential Equation

Further we shall limit by cases, when all coefficients |pk| < Mk, i.e., the obtained
series converge for all x ∈ R.
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Analogically, let the second order differential equation with initial conditions
y′′
xx = P (x, y, y′

x) y(x, s, t)|x=v = s; (y(x, s, t))′
x|x=v be given. Then the expres-

sion of the solution is

y = y(x, s, t) =
+∞∑
k=0

pk(s, t, v)
(x− v)k

k!
, v ∈ R, (2)

where pk(s, t, v) = (Dv + tDs + P (v, s, t)Dt)ks [5].
Besides, using equalities y(x, sl, tl, vl) = y(x, sl+1, tl+1) we get

y(x, sl, tl) =
+∞∑
k=0

pk(sl, tl, vl)
(x− vl)k

k!
= yl(x, sl, tl), l = 1, 2, . . . ,

where

sl+1 =
+∞∑
k=0

pk(sl, tl, vl)
(vl+1 − vl)k

k!
, tl+1 =

+∞∑
k=0

pk+1(sl, tl, vl)
(vl+1 − vl)k

k!
, (3)

sequence v2, v3, . . . are any variables, but v1, s1, t1 are given.

2.3 Solution of a System of the Second Order Differential
Equations

It is possible to generalize the above described methodology for systems of equa-
tions. For instance, let a system of differential equations⎧⎨⎩x′′

t = P (t, x, x′
t, y, y

′
t, ϕ, ϕ

′
t)

y′′
t = Q(t, x, x′

t, y, y
′
t, ϕ, ϕ

′
t)

ϕ′′
t = R(t, x, x′

t, y, y
′
t, ϕ, ϕ

′
t)

with initial conditions x(v) = s1, x′
t(t)|t=v = t1, y(v) = s2, y′

t(t)|t=v = t2,
ϕ(v) = s3, ϕ′

t(t)|t=v = t3 be given. Then expressions of the solutions are written:

x =
+∞∑
k=0

pk
(t− v)k

k!
, y =

+∞∑
k=0

qk
(t− v)k

k!
, ϕ =

+∞∑
k=0

rk
(t− v)k

k!
, (4)

when pk = Dks1, qk = Dks2, rk = Dks3. There D = Dv + t1Ds1 + PDt1 +
t2Ds2 + QDt2t3Ds3 + RDt3 is the generalised differential operator and P =
P (v, s1, t1, s2, t2, s3, t3), Q = Q(v, s1, t1, s2, t2, s3, t3), R = R(v, s1, t1, s2, t2, s3, t3).

3 Methodology of Computer Solving Realization

Solving methodology will be presented for differential equation of the second
order. For other order differential equations and for their systems of equations
this methodology is analogical.
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The found solution is series of x with coefficients pk, which are the func-
tions of initial conditions and center v. A computer can calculate only the finite
number of coefficients p0, p1, . . . , pN . So, we get the approximate of solution (2)
— polynomial ŷ(x, s, t) =

∑N
k=0 pk(s, t, v)

(x−v)k

k! . Then substituting s, t and v
to particular values, we get the approximate of solution — polynomial ŷ(x) in
neighborhood of a point v. Choosing sequence of the centers and using expres-
sion (3) a family of polynomials ŷ1(x), ŷ2(x), . . . is constructed. Approximations
recede from the exact solution, as the variable x recede from the center. Then
the approximation y∗(x) of the solution is formed, using the family of approxi-
mations ŷl(x), this way (Fig. 1):

y∗(x) = ŷl(x), vl ≤ x < vl+1, l = 1, 2, . . . , n. (5)

Fig. 1. Approximation of the solution

Other techniques of approximate y∗(x) composition are possible, for instance,
average of neighboring polynomials.

Example 2. Let nonlinear Mathieus differential equation y′′ + Hy′ + β2(1 +
a coswx) sin y = 0 with initial conditions y(x)|x=v = s; (y(x))′

x|x=v be given [6].
There H,β, a, w are numerical real parameters.

Besides, p0(s, t, v) = s;
pk+1(s, t, v) = (Dv+tDs−(Ht+β2(1+a coswv) sin s)Dt)pk(s, t, v), k = 0, 1, 2, . . .,
i.e. p1(s, t, v) = t, p2(s, t, v) = −(Ht + β2(1 + a coswv) sin s), p3(s, t, v) =
β2aw sin s sinwv − β2t cos s(1 + a coswv) + H(Ht + β2(1 + a coswv) sin s) sin s,
etc.

Table 1. The loss-estimates and the time expenditure

N h Δ T,s N h Δ T,s N h Δ T,s
8 1 0.034 12 9 1 0.005 42 10 1 0.0011 124
8 0.75 0.028 12 9 0.75 0.003 45 10 0.75 0.0078 137
8 0.5 0.025 14 9 0.5 0.004 54 10 0.5 0.0084 145
8 0.25 0.032 15 9 0.25 0.006 62 10 0.25 0.0014 160
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After the calculation and differentiation of the approximation of the solu-
tion, Δ = max |Δ(x)| is found, where Δ(x) = (y∗(x))′′ + h(y∗(x))′ + β2(1 +
a coswx) sin y∗(x).

The loss-estimates Δ, with y(0) = 0.5, y′(0) = 0.2, H = 0.7, β = 0.9, a = 2,
w = 1, x = 0..20 for different values of N and h and the calculation time T are
presented in Table 1.

This time expenditure is found using computer Celeron 566 MHz, RAM
128 MB.

4 The Complex Solving Using Independent Methods

Solutions of the Mathieus differential equation have various standing modes.
They depend on initial conditions and values of parameters. In practice, finding
of attractor zones and their limits is important. For instance, reduced equation
y′′ + Hy′ + β coswx sin y = 0 with parameter values H = 0.05, β = 0.5, w = 1,

Fig. 2. Standing modes in the phase plane (y, y′)

Fig. 3. Modes dependence on initial conditions
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have two standing modes, that can be schematically represented in the phase
plane (Fig. 2):

It is not possible to estimate attractor zones of the standing modes using
ordinary methods, for instance, time back integration. Fig. 3 shows modes de-
pendence on initial conditions. 1-st standing mode is represented by stars or
squares, 2-nd is white. It is possible to see transition zone between 1-st and 2-nd
modes, Fig. 3. Two qualitative separate methods: Runge-Kutta and operator
are used in the precise determination of zone limits. The order of a polynomial
of operator method must be increased in order to obtain more accurate modes
dependence on initial conditions in the choosed point.

5 Solving of Complicated System, Using Parallelization

Various dynamical systems are described using complicated ordinary differential
equations and their systems, comprising a large number of numerical param-
eters. Solving such differential equations it is necessary to find not only their
solutions, but also numerical values of parameters (to provide those solutions
with desirable characteristics). It is often required the solutions to be period-
ical (aperiodical) functions. Also, it is important to know for what values of
parameters the dynamical system in question behaves chaotically, etc.

Example 3. Let x = x(t) and y = y(t) describe the vibrating motion of waves or
flowing liquid, ϕ = ϕ(t) — the rotational motion, stimulated by this vibration
(Fig. 4).

All these functions enter the system of differential equations [7]:

x′′ + x = fx, y′′ + y = fy, μ∗ϕ′′ = fϕ,

where
fx = ax − hxx

′ + (q1x − q3xx
′2)x′ + μ(ϕ′′ sinϕ + ϕ′2 cosϕ),

fy = ay − hyy
′ + (q1y − q3yy

′2)y′ + μ(ϕ′′ cosϕ− ϕ′2 sinϕ) + g∗,
fϕ = μ∗

ϕ − hϕϕ
′ + g∗ cosϕ + μ(x′′ sinϕ− y′′ cosϕ).

Fig. 4. System model
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There ax, ay, hx, hy, hϕ, q1x, q1y, q3x, q3y, μ, g∗, μ∗
ϕ, μ are numerical param-

eters with values, providing both periodicity of the functions x = x(t), y = y(t)
and stability of rotational motion ϕ = ϕ(t) to be found.

Solving the system, (for simplicity μ∗ = 1, g∗ = 0) we obtain:

x′′ = 1
1−μ2 (Fx − μ2 sinϕ cosϕFy + μ sinϕFϕ − μ2 cos2 ϕFx) = P,

y′′ = 1
1−μ2 (Fy − μ2 sinϕ cosϕFx − μ cosϕFϕ − μ2 sin2 ϕFy) = Q,

ϕ′′ = 1
1−μ2 (Fϕ − μ sinϕFx − μ cosϕFy) = R.

There
Fx = ax − x− hxx

′ + (q1x − q3xx
′2)x′ + ϕ′2μ cosϕ,

Fy = ay − y − hyy
′ + (q1y − q3yy

′2)y′ + ϕ′2μ cosϕ,
Fϕ = μ∗

ϕ − hϕϕ
′.

Using expressions of solutions (4) and methotodology (5) it is possible to
vary the step size of the center variation, the order of the polynomial as well
as the number of polynomials, used in forming the approximate solutions. To
obtain more accurate approximations, the order of a polynomial must be in-
creased [8]. The accuracy depends on the transition step size between centers,
but trials decrease the step size multiply calculation errors as well as calculation
time. It is found from experimental investigations that symbolic differentiation of
the expressions takes most time of calculation (about 80%). Besides, in relation
with Maple peculiarities [9], in solving more complicated differential equations,
the necessary amount of random access memory (RAM) becomes critical. Solv-
ing ordinary differential equations, we escape problems associated with evalua-
tion of symbolic differential expressions. The calculation time for operator and
Runge-Kutta methods realization makes acceptable using (for parallelization) a
particular computer network. The symbolic differentiation as well as graphical
information is realized using Maple tools, whereas the computer network is used
applying MPI [10] tools.

Parallel algorithm of the investigation solution is found from serial algorithm
by this:

1. All serial executing actions subject to properties of serial algorithm and are
partied to the g groups. There g is odd number between 3 and 15 and depend
on parameter values.
(a) All groups must be executing in series, i.e. all actions from group k are

executing before actions from group (k + 1) (k = 1, 2, . . . , g − 1) and
results of group k are material to the group (k + 1).

(b) Order of action execution inside the group depends to number of group:
i. Actions from 1, 3, . . . , g group must be executed seriatim;
ii. Actions from groups 2, 4, . . . , (g − 1), can be executed parallel each

other inside group.
2. The sequences of serial actions Sk,1, Sk,2, . . ., Sk,nk

are formed inside each
group. Here k is number of group, nk show number of simultaneously parallel
process, besides, nk = 1, if k is odd number and 1 ≤ nk ≤ p if k is even
number. There p is number of used processors.
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3. Sequences of actions are distributed for processors elementary: sequence Sk,i
is executed using processor i.

One processor is conditional primary: therein calculations initiate and terminate.
If execution time of action sequence Sk,i is tk,i, then general calculation time

using serial algorithm is TS =
∑
k

∑
i tk,i. Parallel algorithm execution time is

Tp = t1,1 + max{t2,1, . . . , t2,n2}+ t3,1 + max{t4,1, . . . , t2,n4}+ . . . + tg,1 + Tt;

here Tt is total time of transmissions between processors.
Because material must be send just from first processor to reminder and back

(not from each to each) losing of time is high and max{tk,1, . . . , tk,nk
} <

∑
i tk,i

for all even k values.
For instance, if values of system parameters are ax = ay = 0.5, hx = hy =

hϕ = 0.1, q1x = q1y = 0.3, q3x = q3y = 1, μ∗
ϕ = 0.5, t = 0 . . . 100 then distribut-

ing actions of algorithm to 3 groups (g = 3) and three computers of personal
cluster are used. Then execution of actions sequences S1,1, S3,1 and transmissions
between processors time is less than 0.5 s. Calculation time of parallel executed
sequences S2,1, S2,2, S2,3, is between 550 s. and 600 s.
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Abstract. In this paper we investigate the stability of the second-order
operator-differential equation in Hilbert space, under perturbations of
the operators, the initial conditions and right hand side of the equation.
The estimates of strong stability in different norms are obtained. As an
example, the strong stability of the hyperbolic problem is presented.

1 Introduction

When the correctness of the initial-value problems for the evolution problems of
mathematical physics is considered, the attention is mainly paid to the stability
of the solution with respect to the initial condition and the right-hand side of
the equation. In a more general case it is necessary to require the stability of
solution against the perturbation of the operator (or coefficients of the equation).
Let us mention, for example, the widely investigated problem of the coefficient
stability of the systems of linear equations [2]. This type of stability is usually
called strong stability [6]. Analogous problem arise in corresponding numerical
methods that approximate differential equations.

This paper deals with the construction of the strong stability estimates for
the second-order operator-differential equation in Hilbert spaces in the case of
perturbed operators, right-hand side and of the initial conditions. Strong stabil-
ity and asymptotic stability for the first-order operator-differential equation is
considered in [1]. Analogous results hold for the operator-difference schemes [3].

2 Formulation of the Problem

Let H be a Hilbert space, with the inner product (·, ·) and norm ‖ · ‖. Let A be
a selfadjoint positive definite linear operator with domain D(H) dense in H. We
use HA to denote the space with the inner product (u, v)A = (Au, v) and norm
‖u‖A = (Au, u)1/2 . Analogously, we define inner product (u, v)A−1 = (A−1u, v)
and norm ‖u‖A−1 = (A−1u, u)1/2 . We have: HA ⊂ H ⊂ HA−1 . Also, operator
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A is bounded in the following cases [7]: A : HA → HA−1 , A : HA2 → H , and
A : H → HA−2 .

Let us consider the abstract Cauchy problem for the second-order operator-
differential equation:

Bu′′ + Au = f(t) , 0 < t < T , u(0) = u0 , u′(0) = u1 , (1)

where A and B are unbounded selfadjoint positive definite linear operators,
defined on Hilbert space H, and u : [0, T ] → H . We assume that HA ⊂ HB and
A ≥ B , i.e. (Au, u) ≥ (Bu, u) for u ∈ HA. We also assume that the quotient
(Au, u)/(Bu, u) is unbounded for u ∈ HA. Define the next norms:

‖u‖2(0) = max
t∈[0,T ]

‖u(t)‖2B ,

‖u‖2(1) = max
t∈[0,T ]

(‖u′(t)‖2B + ‖u(t)‖2A),

‖u‖2(2) = max
t∈[0,T ]

(‖u′′(t)‖2B + ‖u′(t)‖2A + ‖Au(t)‖2B−1).

The perturbed problem has the form:

B̃ũ′′ + Ãũ = f̃(t) , 0 < t < T , ũ(0) = ũ0 , ũ′(0) = ũ1 , (2)

with analogous conditions for operators Ã and B̃.
The problem (1) is strongly stable, by definition [5], if the next estimate

holds:

‖u− ũ‖0 ≤ C1‖u0 − ũ0‖1 + C2‖u1 − ũ1‖2 + C3‖f − f̃‖3
+C4‖A− Ã‖4 + C5‖B − B̃‖5 , (3)

where Ci are some constants and ‖ · ‖i are some norms.
From (1) and (2) we deduce that the error z = ũ−u satisfies the next Cauchy

problem:

Bz′′ + Az = F (t) , t > 0 , z(0) = ũ0 − u0 , z′(0) = ũ1 − u1 , (4)

where F (t) = f̃(t)− f(t)− (Ã−A)ũ− (B̃ −B)ũ′′ .
The aim of this paper is to prove estimate of the form (3) in the norms

‖ · ‖(0) , ‖ · ‖(1) , and ‖ · ‖(2) . The next a priori estimates for the solution of the
problem (1) are proved in [4]:

‖u‖2(0) ≤ C

(
‖u0‖2B + ‖Bu1‖2A−1 +

∫ T

0
‖f(t)‖2A−1dt

)
, (5)

‖u‖2(1) ≤ C

(
‖u0‖2A + ‖u1‖2B +

∫ T

0
‖f(t)‖2B−1dt

)
, (6)

‖u‖2(2) ≤ C

(
‖Au0‖2B−1 +‖u1‖2A+ max

t∈[0,T ]
‖f(t)‖2B−1 +

∫ T

0
‖B−1f(t)‖2Adt

)
. (7)
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3 Strong Stability

In this section the following assertions will be proved to be valid.

Lemma 1. The problem (1) is strongly stable in the norm ‖ · ‖(0) , and with
conditions ũ0 − u0 ∈ HB , B(ũ1 − u1) ∈ HA−1 , f̃ − f ∈ L2((0, T );HA−1) , the
next estimate holds:

‖ũ− u‖(0)≤C
(0)
0 ‖ũ0 − u0‖B+C

(0)
1 ‖ũ1 − u1‖BA−1B+C

(0)
2 ‖f̃ − f‖L2((0,T );HA−1 )

+C
(0)
3 ‖Ã−A‖HÃ→HA−1 + C

(0)
4 ‖B̃ −B‖HB̃Ã−1B̃→HA−1 . (8)

Proof. Applying estimate of the form (5) to the problem (4) we have:

‖z‖2(0) ≤ C

(
‖ũ0 − u0‖2B + ‖B(ũ1 − u1)‖2A−1 +

∫ T

0
‖F (t)‖2A−1dt

)
. (9)

Let us estimate
∫ T
0 ‖F (t)‖2A−1dt. We have elementary inequality:

‖F (t)‖2A−1 ≤ 3
(
‖f̃(t)− f(t)‖2A−1 + ‖(Ã−A)ũ‖2A−1 + ‖(B̃ −B)ũ′′‖2A−1

)
.

Further: ∫ T

0
‖(Ã−A)ũ‖2A−1dt =

∫ T

0

‖(Ã−A)ũ‖2A−1

‖ũ‖2
Ã

‖ũ‖2
Ã
dt ≤

≤
∫ T

0
sup
w �=0

w∈H
Ã

‖(Ã−A)w‖2A−1

‖w‖2
Ã

‖ũ‖2
Ã
dt = ‖Ã−A‖2HÃ→HA−1

∫ T

0
‖ũ‖2

Ã
dt

Applying estimate of the form (6) to the problem (2) we have:

‖ũ‖2
Ã
≤ C

(
‖ũ0‖2Ã + ‖ũ1‖2B̃ +

∫ T

0
‖f̃(t)‖2

B̃−1dt

)
= K1 .

Therefore: ∫ T

0
‖(Ã−A)ũ‖2A−1dt ≤ TK1‖Ã−A‖2HÃ→HA−1

.

Further,∫ T

0
‖(B̃ −B)ũ′′‖2A−1dt ≤ ‖B̃ −B‖HB̃Ã−1B̃→HA−1

∫ T

0
‖B̃ũ′′‖2

Ã−1dt =

= ‖B̃ −B‖HB̃Ã−1B̃→HA−1

∫ T

0
‖f̃ − Ãũ‖2

Ã−1dt ≤

≤ 2‖B̃ −B‖HB̃Ã−1B̃→HA−1

∫ T

0
(‖f̃‖2

Ã−1 + ‖ũ‖2
Ã
)dt≤K2‖B̃ −B‖HB̃Ã−1B̃→HA−1

where K2 = 2
∫ T
0 (‖f̃‖2

Ã−1 + K1)dt .
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Finally, from (9) and previous inequalities, setting C
(0)
0 = C

(0)
1 =

√
C ,

C
(0)
2 =

√
3C , C

(0)
3 =

√
3CTK1 , C

(0)
4 =

√
3CK2 , we obtain estimate (8). �

Lemma 2. The problem (1) is strongly stable in the norm ‖ · ‖(1) , and with
conditions ũ0 − u0 ∈ HA , ũ1 − u1 ∈ HB , f̃ − f ∈ L2((0, T );HB−1) , the next
estimate holds:

‖ũ− u‖(1) ≤ C
(1)
0 ‖ũ0 − u0‖A + C

(1)
1 ‖ũ1 − u1‖B + C

(1)
2 ‖f̃ − f‖L2((0,T );HB−1 )

+C
(1)
3 ‖Ã−A‖HÃB̃−1Ã→HB−1 + C

(1)
4 ‖B̃ −B‖HB̃→HB−1 . (10)

Proof. Applying estimate of the form (6) to the problem (4) we obtain:

‖z‖2(1) ≤ C

(
‖ũ0 − u0‖2A + ‖ũ1 − u1‖2B +

∫ T

0
‖F (t)‖2B−1dt

)
. (11)

We have:∫ T

0
‖(Ã−A)ũ‖2B−1dt ≤ ‖Ã−A‖2HÃB̃−1Ã→HB−1

∫ T

0
‖Ãũ‖2

B̃−1dt .

Applying estimate of the form (7) on the problem (2) we have:

‖Ãũ‖2
B̃−1≤C

(
‖Ãũ0‖2B̃−1 +‖ũ1‖2Ã + max

t∈[0,T ]
‖f̃(t)‖2

B̃−1 +
∫ T

0
‖B̃−1f̃(t)‖2

Ã
dt

)
=K3.

Therefore, ∫ T

0
‖(Ã−A)ũ‖2B−1dt ≤ K3T‖Ã−A‖2HÃB̃−1Ã→HB−1

.

Further,∫ T

0
‖(B̃−B)ũ′′‖2B−1dt≤‖B̃−B‖HB̃→HB−1

∫ T

0
‖ũ′′‖2

B̃
dt ≤ K3T‖B̃−B‖HB̃→HB−1 .

Finally, from (11) and previous inequalities, setting C
(1)
0 = C

(1)
1 =

√
C ,

C
(1)
2 =

√
3C , C

(1)
3 = C

(1)
4 =

√
3CTK3 , we obtain estimate (10). �

Lemma 3. The problem (1) is strongly stable in the norm ‖ · ‖(2) , and with
conditions A(ũ0 − u0) ∈ HB−1 , ũ1 − u1 ∈ HA , f̃ − f ∈ C((0, T );HB−1) ∩
L2((0, T );HB−1AB−1) , the next estimate holds:

‖ũ− u‖(2) ≤ C
(2)
0 ‖ũ0 − u0‖AB−1A + C

(2)
1 ‖ũ1 − u1‖A + C

(2)
2 ‖f̃ − f‖∗

+C
(2)
3 ‖Ã−A‖α + C

(2)
4 ‖B̃ −B‖β , (12)
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where

‖f̃ − f‖∗ = ‖f̃ − f‖C((0,T );HB−1 ) + ‖f̃ − f‖L2((0,T );HB−1AB−1 ),

‖Ã−A‖α = ‖Ã−A‖HÃB̃−1Ã→HB−1 + ‖Ã−A‖HÃB̃−1ÃB̃−1Ã→HB−1AB−1 ,

‖B̃ −B‖β = ‖B̃ −B‖HB̃→HB−1 + ‖B̃ −B‖HÃ→HB−1AB−1 .

Proof. Applying estimate of the form (7) to the problem (4) we obtain:

‖z‖2(2)≤C

(
‖Az0‖2B−1 + ‖z1‖2A + max

t∈[0,T ]
‖F (t)‖2B−1 +

∫ T

0
‖B−1F (t)‖2Adt

)
. (13)

Let us estimate maxt∈[0,T ] ‖F (t)‖2B−1 . We have:

‖(Ã−A)ũ‖2B−1 ≤ ‖Ã−A‖2HÃB̃−1Ã→HB−1
‖Ãũ‖2

B̃−1 ≤ K3‖Ã−A‖2HÃB̃−1Ã→HB−1
.

Further,

‖(B̃ −B)ũ′′‖2B−1 ≤ ‖B̃ −B‖HB̃→HB−1‖ũ′′‖2
B̃
≤ K3‖B̃ −B‖HB̃→HB−1 .

So we obtain:

max
t∈[0,T ]

‖F (t)‖2B−1 ≤ 3‖f̃ − f‖C((0,T );HB−1 )

+3K3‖Ã−A‖2HÃB̃−1Ã→HB−1
+ 3K3‖B̃ −B‖HB̃→HB−1 . (14)

Estimate
∫ T
0 ‖B−1F (t)‖2Adt. Let us apply operator (ÃB̃−1)2 to the equation (2)

and use estimate of the form (6), obtaining:

‖B−1(Ã−A)ũ‖2A ≤ ‖Ã−A‖2HÃB̃−1ÃB̃−1Ã→HB−1AB−1
‖Ãũ‖2

B̃−1ÃB̃−1

≤ K4‖Ã−A‖2HÃB̃−1ÃB̃−1Ã→HB−1AB−1

where

K4 = C

(
‖ũ0‖2ÃB̃−1ÃB̃−1Ã

+ ‖ũ1‖2ÃB̃−1Ã
+
∫ T

0
‖f̃(t)‖2

Ã−1B̃Ã−1dt

)
.

Further, let us apply operator ÃB̃−1 to the equation (2) and use estimate of the
form (7), obtaining:

‖B−1(B̃−B)ũ′′‖2A ≤ ‖B̃−B‖2HÃ→HB−1AB−1
‖ũ′′‖2

Ã
≤ K5‖B̃−B‖HÃ→HB−1AB−1 ,

where

K5 = C

(
‖ũ0‖2ÃB̃−1ÃB̃−1Ã

+ ‖ũ1‖2ÃB̃−1Ã
+ max
t∈[0,T ]

‖f̃‖2
ÃB̃−2 +

∫ T

0
‖f̃(t)‖2

B̃−1dt

)
.
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Therefore,∫ T

0
‖B−1F (t)‖2Adt ≤ 3‖f̃ − f‖2L2((0,T );HB−1AB−1 ) (15)

+3K4T‖Ã−A‖2HÃB̃−1ÃB̃−1Ã→HB−1AB−1
+ 3K5T‖B̃ −B‖2HÃ→HB−1AB−1

.

Finally, from (13), (14) and (15), setting C0 = C1 =
√
C, C2 =

√
3C,

C3 =
√

3C max{K3, TK4} and C4 =
√

3C max{K3, TK5} , we obtain estim-
ate (12). �

Remark. Estimates (8), (10) and (12) are correct only if Ki <∞. For example,
K1 <∞ for ũ0 ∈ HÃ , ũ1 ∈ HB̃ and f̃ ∈ L2((0, t);HB̃−1).

Let us consider full equation:

Bu′′ + Du′ + Au = f(t) , 0 < t < T , u(0) = u0 , u′(0) = u1 , (16)

where A , B and D are positive definite selfadjoint linear operators, defined in
Hilbert space H.

The perturbed problem has the form:

B̃ũ′′ + D̃ũ′ + Ãũ = f̃(t) , 0 < t < T , ũ(0) = ũ0 , ũ′(0) = ũ1 ,

with analogous assumptions for operators Ã , B̃ and D̃.
The error z = ũ− u satisfies the conditions:

Bz′′ + Dz + Az = F1(t) , t > 0 , z(0) = ũ0 − u0 , z′(0) = ũ1 − u1 ,

where F1(t) = f̃(t)− f(t)− (Ã−A)ũ− (D̃ −D)ũ′ − (B̃ −B)ũ′′ .
By the same technique as in the previous case we can prove the next result.

Lemma 4. The problem (16) is strongly stable in the norm ‖ · ‖(1) , and with
conditions ũ0 − u0 ∈ HA , ũ1 − u1 ∈ HB , f̃ − f ∈ L2((0, T );HB−1) , the next
estimate holds:

‖ũ− u‖(1) ≤ C0‖ũ0 − u0‖A + C1‖ũ1 − u1‖B + C2‖f̃ − f‖L2((0,T );HB−1 )

+C3‖Ã−A‖HÃB̃−1Ã→HB−1+ C4‖D̃−D‖H
D̃B̃−1D̃

→HB̃−1+ C5‖B̃−B‖HB̃→HB−1 .

4 Hyperbolic Problem

As an example of the previous results, we consider hyperbolic problem:

∂2u

∂t2
=

∂

∂x

(
a(x)

∂u

∂x

)
+ f(x, t) , x ∈ (0, 1), t > 0, (17)

u(0, t) = u(1, t) = 0 , u(x, 0) = u0(x) .
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Problem (17) can be written in the form (1), for H = L2(0, 1), B – identity

operator in L2(0, 1) and Au =− ∂

∂x

(
a(x)

∂u

∂x

)
. In the case when a ∈ C1[0, 1],

0 < c1 ≤ a(x) ≤ c2 and |a′(x)| ≤ c3, operator A maps D(A) =
◦
W 1

2 (0, 1)∩W 2
2 (0, 1)

to L2(0, 1).
The next inequalities hold:

c0 ‖v‖2W 1
2 (0,1) ≤ (Av, v) =

1∫
0

a(x) |v′(x)|2 dx ≤ c2 ‖v‖2W 1
2 (0,1) , v ∈

◦
W 1

2 (0, 1) ,

c4 ‖v‖W 2
2 (0,1) ≤ ‖Av‖L2(0,1) ≤ c5 ‖v‖W 2

2 (0,1) , v ∈
◦
W 1

2 (0, 1) ∩W 2
2 (0, 1) , (18)

where c0 = c1π
2/(1 + π2), and constants c4 and c5 depend on c1, c2 and c3. We

have: HA =
◦
W 1

2 (0, 1), HA−1 = W−1
2 (0, 1) and HA2 =

◦
W 1

2 (0, 1) ∩W 2
2 (0, 1).

The corresponding perturbed problem has the form:

∂2ũ

∂t2
=

∂

∂x

(
ã(x)

∂ũ

∂x

)
+ f̃(x, t) , x ∈ (0, 1), t > 0,

ũ(0, t) = ũ(1, t) = 0 , ũ(x, 0) = ũ0(x) .

We assume that ã ∈ C1[0, 1], 0 < c̃1 ≤ ã(x) ≤ c̃2 , |ã′(x)| ≤ c̃3, B̃ = B =

identity operator in L2(0, 1) and Ãu = − ∂

∂x

(
ã(x)

∂u

∂x

)
.

The next inequalities are valid [1]:

‖Ã−A‖HA→HA−1 ≤ C‖ã− a‖C[0,1] , (19)

‖Ã−A‖HA2→H ≤ C‖ã− a‖C1[0,1] , (20)

‖Ã−A‖H→HA−2 ≤ C‖ã− a‖C1[0,1] , (21)

where C is a constant.
For example, we have:

‖Ã−A‖HA→HA−1 = sup
w∈HA

‖(Ã−A)w‖A−1

‖w‖A
= sup
w∈HA

|((Ã−A)w,w)|
(Aw,w)

=

= sup
w∈

◦
W 1

2

∣∣∣∣ 1∫
0

(
ã(x)− a(x)

)
|w′(x)|2 dx

∣∣∣∣
1∫
0
a(x) |w′(x)|2 dx

≤ C‖ã− a‖C[0,1]

By the same technique, using (18), we can prove (20) and (21).
On that way, estimates of strong stability (8) and (10), in this case have the

following form:
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‖ũ− u‖(0) ≤ C
(0)
0 ‖ũ0 − u0‖L2(0,1) + C

(0)
1 ‖ũ1 − u1‖W−1

2 (0,1)

+C
(0)
2 ‖f̃ − f‖L2((0,T );W−1

2 (0,1)) + C
(0)
3 C‖ã− a‖C[0,1] ,

‖ũ− u‖(1) ≤ C
(1)
0 ‖ũ0 − u0‖ ◦

W 1
2(0,1)

+ C
(1)
1 ‖ũ1 − u1‖L2(0,1)

+C
(1)
2 ‖f̃ − f‖L2((0,T )×(0,1)) + C

(1)
3 C‖ã− a‖C1[0,1] .
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Abstract. A semi-Lagrangian semi-implicit two time level scheme is
considered for hydrostatic atmospheric model. Introduced time splitting
allows to treat principal physical components of atmospheric waves in
semi-implicit manner with second order of accuracy, while insignificant
physical modes are approximated by explicit formulas with the first or-
der of accuracy and using a coarser spatial grid. This approach allows
to reduce the computational cost with no loss of overall precision of
the integrations. Numerical experiments with actual atmospheric fields
showed that the developed scheme supplies rather accurate forecasts us-
ing time steps up to one hour and it is more efficient than three time
level counterparts.

1 Introduction

Semi-Lagrangian semi-implicit (SLSI) approach is an efficient modern method
of numerical solution of the hydrothermodynamic equations used in weather
prediction and atmospheric modeling. Since the original demonstration of the
extended stability and accuracy of the SLSI method in [2,13,16,17], this nu-
merical technique is being used in an increasing range of atmospheric models
[9,10,18]. In the last decade, motivated by results of McDonald [14] and Tem-
perton and Staniforth [20] for shallow water equations, numerical modelers have
substituted three time level SLSI schemes by two time level ones, which allow to
use even larger time steps and achieve the same accuracy with almost doubling
of efficiency [9,11,12,15,21].

Although SLSI schemes have been shown to be quite efficient, there are some
computationally expensive parts of calculations inherent to any SLSI algorithm,
which can be treated in a more optimal manner. Interpolation to the trajectory
points, implicit discretization of slow gravitational modes and solution of cou-
pled 3D elliptic problems for linear terms treated implicitly are among these less
efficient segments of computation. This research is addressed to the last two is-
sues. For explicit and simple approximation of slow gravitational waves, we split
the full SLSI algorithm into two successive steps: in the first step, all terms are
treated explicitly and with first overall order of accuracy and the second step

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 195–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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introduces an implicit approximation for the fastest waves and a second order of
accuracy for the most energy valuable terms. The first step requires simple com-
putations for the entire spectrum of processes described by primitive equations,
but stability criterion is very rigid. Using a second step we improve the overall
stability at a reduced computational cost, because only the terms responsible
for the fastest processes are involved in these calculations. This separation is
based on Burridge’s vertical decoupling [7], which transform linearized hydro-
static equations to a set of decoupled barotropic modes with different equivalent
depths. The principal barotropic modes, which correspond to the largest equiv-
alent depths and contain the main part of system energy, are treated implicitly
with second order of accuracy, while other vertical modes remain unchanged after
the first step. This way, 3D elliptic problem is reduced to a set of 2D ones and we
should solve only a few of these systems related to the fastest barotropic modes.

A similar two step approach has been used in a three time level SLSI model
[4]. The reported results showed strong points of developed scheme for time
steps up to 40 min. However, subsequent attempts to increase the time step to
1 hour using the same scheme were not successful, because the forecasts lost
their precision even being stable. In this research we show that this time barrier
of accuracy is a consequence of fast increasing of truncation errors for extended
time steps due to growth of both time truncation terms of three time level scheme
and additional truncation errors caused by splitting method applied to solving
2D elliptic problems. In the current version of the scheme, application of two
time level discretization and multigrid solver allows to increase time step to 1
hour with no loss of accuracy in the predicted atmospheric fields of pressure
and wind.

2 Semi-Lagrangian Time Discretization

Using time coordinate t, horizontal cartesian coordinates x, y of conformal pro-
jection of a sphere and vertical coordinate σ = p/ps, horizontal momentum
equations, hydrostatic equation, continuity equation and thermodynamic equa-
tion can be written as follows:

du

dt
= f0v −Gx + Nu,

dv

dt
= −f0u−Gy + Nv, Glnσ = −RT,

dP

dt
= −D − σ̇σ,

dT

dt
=

RT0

cp
.

(
dP

dt
+

σ̇

σ

)
+ NT . (1)

Here u, v, σ̇, G, P, T are unknown functions, namely, u and v are the horizontal
velocity components, σ̇ is the vertical velocity component, D = m2(ux+vy) is the
horizontal divergence, P = ln ps, p and ps are the pressure and surface pressure
respectively, T is the temperature, G = Φ + RT0P , Φ = gz is the geopotential,
z is the height, T0 = const is the reference temperature profile. Nonlinear and
variable coefficient terms Nu, Nv, NT are expressed in the form

Nu = −u2 + v2

2
m2
x + (f − f0)v −R(T − T0)Px,
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Nv = −u2 + v2

2
m2
y − (f − f0)u−R(T − T0)Py,

NT = −R(T − T0)
cp

(
σ̇

σ
−D − σ̇σ

)
. (2)

Individual 3D derivative is

dϕ

dt
= ϕt + m2(uϕx + vϕy) + σ̇ϕσ, ϕ = u, v, P, T (3)

and the following parameters are used: m is the mapping factor of conformal
projection, f is the Coriolis parameter with mean value f0, g is the gravitational
acceleration, R is the gas constant of dry air, cp is the specific heat at constant
pressure. Note that the subscripts t, x, y, σ denote the partial derivatives with
respect to indicated variable.

Semi-Lagrangian semi-implicit two time level approximation of prognostic
equations in (1) can be written in the form:

un+1,a − un,d

τ
= f0

vn+1,a + vn,d

2
− Gn+1,a

x + Gn,dx
2

+ Nn+1/2
u ,

vn+1,a − vn,d

τ
= −f0

un+1,a + un,d

2
−

Gn+1,a
y + Gn,dy

2
+ Nn+1/2

v ,

Pn+1,a − Pn,d

τ
= −Dn+1,a + Dn,d

2
− σ̇n+1,a

σ + σ̇n,dσ
2

, (4)

Tn+1,a − Tn,d

τ
=

RT0

cp

(
Pn+1,a − Pn,d

τ
+

σ̇n+1,a + σ̇n,d

2σ

)
+ N

n+1/2
T .

Here, τ is the time step, superscripts ”n+1, a” denote a value at the arrival point
of the 3D trajectory at the new time level (n+ 1)τ , superscripts ”n, d ” denote
a value at the departure point at the current time level nτ and nonlinear terms
are evaluated by time extrapolation at the intermediate time level (n + 1/2)τ .

If two fixed point iterations with trilinear spatial interpolation of velocity
components are used for solving trajectory equations and at least triquadratic
interpolation is used for evaluation of the left hand side terms in (4) at depar-
ture points, then the system (4) approximates the primitive equations (1) with
second order of accuracy [11,14,15,21]. The only restriction on the time step of
the scheme (4) appears as a sufficient condition for convergence of fixed point
iterations [16]:

τ ≤ 2/3Vd, Vd = max (|ux|, |uy|, |uσ|, |vx|, |vy|, |vσ|, |σ̇x|, |σ̇y|, |σ̇σ|) . (5)

Using the maximum values of wind component variations Vd ≈ 1.5.10−4s−1 we
get the maximum allowable time step τ ≈ 70 min.

Although the scheme (4) is rather efficient, it has some expensive calcu-
lations, such as implicit discretization of slow gravitational modes and solu-
tion of coupled 3D elliptic problems for linear terms treated implicitly. To re-
duce a number of calculations related to insignificant slow vertical modes, we
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separate semi-Lagrangian method in two steps. In the first step we apply ex-
plicit semi-Lagrangian forward-backward discretization (SLFB) to the primitive
equations (1):

ûn+1,a − un,d

τ
= f0

v̂n+1,a + vn,d

2
− Ĝn+1,a

x + Gn,dx
2

+ Nn+1/2
u ,

v̂n+1,a − vn,d

τ
= −f0

ûn+1,a + un,d

2
−

Ĝn+1,a
y + Gn,dy

2
+ Nn+1/2

v ,

P̂n+1,a − Pn,d

τ
= −Dn,d − σ̇n,dσ , (6)

T̂n+1,a − Tn,d

τ
=

RT0

cp

(
P̂n+1,a − Pn,d

τ
+

σ̇n,d

σ

)
+ N

n+1/2
T .

This step is computationally much less expensive then a single step by (4) be-
cause the formulas (6) are actually explicit. However the scheme (6) has the first
order of accuracy and is linearly stable if τ ≤

√
2hg/cg, where hg is a meshsize of

spatial grid used for gravitational terms and cg ≈ 350m/s is a maximum velocity
of gravitational waves in the system (1). On spatial grid C with principal mesh-
size h = 75km, the minimum gravitational meshsize is hg = h/2 = 37.5km. Then
maximum allowable time step is τ ≈ 2.5 min, which is too small as compared
with accuracy requirements.

To improve stability properties of (6) we should introduce more implicit ap-
proximation such as in (4). To do this, we consider the differences between SLSI
and SLFB schemes:

δu = τ/2 · (f0δv − δGx), δv = τ/2 · (−f0δu− δGy), (7)
δP = τ/2 · (−ΔD −Δσ̇σ), σδT = RT0/cp · (σδP + τ/2 ·Δσ̇), (8)

where δϕ = ϕn+1,a − ϕ̂n+1,a, Δϕ = ϕn+1,a − ϕn,d. Differentiating the last
T -equation with respect to σ and using P -equation and hydrostatic equation
to eliminate temperature, surface pressure and vertical velocity, we obtain

(σδClnσ)σ = −τRT0 ·R/2cp ·ΔD. (9)

Equations (7) and (9) form the closed system for three unknown functions.

3 Vertical and Horizontal Splitting

Discrete analogs of equations (7) and (9) on the vertical K level grid can be
written as

δu = τ/2 · (f0δv− δGx), δv = τ/2 · (−f0δu− δGx), δG = −τRT0/2 ·A ·ΔD,
(10)

where u,v,D,G are the vector-columns of the order K and A is matrix K×K of
vertical structure. It can be shown that, under natural restrictions on a choice of
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vertical approximation, the vertical structure matrix is oscillatory and, therefore,
all its eigenvalues are positive and distinct [5].

By using a spectral decomposition A = SΛS−1, where Λ = diag[λ1, . . . , λK ]
is eigenvalue matrix and S is the matrix of eigenvectors (i.e., vertical normal
modes) of the A, the system (10) can be rewritten as K decoupled 2D systems

uk =
τf0

2
vk −

τ

2
Gkx , vk = −τf0

2
uk −

τ

2
Gky , Gk +

τc2k
2

Dk = −τc2k
2

D∗
k. (11)

Here k = 1, . . . ,K is the index of vertical mode, c2k = RT0λk is the square of the
gravity-wave phase speed of the k-th vertical mode and

ϕ = S−1(ϕn+1,a − ϕ̂n+1,a), ϕ∗ = S−1(ϕ̂n+1,a − ϕn,d), ϕ = u, v,D,G, (12)

that is, ϕk are the coefficients of expansion of physical corrections ϕn+1,a−ϕ̂n+1,a

by the vertical normal modes sk, which compile the matrix S, and analogously for
ϕ∗
k. Hereafter we suppose that eigenvalues λk are numbered in decreasing order.

The second step of two step algorithm consists of solution of some 2D systems
(11) with the greatest values of ck. Each of the systems (11) can be considered
as time discretization of the linearized barotropic equations with corresponding
equivalent depth dk = c2k/g. Since smaller vertical modes have not any significant
effect on the accuracy and stability of constructed scheme, we can solve only some
first systems (11) in order to improve significally the accuracy and stability
properties of the SLFB scheme. Indeed, the analysis of linear stability shows,
that by solving the first I systems (11) the CFL criterion for SLFB scheme is
substituted by more tolerant condition τ ≤

√
2hg/cI+1.

For used vertical discretization on 15 level vertical grid, the fastest six gravity-
wave speeds are {ck}61 = {342, 188, 101, 62, 42, 30}. Therefore, correcting only the
first five modes, we increase a scheme stability from 2.5 min to about 30min.
Moreover, applying Turkel-Zwas space splitting [22] with gravitational meshsize
hg = 3h/2 = 112.5 km for approximation of pressure gradient and divergence
terms in the SLFB scheme, one can increase the maximum allowable time step up
to 90 min. The last is less restrictive than (5) and large enough for the purposes
of numerical weather prediction. Theoretically such scheme has the first order
accuracy and use a coarse grid because of low accuracy and large meshsize used
in SLFB scheme, but it does not practically result in a loss of accuracy because
the slowest internal gravity waves contain only a small fraction of the total
available energy.

By eliminating velocity components, solution of each barotropic system (11)
can be reduced to 2D Helmholtz equation

Gk − αk∇2Gk = −βkD∗
k, αk = τ2c2k/4 + τ2f2

0 , βk = −τc2k/2. (13)

Further horizontal splitting based on modification of (13) to the factored form
was applied in [4]:

(1− αk∂xx)(1− αk∂yy)Gk = −βkD∗
k + α2

kG
∗
kxxyy

. (14)
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The last equation is reduced to a set of 1D elliptic problems solved very efficiently
by Gelfand-Thomas algorithm. This is a slight modification for a small values of
time step and experiments show that it works well for τ ≤ 40 min [4,19]. However,
attempts to use this splitting in present model for larger time steps were not
successful because of the fast growth of splitting truncation error when time
step exceeds 30-40 min. It can be shown that this behavior is the consequence of
introduction of additional truncation error in the hydrostatic equation related
to the last splitting. Since the principal objective of using the two time level
schemes is the increase of time step as compared with three time level ones, this
kind of splitting was rejected in current model.

Unfortunately, the same kind of behavior of splitting error was observed ap-
plying different splitting techniques [3,6,8]. Therefore, we decide to apply multi-
grid method for solution of (13), which is well established economic technique for
solution of elliptic problems [23]. We choose the BOXMG software [1] because it
permits to use the rectangular grids with any point number. Through numerical
experiments the optimal version of multigrid algorithm has been determined,
which consist of standard V -cyclic method with using two cycles for the first
vertical mode (k = 1) and one cycle for other corrected modes (k = 2 : 5).
One four-color Gauss-Seidel point relaxation sweep is performed on any coarse
grid both before dropping down to next coarser grid and before interpolation
to previous finer grid. Two red-black relaxation sweeps are used on the primi-
tive finest grid. The numerical experiments showed that this multigrid algorithm
reduces the computational cost of the solution of the equation (13) about fac-
tor of 2 as compared with the traditional SOR method for horizontal grids of
100x100 points.

4 Numerical Experiments

For evaluating efficiency andprecision of the constructed two time level scheme (de-
noted in this section by SLSI-V2TL) we compare its performance with two three
time level SLSI schemes developed earlier and with usual leap-frog scheme. Both
three time level SLSI schemes were presented in [4] and we keep denotations used
there (SLSI-V and SLSI-VH). The first is a three time level version of the stud-
ied algorithm and the second uses additional horizontal splitting considered in sec-
tion 3. The horizontal domain of 7000 × 7000 m2 centered at Porto Alegre city
(300S, 520W ) was covered by uniform spatial grid C with meshsize h = 75 km.
The initial and boundary value conditions were obtained from objective analysis
and global forecasts of National Centers for Environmental Prediction (NCEP).

In Table 1 we present the results of comparison of 24-h geopotential height
forecasts produced by three different semi-Lagrangian schemes with ”exact” fore-
casts of leap-frog scheme. Each scheme was run with appropriate time step chosen
on a base of stability, accuracy and computational cost considerations.

Table 2 shows the results of a series of ten 24-h forecasts of SLSI-V, SLSI-VH
and SLSI-V2TL schemes on the same spatial grid and with time steps indicated
in Table 1. Two mean objective scores of the geopotential forecasts were cal-

k
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Table 1. Comparative characteristics of the different schemes.τ - time step in minutes
used in indicated model;δ200, δ500, δ1000 - root-mean-square height differences in meters
between the 24-h forecasts produced by chosen scheme and leap-frog scheme at the
pressure surfaces 200hPa, 500hPa and 1000hPa, respectively; TCPU - computational
time cost of one forecast regarding leap-frog forecast time

scheme τ δ200 δ500 δ1000 TCPU

leap-frog 1 0 0 0 1
SLSI-V 60 5.5 5.4 5.1 0.109

SLSI-VH 40 5.6 5.3 5.2 0.112
SLSI-V2TL 60 5.1 4.9 4.7 0.111

Table 2. Mean objective scores of the 24-h geopotential forecasts. ε200, ε500, ε1000 -
root-mean-square height differences (in meters) between the analysis and the 24-h
forecasting fields at the pressure surfaces 200hPa, 500hPa and 1000hPa, respectively;
r200, r500, r1000 - correlation coefficients (nondimensional) between the analysis and 24-
h forecasting fields at the pressure surfaces 200hPa, 500hPa and 1000hPa, respectively

scheme ε200 r200 ε500 r500 ε1000 r1000

leap-frog 30 0.88 22 0.90 23 0.86
SLSI-V 31 0.89 22 0.91 24 0.86

SLSI-VH 30 0.89 23 0.90 25 0.85
SLSI-V2TL 29 0.90 19 0.93 23 0.87

culated at different vertical levels: the root-mean-square differences in meters
between 24-h forecasts and NCEP analysis and the correlation coefficient be-
tween observed and forecast changes. Also the leap-frog scheme with 1-min time
step was run to compare the relative accuracy of the different schemes. Note
that the use of reduced time step of 30 min for SLSI-V and SLSI-VH schemes
increases their accuracy up to level of SLSI-V2TL scheme but it requires double
computational time. On the other hand, increasing the time step for SLSI-VH
scheme up to 60 min. results in drastically decreasing of precision, which is re-
lated to additional splitting errors considered in section 3. Obtained evaluations
show efficiency and accuracy of the constructed two time level SLSI scheme as
compared with three time level counterparts.
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Abstract. It is known that in one, two, and three spatial dimensions,
the optimal constant in the strengthened Cauchy-Bunyakowski-Schwarz
(CBS) inequality for the Laplacian for red-refined linear finite element
spaces, takes values zero, 1

2

√
2 and 1

2

√
3, respectively. In this paper we

will conjecture an explicit relation between these numbers and the spatial
dimension, which will also be valid for dimensions four and up. For each
individual value of n, it is easy to verify the conjecture. Apart from giving
additional insight into the matter, the result may find applications in
four dimensional finite element codes in the context of computational
relativity and financial mathematics.

1 Introduction

The topic of this paper can be classified as being on the borderline between
computational geometry, finite element theory, and linear algebra. Finite ele-
ment theory because the result provides bounds for multi-level preconditioning
uniform in the size of the system; computational geometry because it concerns
uniform partitioning of simplices in spatial dimensions higher than the usual
three, and linear algebra because it is the language in which the results and
their proofs are formulated. In this section we briefly recall some basics of those
three mathematical fields.

1.1 Multi-level Preconditioning

To discuss multi-level preconditioning, it suffices to outline two-level precondi-
tioning and to give the recursive structure that leads to the multi-level variant.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 203–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Therefore, we consider here a positive definite and symmetric matrix A that has
been block partitioned, and a block diagonal preconditioner K of the form

A =
(
A11 A12
A21 A22

)
, and K =

(
A11 0
0 A22

)
. (1)

It is widely known that if there exists a non-negative number γ < 1 such that
for all vectors v, z of the appropriate dimensions

v∗A12z ≤ γ
√

v∗A11v
√

z∗A22z, (2)

then the condition number κ(K−1A) of the block-diagonally preconditioned ma-
trix satisfies the bound

κ(K−1A) ≤ 1− γ

1 + γ
. (3)

This implies that the block-diagonally preconditioned Richardson iteration (also
called block-Jacobi iteration) to approximate the solution of a linear system with
system matrix A converges to the exact solution with the right-hand side of (3)
as error reduction factor.

Naturally, in each step, two linear systems of the form A11x = b and A22y = c
need to be solved. In finite element applications, it is usually the case that one of
the two, say A22 is well-conditioned without further preconditioning, for instance
if the space corresponding to A22 is the space of additional details to be added to
obtain a red-refined space or to obtain a space of higher polynomial order. The
other system, however, typically suffers from the same ill-conditioning as the
original matrix A. By recursion, one then proceeds to block-partition A11 into a
well-conditioned part and an ill-conditioned part. This can result in an optimal
complexity solver for the finite element problem at hand. A thorough under-
standing of the finer subtleties in this process is not needed in the remainder of
this paper; we refer to the SIAM Review paper [6] for details and references.

1.2 The Strengthened Cauchy-Bunyakowski-Schwarz Inequality

It is, on the other hand, useful to explain the relation between (2) and the topic
of this paper, called the strengthened CBS inequality. For this, consider the usual
weak formulation of the Poisson equation with homogeneous Dirichlet boundary
conditions, which aims to find u ∈ H1

0 (Ω) such that

a(u, v) = f(v), for all v ∈ H1
0 (Ω). (4)

For ease of explanation, let us assume that the domain Ω is planar and polygonal,
and that a triangulation T1 of Ω is given, as well as the corresponding space V of
continuous piecewise linear functions in H1

0 (Ω) relative to T1. Moreover, let T2
be the triangulation of Ω that arises from T1 by red-refinement: this means that
each triangle from T1 is subdivided into four by connecting each edge midpoint
to the other two by a straight line segment. Write W for the space of continuous
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piecewise linear functions in H1
0 (Ω) relative to T2. Clearly V ⊂W , and we write

Z for the complement of V in W ,

W = V ⊕ Z. (5)

Discretization of (4) in W results in a stiffness matrix A, coming from the discrete
equations

a(uW , w) = f(w), for all w ∈W, (6)

together with a choice of a basis for W . If we choose as a basis the nodal basis
for the subspace V together with the nodal basis functions in W that correspond
to functions in Z, we get a block-partitioning of A as in (1) satisfying (2). In
terms of the bilinear form a(·, ·) it can be seen that (2) is equivalent to

|a(v, z)| ≤ γ
√

a(v, v)
√

a(z, z), for all v ∈ V, z ∈ Z. (7)

This inequality can righteously be called a strengthened CBS inequality; the
smallest number γ for which (7) is satisfied, it the angle between the subspaces
V and Z in the geometry induced by the energy inner product. For planar
domains, it is known that γ = 1

2

√
2, see [1]. In one space dimension, it is trivial

to check that Z is H1
0 (Ω)-orthogonal to V and hence γ = 0. In three space

dimensions, γ = 1
2

√
3; see for instance [3]. This paper [3] also contains results

for elasticity problems and for a more general type of refinement.

1.3 Red-Refinement in Higher Dimensions

Red-refinement in two space dimensions can be defined relatively easily, as we
did above. In three dimensions and higher it becomes more troublesome. We will
follow the lines from [3] and use the so-called Kuhn’s partition [9] of the cube.
This elegant partition, and its higher dimensional analogues, is actually due to
Freudenthal [7], and can be described as follows.

Proposition 1 (Freudenthal [7]). Let K = [0, 1]n be the unit (hyper-)cube.
Then K can be subdivided into n! simplices S of dimension n. Each of the
simplices is the convex hull of a path of n edges of K connecting the origin with
the point (1, . . . , 1). Alternatively, these simplices can be characterized as the
sets

Sσ = {x ∈ R
n | 0 ≤ xσ(1) ≤ . . . ≤ xσ(n) ≤ 1}, (8)

where σ ranges over all n! permutations of the numbers 1 to n.

Definition 1 (Canonical Path Simplex). A simplex with the property of
having n mutually orthogonal edges that form a path is called a path simplex
[2, 8] or an orthoscheme [5, 10]. The simplex

Ŝ = {x ∈ R
n | 0 ≤ x1 ≤ . . . ≤ xn ≤ 1} (9)

we will call the canonical path simplex.
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The unit cube K can be trivially subdivided into 2n identical subcubes. Each
of the subcubes can be partitioned into n! simplices using the above idea in its
scaled form, resulting in a total of n!2n simplices. It can be verified that this
partition also constitutes a partition of each of the n! simplices Sσ from (8) in
which K could have been subdivided directly; hence we have a way of subdividing
the canonical path simplex Ŝ from (9) into 2n smaller ones.

Definition 2 (Red-Refinement of an n-Simplex). Given an arbitrary n-
simplex S, it can be mapped onto Ŝ by an affine transformation F . Its image
Ŝ = F (S) can be subdivided into 2n subsimplices following the above. The pre-
images under F of these subsimplices form a partition of S that we will call the
red-refinement of S.

1.4 Local Analysis

Our final goal is to compute the strengthened CBS constant for red-refined
simplicial partitions in arbitrary space dimensions for the Poisson equation. An
important observation [3, 6] in this context is that a local analysis of the CBS
constant on the canonical path simplex Ŝ is sufficient. This is due to the fact that
we consider the simple case of the Laplacian. Given Ŝ and its n + 1 nodal basis
functions φj , red-refinement introduces 1

2n(n + 1) additional basis functions,
which are the nodal basis functions associated with the midpoints of each edge.
This describes two spaces V and Z on Ŝ of dimensions n + 1 and 1

2n(n + 1)
respectively. Suppose that

|a(v, z)Ŝ | ≤ γ̂
√

a(v, v)Ŝ
√

a(z, z)Ŝ , for all v ∈ V and z ∈ Z. (10)

Then it is well known that the same bound with the same constant γ̂ will be found
on each affine transformation of Ŝ. Also, combination of all local information
results in a global result with the same constant. This explains why we will only
compute γ̂ on Ŝ.

2 A Computational Approach

We will now present an approach to find the strengthened CBS constant in higher
dimensions. Even though it is a computational approach, it can a posteriori be
verified that the computed values are correct.

2.1 The Local Stiffness Matrix for Linear n-Simplicial Elements

In the following, we will use the stiffness matrix Â for the red-refined canonical
path simplex. This patch of 2n subsimplices counts 1

2 (n + 1)(n + 2) degrees of
freedom, of which n+1 belong to the coarse grid, and 1

2n(n+1) to the midpoints
of the edges. To compute Â, we need the (n+ 1)× (n+ 1) local stiffness matrix
B̂ for Ŝ itself. For this we can use the following lemma.
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Lemma 1. Let P be a nonsingular n × n matrix, then the convex hull of the
origin p0 and the columns p1, . . . , pn of P is an n-simplex S. Let φj : S 
→ R be
the nodal linear basis function corresponding to pj . Then⎛⎜⎝ (∇φ1,∇φ1) . . . (∇φn,∇φ1)

...
...

(∇φ1,∇φn) . . . (∇φn,∇φn)

⎞⎟⎠ = Vol(S)Q∗Q, where Q∗ = P−1. (11)

Proof. Denote the columns of Q by q1, . . . , qn. Since Q∗P = I, we see that for
i = 1, . . . , n we have that q∗

i pj = δij hence φi(x) 
→ q∗
i x, and ∇φi = qi. Therefore

(∇φi,∇φj) =
∫
S

q∗
i qjdx. (12)

Since qi is constant, the statement follows. �
Notice that to get the local stiffness matrix for S, we need to include the

inner products of φ0 with all φj , j = 0, . . . , n. For the canonical path simplex Ŝ,
this is can be done as follows.

The matrix P corresponding to Ŝ is the upper triangular matrix for which
each upper triangular entry equals one. The transpose Q of the inverse of this
particular P can also be written down easily,

P =

⎛⎜⎝1 · · · 1
. . .

...
1

⎞⎟⎠ and Q =

⎛⎜⎜⎜⎝
1

−1 1
. . . . . .

−1 1

⎞⎟⎟⎟⎠ . (13)

The gradient q0 of the nodal basis function φ0 that corresponds to the origin
equals minus the first canonical basis vector. Adding this vector the left of
Q we find the local stiffness matrix B̂ of Ŝ,

B̂ =
1
n!

(q0|Q)∗(q0|Q) =
1
n!

⎛⎜⎜⎜⎜⎜⎝
1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1

⎞⎟⎟⎟⎟⎟⎠ . (14)

2.2 The Stiffness Matrix for the Red-Refined Ŝ

Using the local stiffness matrix B̂, we can now build the stiffness matrix Â
corresponding to all 1

2 (n+1)(n+2) nodal basis functions ψi that are associated
with the red-refined canonical path simplex. This can be done in the standard
way, by making the usual list of simplices and the numbers of their nodes and
doing the global assembly. Without going into too much detail, we mention the
following tricks:
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• By multiplying everything by n! we can avoid non-integer arithmetic in the
process of assembly.

• A suitable numbering of the nodes was used. For example, in 3d, the node
with coordinates (x, y, z) got numbered (2z)(2y)(2x), where the latter ex-
pression should be interpreted as a base three number, by which we mean
that the node with coordinates (1, 1/2, 1/2) got number 1·32+1·31+2·30 = 14
assigned to it.

Hence, we are able to compute the stiffness matrix corresponding to the
1
2 (n + 1)(n + 2) nodal basis functions ψi that correspond to the red-refined
canonical simplex Ŝ exactly, without numerical errors.

2.3 Basis Transformation

The stiffness matrix Â belonging to the red-refined Ŝ can be used to get the
explicit form of the block partitioned matrix A. For this, we need a basis trans-
formation; after all, apart from the span of the nodal basis functions belonging
to edge midpoints, we need the coarse grid nodal basis functions corresponding
to the n + 1 vertices of Ŝ whereas in the computation of Â, the ones belonging
to the red-refined grid were used.

Remark 1. The gradients of the n+1 nodal basis functions φj are linearly depen-
dent. Therefore, we may without loss of generality remove one of them without
changing their span. We will remove φ0.

The coarse grid nodal basis function φi belonging to vertex pi of Ŝ can simply
be constructed as the sum of the fine grid nodal basis function belonging to pi,
plus the n fine grid nodal basis functions ψj belonging to the midpoints of the
edges that meet at pi multiplied by a half. Again, to avoid fractions in the
computations, we may multiply everything by two.

All this results in an explicit and exact matrix A of the block form (1) in which

A11 =

⎛⎜⎝ (∇φ1,∇φ1) . . . (∇φn,∇φ1)
...

...
(∇φ1,∇φn) . . . (∇φn,∇φn)

⎞⎟⎠ , A22 =

⎛⎜⎝ (∇ψ1,∇ψ1) . . . (∇ψm,∇ψ1)
...

...
(∇ψ1,∇ψm) . . . (∇ψm,∇ψm)

⎞⎟⎠
where ψ1, . . . , ψm with m = 1

2n(n + 1) are the fine grid nodal basis functions
corresponding to the edge midpoints, and

A12 =

⎛⎜⎝ (∇ψ1,∇φ1) . . . (∇ψm,∇φ1)
...

...
(∇ψ1,∇φn) . . . (∇ψm,∇φn)

⎞⎟⎠ .

Once more, by suitable scaling of the basis functions φj and ψj , non-integer
entries were avoided. Notice that both A11 and A22 are non-singular.
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2.4 Computation of γ̂

Since both A11 and A22 are non-singular, we have that γ̂ equals the following
supremum,

γ̂ = sup
0 
=v∈Rn,0 
=z∈Rm

v∗A12z√
v∗A11v

√
z∗A22z

. (15)

Now, let the Cholesky decompositions of A11 = U∗U and A22 = R∗R be com-
puted, then the transformations v = Ux and z = Ry show that

γ̂ = sup
‖x‖=1,‖y‖=1

x∗Cy, where C = U−∗A12R
−1. (16)

Elementary linear algebra tells us that his supremum is equal to the largest sin-
gular value σ+(C) of C. The square of this singular value is the largest eigenvalue
λ+(CC∗) of the n × n matrix CC∗. Substituting back C = U−∗A12R

−1 gives
that we aim for the largest generalized eigenvalue λ of

A12A
−1
22 A

∗
12z = λA11z. (17)

We have used MatLab to compute λ+(C∗C) for increasing values of n. The
results are tabulated below in 16 decimal places. In the right column, we wrote
down the fractions to which the numbers are equal up to machine precision.

n λ+(CC∗) conjecture
2 0.500000000000000 1/2
3 0.750000000000000 3/4
4 0.875000000000000 7/8
5 0.937500000000000 15/16
6 0.968750000000000 31/32
7 0.984375000000000 63/64

(18)

The numbers in the tabular above are quite convincing, and led us to formulate
the following conjecture.

Conjecture 2.3 The strengthened CBS constant γ̂n for the Laplacian for linear
finite elements on red-refined n-simplicial partitions equals, for all n ≥ 1,

γ̂n =

√
1−

(
1
2

)n−1

. (19)

Verification. Even though we are not able to prove this formula for all n
simultaneously, we are able verify the result for any given value of n a posteriori.
Since the matrices A11, A12 and A22 have been computed without numerical
error, it is possible to write down the characteristic polynomial

p(λ) = det(A12A
−1
22 A

∗
12 − λA11). (20)
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Once this has been done, it will not be difficult to prove whether γ̂n is its
largest root, or whether

γ̂nA11 −A12A
−1
22 A

∗
12 (21)

is singular and positive semi-definite. Even though this may be done relatively
straightforwardly in Maple or Mathematica, we did not feel the urge to do so.

3 Conclusions and Remarks

We have computed numerical values for the strengthened Cauchy-Bunyakowski-
Schwarz inequality in the context of n-simplicial linear finite elements with red-
refinement for the Laplacian. These values led to a conjecture that can easily be
verified a posteriori for a given value of n, even though we did not succeed to
find a way to give a general proof.

The practical scope of the result seems limited; however, in combination
with the recently proved superconvergence results in [4] for precisely the red-
refinements of a uniform initial n-simplicial partition, it may be of use in de-
veloping solvers for elliptic equations in four space dimensions on domains that
cannot be easily discretized using (hyper-)block elements.

References

1. O. Axelsson: On multigrid methods of the two-level type. In: Multigrid Meth-
ods, Hackbusch, W, Trotenberg U (eds). Lecture Notes in Mathematics, Springer:
Berlin, vol 960 (1982) 352–367

2. M. Bern, P. Chew, D. Eppstein, and J. Ruppert: Dihedral Bounds for Mesh Gener-
ation in High Dimensions. Proc. 6th Symp. Discrete Algorithms, ACM and SIAM
(1995) 189–196

3. R. Blaheta: Nested tetrahedral grids and strengthened CBS inequality. Numer.
Linear Algebra Appl. 10 (2003) 619–637
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Abstract. One dimensional singularly perturbed problem with discon-
tinuous coefficients is considered. The domain is partitioned into two
subdomains and in one of them the we have parabolic reaction-diffusion
problem and in the other one elliptic convection-diffusion-reaction equa-
tion.The problem is discretized using an inverse-monotone finite volume
method on Shishkin meshes. We established almost second-order in space
variable global pointwise convergence that is uniform with respect to the
perturbation parameter. Numerical experiments support the theoretical
results.

1 Introduction

Consider the following problem

Lu(x, t) ≡ ∂u

∂t
− ε

∂2u

∂x2 + q(x, t)u = f(x, t), (x, t) ∈ Ω−, (1)

Lu(x, t) ≡ −ε∂
2u

∂x2 − r(x, t)
∂u

∂x
+ q(x, t)u = f(x, t), (x, t) ∈ Ω+, (2)

[u(x, t)]Γ = u(ξ + 0, t)− u(ξ − 0, t) = 0,
[
∂u(x, t)

∂x

]
Γ

= 0, (3)

u(0, t) = ψ0(t), u(1, t) = ψ1(t), u(x, 0) = ϕ(x), x ∈ (0, ξ], (4)

where 0 < ε << 1, Ω− = {0 < x < ξ, 0 < t < T}, Ω+ = {ξ < x < 1, 0 < t < T},
Γ = {x = ξ, 0 < t < T}, and

0 < r0 ≤ r(x, t) ≤ r1, 0 < q0 ≤ q(x, t) ≤ q1.

The functions r, q and f are sufficiently smooth with possible discontinuity on
the interface Γ .

Such kind of problems describe for example an electromagnetic field arising in
motion of train on air-pillow, see [4]. The asymptotic expansion of this problem
is constructed in [8]. Our goal in this paper is to derive a finite difference scheme
that is uniformly convergent with respect to the small parameter ε.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 211–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Decomposition into Regular and Singular Part

For the numerical analysis below we shall need a decomposition of the solution
into regular and singular part.

Proposition 1. The solution u to problem (1)-(4) admits the representation

u(x, t) = v(x, t) + w(x, t),

where the regular part v(x, t) satisfies for all k,m, k+2m = 0, . . . , 4 the estimates∥∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥∥
L∞(Ω̄)

≤ C,

and the singular part w(x, t) satisfies for all k,m, k+2m = 0, . . . , 4 the estimates∥∥∥∥ ∂k+mw

∂xk∂tm

∥∥∥∥
L∞(Ω̄−)

≤ Cε−k/2
(

exp
(
−
√
q0x√
ε

)
+ exp

(
−
√
q0(ξ − x)√

ε

))
,∥∥∥∥ ∂k+mw

∂xk∂tm

∥∥∥∥
L∞(Ω̄+)

≤ Cε1/2−k exp
(
−r0(ξ − x)

ε

)
,

for some positive constant C independent of the small parameter ε.

3 Numerical Approximation

3.1 Grid and Grid Functions

It is well known that the singularly perturbed problems are not ε-uniformly con-
vergent on uniform meshes, see [5, 6] for survey. To obtain ε-uniform convergent
difference scheme we shall construct a mesh ω = ωτ × ωh, that is uniform with
respect to the time variable and partially uniform (Shishkin mesh), condensed
near to boundary and around interior layers, with respect to the space variable.

wτ = {tj , tj = tj−1 + τ, j = 0, . . . , J, t0 = 0, tJ = T, τ = T/J},
ω̄h = {xi, xi = xi−1 + hi, i = 1, 2, . . . ,m + n = N,x0 = 0, xm = ξ, xN = 1},

where

hi =

⎧⎪⎪⎨⎪⎪⎩
h1 = 4δ1/m, i = 1, . . . ,m/4 ∪ i = 3m/4 + 1, . . . ,m,
h2 = 2(ξ − 2δ1)/m, i = m/4 + 1, . . . , 3m/4
h3 = 2δ2/n, i = m + 1, . . . ,m + n/2,
h4 = 2(1− ξ − δ2)/n, i = m + n/2 + 1, . . . , N

δ1 = min{σ1
√
ε lnm/

√
q0, ξ/4}, δ2 = min{σ2ε lnn/r0, (1− ξ)/2}.

Let v(xi, tj) be a mesh function of the discrete argument (xi, tj) ∈ ω̄. Let
in addition g be a partially continuous function with possible discontinuity at the
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mesh points (xm, tj). Denote by gi,j = g(xi, tj) and g±
m,j = g(xm ± 0, tj). We

shall use further the following notations

vt̄,i,j =
vi,j − vi,j−1

τ
, vt,i,j = vt̄,i,j+1, ĥi =

hi + hi+1

2
,

ḡm,j =
hm+1g

+
m,j + hmg−

m,j

2ĥm
, vx̄,i,j =

vi,j − vi−1,j

hi
, vx̆,i,j =

vi,j − vi−1,j

ĥi

vx,i,j = vx̄,i+1, vx̂,i,j =
vi+1,j − vi,j

ĥi
, vx̄x̂,i,j =

vx̄,i+1,j − vx̄,i,j

ĥi
.

Further we shall use the discrete maximum norm

‖v‖∞,ω̄ = max
(xi,tj)∈w̄

|vi,j |.

3.2 Finite Difference Scheme

On the left we shall use the standard approximation, derived from the balance
equation, see [7] and [2] for discontinuous parabolic problem

LhUi,j = Ut̄,i,j − εUx̄x̂,i,j + qi,jUi,j = fi,j , i = 1 : m− 1, j = 1 : J, (5)

On the right we use the so called modified Samarskii scheme, see [1, 3]

LhUi,j = −ε(κhUx̄)x̂,i,j−rhi+1,jUx̂,i,j+qhi,jUi,j = fhi,j , i = m+1 : N−1, j = 0 : J,
(6)

where

rhi,j = r(xi − hi/2, tj), Rhi,j =
hir

h
i,j

2ε
, κhi,j = (1 + Rhi,j)

−1,

qhi,j = qi,j +
1
2

(
hq

1 + (Rh)−1

)
x̂,i,j

+
h2
i+1/ĥi

2(1 + (Rhi+1,j)−1)
qi+1,jqi,j
ri+1,j

,

fhi,j = fi,j +
1
2

(
hf

1 + (Rh)−1

)
x̂,i,j

+
h2
i+1/ĥi

2(1 + (Rhi+1,j)−1)
qi+1,jfi,j
ri+1,j

.

On the interface we obtain the following difference scheme

LhUm,j =
hm

2ĥm
Ut̄,m,j −

h2
m

6ĥm
Ut̄x̄,m,j +

(
ε

ĥm
− ρhm,j

)
Ux̄,m,j

−
(
rhm+1,jhm+1

ĥm
+

εκhm+1,j

ĥm

)
Ux,m,j + qhm,jUm,j = fhm,j , (7)

where

ρhm,j =
qm−0,jh

2
m

6ĥm
, qhm,j = q̄m,j +

hm+1qm+0,j

2ĥm(1 + (Rhm+1,j)−1)
− h2

m

6ĥm
qx̄,m,j

fhm,j = f̄m,j +
hm+1fm+0,j

2ĥm(1 + (Rhm+1,j)−1)
− h2

m

6ĥm
fx̄,m,j .
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Since hm = O(
√
εm−1 lnm) then for sufficiently large m holds

ε

ĥm
− ρhm,j =

1

6ĥm

(
6ε− qm−0,jh

2
m

)
≥ c0ε

6ĥm
,

where c0 is independent of m and ε positive constant.
Setting the boundary conditions

U0,j = ψ0,j , UN,j = ψ1,j , Ui,0 = ϕi, i = 0, . . . ,m, j = 0, . . . , J, (8)

we obtain the discrete problem (Ph): (5)-(8).
Let

τ ≥ h2
m

2ε− h2
mqm−0,j

= O(m−2 ln2 m), (9)

then the discrete problem (Ph) satisfies the discrete maximum principle

Lemma 1. If U0,j ≥ 0, UN,j ≥ 0, Ui,0 ≥ 0, and LhUi,j ≥ 0 then U ≥ 0 on ω̄.

3.3 A Priori Estimates

Let V − be a solution to the discrete problem (Ph,−):

Lh,−V −
i,j = V −

t̄,i,j − εV −
x̄x̂,i,j + qi,jV

−
i,j = fi,j , i = 1 : m− 1, j = 1 : J,

Lh,−V −
m,j = V −

t̄,m,j −
hm
3

V −
t̄x̄,m,j +

(
2ε
hm

− hmqm−0,j

3

)
V −
x̄,m,j + qh,−m,jV

−
m,j = fh,−m,j ,

V −
0,j = 0, V −

i,0 = ϕi, i = 0 : m, j = 0 : J,

where
qh,−m,j = qm−0,j −

hm
3

qx̄,m,j f
h,−
m,j = fm−0,j −

hm
3

fx̄,m,j .

Denote fh,−i,j = fi,j and qh,−i,j = qi,j for i = 1, . . . ,m−1. The problem (Ph,−) can
be written in operator form

B−
j V

−
t̄,j + A−

j V
−
j = Φ−

j , V
−
0,j+1 = ψ0,j+1, V

−
i,0 = ϕi, (10)

where Φ−
j = fh,−i,j+1,

(A−
j V

−
j )i =

{
−εV −

x̄x̂,i,j + qh,−i,j V −
i,j , i = 1 : m− 1,(

2ε
hm

− hmqm−0,j

3

)
V −
x̄,m,j + qh,−m,jV

−
m,j , i = m,

and Bj = Dj + τAj

(D−
j V

−
j )i =

{
V −
i,j , i = 1 : m− 1,

V −
i,j − hm

3 V −
x̄,i,j , i = m.

For the grid functions defined on the mesh ω̄− = ω̄−
h × ωτ , ω−

h = {x0, . . . , xm}
and vanishing at (x0, tj), define the scalar product
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(yj , vj ]0,ω−
h

=
m−1∑
i=1

ĥiyi,jvi,j + h̃mym,jvm,j , (yj , vj ]∗,ω−
h

=
m∑
i=1

hiyi,jvi,j , (11)

where
h̃m =

3hmε

6ε− qm−0,jh2
m

≤ 3hm
c0

.

The operator A−
j from (10) is selfadjoint and positive definite in the scalar

product [., .)0,ω−
h

defined in (11). For arbitrary discrete functions yj , vj defined

on ω−
h and annulating at x0 = 0 holds

(yj , vj ]A−
j
≡ (A−

j yj , vj ]0,ω−
h

= ε(yx̄,j , vx̄,j ]∗,ω−
h

+ (qh,−j yj , vj ]0,ω−
h
.

Since A−
j is selfadjoint and positive definite operator, then (A−

j )−1 is also self-
adjoint and positive definite operator. So we can define the energy norms

‖vj ]|A−
j

=
√

(A−
j vj , vj ]0,ω−

h
, ‖vj ]|(A−

j
)−1 =

√
((A−

j )−1vj , vj ]0,ω−
h
.

Lemma 2. The discrete problem (Ph,−) is stable with respect to the right hand
side and initial condition, and the following estimate holds for the solution V −

j

‖V −
j ]|A−

j
≤ C

{
‖ϕ]|A−

0
+ max

0≤k≤j

(
‖Φk]|(A−

k
)−1 + ‖Φt̄,k]|(A−

k
)−1

)}
for some positive constant C independent of the small parameter ε.

Let V +
j , j = 0 : J , be a solution to the discrete problem (Ph,+):

Lh,+V +
i,j = −ε(κhi,jV +

x̄,i,j)x̂,i,j − rhi+1,jV
+
x̂,i,j + qhi,jV

+
i,j = fhi,j , i = m + 1 : N − 1,

V +
N,j = 0, Lh,+V +

m,j = −
(

2ε
hm

κhm,j + 2rhm+1,j

)
V +
x,m,j + qh,+m,jV

+
m,j = fh,+m,j ,

where

qh,+m,j = qm+0,j +
qm+0,j

1 + (Rhm+1,j)−1
, fh,+m,j = fm+0,j +

fm+0,j

1 + (Rhm+1,j)−1
.

For the grid functions defined on the mesh ω̄+ = ωτ × ω+
h , ω̄+

h = {xm, . . . , xN},
and vanishing at xN , define the scalar product

[yj , vj)0,ω+
h

=
N−1∑
i=m+1

ĥiyi,jvi,j +
hm
2

ym,jvm,j

and the norms

|[vj‖1,w+
h

= [|vj |, 1)0,w+
h
, ‖vj‖∞,ω̄+

h
= max
xi∈ω̄+

h

|vi,j |.

Now, we consider the Green function G+
j (xi, ηk) of problem (Ph,+). As a function

of xi, with ηk held constant, it is defined by the relations
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Lh,+G+
j (xi, ηk) = δh(xi, ηk), i = m : N − 1, G+

j (xN , ηk) = 0.

where

δh(xi, ηk) =

⎧⎨⎩ ĥ−1
i , if xi = ηk, i, k = m + 1, . . . , N − 1,

2/hm, if xi = ηk = xm,
0, if xi �= ηk.

Denote fh,+i,j = fhi,j for i = m, . . . , N − 1. It is obvious that the solution to
problem (Ph,+) is expressed in terms of Green function as

V +(xi, tj) = [G+
j (xi, ηk), f

h,+
k,j )0,w+

h
.

Lemma 3. The Green function G+
j (xi, ηk) is nonnegative and ε - uniformly

bounded:
0 ≤ G+

j (xi, ηk) ≤ r−1
0 .

Moreover, the solution to problem (Ph,+) satisfies the estimate

‖V +
j ‖∞,w̄+

h
≤ r−1

0 |[fh,+j ‖1,w+
h
.

3.4 Uniform Convergence

Suppose that m ≈ n ≈ N/2. Let Z = U −u be the error of the discrete problem
(Ph). Then Z satisfies

LhZ = (fhi,j−fi,j)−(Lhui,j−Lui,j) ≡ Ψi,j , (xi, tj) ∈ ω, Z0,j = ZN,j = Zi,0 = 0.

The next theorem gives the main result in this paper.

Theorem 1. Let the conditions in Proposition 1 are fulfilled. If the parameters
of the mesh satisfy σ1, σ2 ≥ 2 and τ satisfies (9), then the solution U of the dis-
crete problem (Ph) is ε-uniformly convergent to the solution u of the continuous
problem (1)-(4) in discrete maximum norm and the following estimate hold

‖U − u‖∞,ω̄ ≤ C(τ + N−2 ln2 N),

for some positive constant C independent of the small parameter ε.

4 Numerical Results

Consider the problem

∂u

∂t
− ε

∂2u

∂x2 + 4u = 4 + sinπx

(
π

2
cos

πt

2
+ (4 + επ2) sin

πt

2

)
, (x, t) ∈ Ω−

−ε∂
2u

∂x2 −
∂u

∂x
+ u = 1 + sin

πt

2
(
(1 + επ2) sinπx− π cosπx

)
, (x, t) ∈ Ω+

[u(x, t)]Γ =
[
∂u(x, t)

∂x

]
Γ

= 0,

u(0, t) = u(1, t) = 1 + exp(−t/4), u(x, 0) = ϕ(x),
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where ξ = 0.5 and ϕ(x) is a solution of the stationary problem with zero right
hand side, that is equal to 1 at the boundary points x = 0 and x = 1. The exact
solution is

u(x, t) =
{

1 + sin(πx) sin(πt/2) + exp(−t/4)ϕ(x), (x, t) ∈ Ω̄−,
1 + cos (π(x− 1/2)) sin(πt/2) + exp(−t/4)ϕ(x), (x, t) ∈ Ω̄+,

For our tests we take J = N2/16. Our goal is to observe the rate of convergence
with respect to the space variable. Table 1 displays the results of our numerical
experiments. For large N we observe almost second-order ε-uniform convergence.
The convergence rate is taken to be

ρN = log2 (‖EN‖∞,w/‖E2N‖∞,w) ,

where ‖EN‖∞,w is the maximum error norm for the corresponding value of N .
Figure 1 shows the approximate solution and the error at different time stages
for ε = 2−10, N = 32 and J = 64. It illustrates very well the boundary and
interior layers behavior of the solution. Thus the numerical results support the
theoretical ones and show the effectiveness of special meshes.

Table 1. Error of the solution on Shishkin’s meshes

ε\N N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
ε = 1 8.06e-3 1.51e-3 3.03e-4 6.69e-5 1.56e-5 3.77e-6
ρN 2.42 2.31 2.18 2.10 2.05 -
ε = 2−2 3.20e-1 6.99e-3 1.59e-3 3.77e-4 9.15e-5 2.25e-5
ρN 2.20 2.14 2.08 2.04 2.02 -
ε = 2−4 6.21e-2 1.56e-2 3.37e-3 7.80e-4 1.89e-4 4.68e-5
ρN 2.00 2.21 2.11 2.04 2.02 -
ε = 2−6 1.10e-1 3.00e-2 7.59e-3 1.88e-3 5.61e-4 1.78e-4
ρN 1.88 1.98 2.01 1.75 1.66 -
ε = 2−8 1.18e-1 4.94e-2 1.50e-2 4.16e-3 1.09e-3 2.81e-4
ρN 1.25 1.72 1.85 1.93 1.96 -
ε = 2−10 9.98e-2 3.74e-2 1.91e-2 8.52e-3 2.99e-3 7.61e-4
ρN 1.41 0.97 1.16 1.51 1.98 -
ε = 2−12 8.78e-2 2.88e-2 1.91e-2 8.52e-3 3.23e-3 1.11e-3
ρN 1.61 0.59 1.16 1.40 1.54 -
ε = 2−14 8.61e-2 2.65e-2 1.92e-2 8.53e-3 3.23e-3 1.11e-3
ρN 1.70 0.47 1.17 1.40 1.54 -
ε = 2−16 8.87e-1 2.64e-2 1.92e-2 8.53e-3 3.23e-3 1.11e-3
ρN 1.75 0.46 1.17 1.40 1.54 -
ε = 2−18 9.01e-1 2.63e-2 1.92e-2 8.53e-3 3.23e-3 1.11e-3
ρN 1.78 0.46 1.17 1.40 1.54 -
ε = 2−20 9.07e-1 2.63e-2 1.92e-2 8.53e-3 3.23e-3 1.11e-3
ρN 1.79 0.46 1.17 1.40 1.54 -
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Fig. 1. Approximate solution and error on Shishkin mesh
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The Numerical Solution for System of Singular
Integro-Differential Equations by Faber-Laurent

Polynomials
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Abstract. We have elaborated the numerical schemes of reduction
method by Faber- Laurent polynomials for the approximate solution of
system of singular integro- differential equations. The equations are de-
fined on the arbitrary smooth closed contour. The theoretical foundation
has been obtained in Hölder spaces.

Keywords: singular integro-differential equations, reduction method,
Hölder spaces

1 The Results of Approximation Functions by Faber-
Laurent Polynomials

Let Γ is an arbitrary smooth closed contour limiting the one-spanned area of
complex plane D+, the point z = 0 ∈ D+ and D− = C \ {D+ ∪Γ}, C is the full
complex plane. The set of these contours we denote by Λ(1).

Let z = ψ(w) and z = ϕ(w) are the functions mapping conformably and
unambiguously the exterior of unit circle Γ0 on D− and on D+ so that ψ(∞) =
∞, ψ

′
(∞) > 0 and ϕ(∞) = 0, ϕ

′
(∞) > 0. We denote by w = Φ(z) and w = F (z)

the reversible functions for z = ψ(w) and z = ϕ(w).
We suppose

lim
z→∞

1
z
Φ(z) = 1 and lim

z→∞
zF (z) = 1; (1)

(see [1]). We obtain from (1) that the functions w = Φ(z) and w = F (z) admit in
the vicinity of points z = ∞ and z = 0 the following decompositions accordingly

Φ(z) = z +
∞∑
k=0

rkz
−k and F (z) =

1
z

+
∞∑
k=0

vkz
k

We denote by Φn(z), n = 0, 1, 2, . . . , the set of members by nonnegative
degrees z for decomposing Φn(z) and by Fn (1/z) , n = 1, 2, . . . the set of mem-
bers by negative degrees z for decomposing Fn(z). The polynomials Φn(z),
n = 0, 1, 2, . . . and Fn (1/z) , n = 1, 2, . . . , are Faber- Laurent polynomials for Γ
(see [1], [2]).

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 219–223, 2005.
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We denote by Sn the operator of reduction method by Faber- Laurent poly-
nomials :

(Sng)(t) =
n∑
k=0

akΦk(t) +
n∑
k=1

bkFk

(
1
t

)
, t ∈ Γ,

where ak, bk are the Faber- Laurent coefficients for function g(t) :

ak =
1

2πi

∫
Γ0

g(ψ(w))
wk+1 , k = 0, 1, 2, . . . ,

bk =
1

2πi

∫
Γ0

g(ϕ(w))
wk+1 , k = 1, 2, . . . ,

By ck and dk, k = 1, 2, . . . , we denote the constants which are not depend of n.
The values of ck and dk, k = 1, 2, . . . , are not important for us.

Theorem 1. Let Γ ∈ Λ(1) and g(t) is the arbitrary function satisfying on Γ the
Hölder condition with degree α (0 < α ≤ 1) : g(t) ∈ Hα(Γ ). Then∣∣∣∣∣g(t)−

n∑
k=0

akΦk(t)−
n∑
k=1

bkFk

(
1
t

)∣∣∣∣∣ ≤
≤ c1H(g;α)

lnn

nα
, t ∈ Γ, (2)

where H(g;α) is the smallest constant when the function g(t) belongs to Hα(Γ ).

We note that the theorem 1 generalizes the results on Λ(1) for contours which
satisfy the Alper condition (see [1]).

Theorem 2. Let Γ ∈ Λ(1), g(t) ∈ Hα(Γ ), 0 < α ≤ 1 and 0 < β ≤ α. Then

||g − Sng||β ≤
c2 + c3 lnn

nα−β H(g;α). (3)

The proof of the theorem 1 is the same as in [1,2] and the proof of the theorem
2 is the same as in [3].

2 The Numerical Schemes of Reduction Method

We introduce the spaces and class of functions where we study these equations.
We denote by [Hβ(Γ )]m, 0 < β ≤ 1 the Banach space of m dimensional

vector- functions (v.f.), satisfying on Γ the Hölder condition with some exponent
β. The norm is defined as
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∀g(t) = {g1(t), . . . , gm(t)},

||g||β =
m∑
k=1

(||gk||C + H(gk, β))

||g||C = max
t∈Γ

|g(t)|,

H(g;β) = sup
t′ 
=t′′

{|t′ − t
′′ |−β · |g(t′

)− g(t
′′
)|} t

′
, t

′′ ∈ Γ.

We denote by [H(q)
β (Γ )]m the space of functions g(t) which contains the

derivatives of order q inclusive and g(q)(t) ∈ [Hβ(Γ )]m.

We denote by [Ḣ(q)
β (Γ )]m the space of functions from [H(q)

β (Γ )]m which have

the form tqPg + Qg, g(t) ∈ [H(q)
β (Γ )]m, where P = 1/2 · (I + S), Q = I − P, I

is identity operator and S is the singular operator with Cauchy kernel.
In space [Hβ(Γ )]m, 0 < β < 1 we study the system of S.I.D.E.

Mϕ ≡
q∑
r=0

⎡⎣cr(t)ϕ(r)(t) + dr(t)
1
πi

∫
Γ

ϕ(r)(τ)
τ − t

dτ +

+
1

2πi

∫
Γ

hr(t, τ)ϕ(r)(τ)dτ

⎤⎦ = f(t), t ∈ Γ, (4)

where cr(t), dr(t), hr(t, τ), r = 0, q are given m ×m matrix- functions (m.f. )
which elements belong to Hβ(Γ ) and f(t) is given v.f. on Γ from [Hβ(Γ )]m, ϕ(t)
is unknown v. f. from [Hβ(Γ )]m.

We search for the solution ϕ(t) of system of S.I.D.E. (4) satisfying the con-
ditions on Γ

1
2πi

∫
Γ

ϕ(τ)τ−k−1dτ = 0, k = 0, q − 1; (5)

or the solution ϕ(t) we find in [Ḣ(q)
β (Γ )]m.

Using the Riesz operators the systems of S.I.D.E. (4) can be written as follows:

q∑
r=0

[
ar(t)Pϕ(r)(t) + br(t)Qϕ(r)(t) +

+
1

2πi

∫
Γ

hr(t, τ)ϕ(r)(τ)dτ

⎤⎦ = f(t), t ∈ Γ, (6)

where ar(t) = cr(t) + dr(t), br(t) = cr(t)− dr(t), r = 0, q.
We name the ”problem (6)-(5)” the system of S.I.D.E. (5) and conditions (6)

Since the analytic solution for the ”problem (6)-(5)” is rarely available ( see [4]),
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we look for the approximate solution for the problem ”(6)- (5)”. Most of early
approximative methods for SIDE are designed for the case where boundary is
a unit circle (see [6,7]). For the contours from Λ(1) ” the problem(6)-(5)” was
solved by quadrature- interpolation and collocation methods. (see [3,8,9]).

We look for the approximate solution of problem ”(6)- (5)” in the form

ϕn(t) = tq
n∑
k=0

α
(n)
k Φk(t) +

n∑
k=1

α
(n)
−kFk

(
1
t

)
, t ∈ Γ, (7)

where αk = α
(n)
k , k = −n, n; are unknown vectors of dimension m. Note that

function ϕn(t) ∈ [Ḣ(q)
β (Γ )]m. To find the unknown numerical vectors αk, k =

−n, n we use the relation
Sn[Mϕn − f ] = 0. (8)

We examine the condition (8) as the operator equation

SnMSnϕn = Snf (9)

for unknown v.f. ϕn(t) in subspace Rn, for functions of the form (7), with the
same norm as [Hβ(Γ )]m.

We note that the equation (9) is equivalent for the system of linear equations
with 2n + 1 dimensional unknown v.f. αk, k = −n, n. We do not indicate the
obvious form of this system because of difficulty formula.

Theorem 3. Assume the following conditions are satisfied:

1. m. f. ar(t), br(t) and hr(t, τ) r = 0, q belong to the space [Hα(Γ )]m×m,
0 < α ≤ 1;

2. det aq(t)· det bq(t) �= 0, t ∈ Γ ;
3. the left partial indexes of m.f. aq(t) are equal zero, the right partial indexes

of m.f. bq(t) are equal q for any t ∈ Γ ;
4. the operator M : [Ḣ(q)

β (Γ )]m → [Hβ(Γ )]m, where 0 < β < α is linearly
reversible.

Then beginning with numbers n, where the following inequality takes place

d1
ln2 n

nσ(α)−β ≤ r < 1,

(where σ(α) = α for α < 1 and σ(1) = 1 − ε, ε(> 0) is small number) the
equation of reduction method (9) has the unique solution.

The approximate solutions ϕn(t), constructed by formula (7), converge in the
norm of space [H(q)

β (Γ )]m, as n→∞ to the exact solution ϕ∗(t) of the ”problem
(6) - (5)” for ∀ right part f(t) ∈ [Hα(Γ )]m. Furthermore, the following error
estimate holds:

||ϕ∗ − ϕn||β,q = O

(
ln2 n

nσ(α)−β

)
. (10)
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Abstract. Groundwater flow in unsaturated soil is governed by Richards
equation, a nonlinear convection-diffusion equation. The process is nor-
mally convection-dominated, and steep fronts are common in solution
profiles. The problem is further complicated if the medium is heteroge-
neous, for example when there are two or more different soil layers. In this
paper, the least squares finite element method is used to solve for flow
through 5 layers with differing hydraulic properties. Solution-dependent
coefficients are constructed from smooth fits of experimental data. The
least squares finite element approach is developed, along with the method
for building an optimized, nonuniform grid. Numerical results are pre-
sented for the 1D problem. Generalization to higher dimensions is also
discussed.

1 Introduction

1.1 Governing Equations

Flow of water in unsaturated soil is governed by Richards’ equation [1], which
has several forms including

∂θ

∂ψ

∂ψ

∂t
=

∂

∂z
[K(ψ)

∂ψ

∂z
]− ∂K(ψ)

∂z
, (1)

where ψ is the pressure head, z is the depth below the surface, K is capillary
conductivity, and θ is the water content. Let the flux, q, be defined as

q = K(ψ, z)
(

1− ∂ψ

∂z

)
Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 224–231, 2005.
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Typical boundary and initial conditions for equation (1) are

q = F (t), t ≥ 0, x = 0, (2)

lim
z→∞

ψ = Ψ, t ≥ 0, (3)

and
ψ(z, 0) = ψ0(z), 0 < z <∞, (4)

where F (t) and ψ0(z) are continuous functions, and Ψ = lim
z→∞

ψ(z). For the lay-

ered problem, K(ψ) in (1) is replaced by K(ψ, z). In most layered problems
θ and K(ψ, z) are discontinuous at the layer boundaries, but flux, q, must be

continuous there. Therefore,
∂ψ

∂z
may be discontinuous at layer boundaries as

well, though ψ is continuous throughout the domain. In particular, we consider
vertical flow through a domain consisting of five soil layers, with data taken
from [2]. Coefficient data for the first layer is displayed in Figure 1. Data for
the other layers are similar to that for the first layer. Data fits are performed
using the splines-under-tension routines described in [3]. Layer interfaces occur
at the z values 10, 20, 36, and 53. The rest of this paper is outlined as follows.
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0
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(a) (b)

Fig. 1. Coefficient data for soil layer 1: (a) Capillary conductivity (K) (cm/min) vs.

pressure head (ψ) (cm) (b) Water content (θ)
(

cm3

cm3

)
vs. pressure head (ψ)

This section concludes with a description of a standard finite element solution
for the problem represented by equations (1)-(4). The least squares formulation
is presented in Section 2. Numerical results, comparing the Galerkin and least
squares finite element methods, and conclusions are provided in Section 3.

1.2 Galerkin Finite Element Solution

Multiplying equation (1) by a test function v, integrating both sides and applying
integration by parts results in the weak form for the problem corresponding to
equations (1)-(4):
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∫ ∞

0

∂θ

∂ψ

∂ψ

∂t
v dz = F (t)v(0) +

∫ ∞

0
K(ψ, z)

(
1− ∂ψ

∂z

)
∂v

∂z
dz

+
b∑
i=1

{[
K(ψ, z)

(
1− ∂ψ

∂z

)
v

]∣∣∣∣
ζ+

i

−
[
K(ψ, z)

(
1− ∂ψ

∂z

)
v

]∣∣∣∣
ζ−

i

}
, (5)

where ζi, i = 1, . . . , b are the values of z at which layer interfaces occur. Specifi-
cally, we seek a solution ψ in S = {u | u ∈ H1[0,∞), lim

x→∞
u = Ψ} which satisfies

(5) for all v in V = {u | u ∈ H1[0,∞), lim
x→∞

u = 0}. The discrete solution ψh in

Sh satisfies (5) for all vh in Vh, where Sh and Vh and finite dimensional sub-
spaces of S and V , respectively. Computations are performed on a finite domain,
so that the upper limit of integration in (5) is replaced by a finite value L. We
choose, as the finite element solution, a continuous piecewise-linear function of
the form

ψh(z, t) =
n−1∑
j=1

cj(t)φj(z) + Ψφn(z), (6)

where aj(t) is the magnitude of the approximation at nodal point zj and φj(z)
is the corresponding continuous piecewise linear basis function. We set L = 120
for all computations in this manuscript. The grid points used for the discrete
solution of (5) are clustered around the layer interfaces. Suppose there are 2m
subintervals on the interval [ζi, ζi+1], and let the interval midpoint be ζi+ 1

2
. The

first m interior points in this interval are computed as

zij = ζi + ζi+ 1
2

(
i

m

)2

,

and the remaining points in the interval are clustered towards ζi+1 in a similar
manner. Substituting ψh defined in (6) for ψ in (5) and letting v = φj , j =
1, . . . , n− 1 produces the system of nonlinear ordinary differential equations

A(c)
dc
dt

= B(c)c + g (7)

where c = [c1, . . . , cn−1]T , and g is a vector that does not depend on c. The
system (7) is solved using the differential-algebraic system solver DASSL [4]. A
sampling of solution profiles is displayed in Figure 2. For this calculation, 385
grid points were used. The time step was ramped up from a small starting value
at t = 0 to Δt = 1

2 at t = 1, while the front developed.

2 Least Squares Formulation

A problem which is equivalent to equation (1) is to find the function pair (ψ, q)
which solves the equations

L1(ψ, q) := q + K(ψ, z)
(
∂ψ

∂z
− 1

)
= 0 (8)
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Fig. 2. Finite element solution based on equation (5)

L2(ψ, q) :=
∂θ

∂ψ

∂ψ

∂t
+

∂q

∂z
= 0 (9)

along with boundary and initial conditions (2)-(4). This formulation allows for
direct solution of two quantities of physical interest. A standard Galerkin finite
element solution of this system is subject to strict stability requirements on the
solution spaces used for ψ and q, especially in higher dimensions. As pointed
out in [5], the least squares finite element approach offers advantages over the
standard approach. We apply the approach developed in [5] and [6] to the current
problem. The least squares variational principle, in essence, seeks the pair (ψ, q)
in an appropriate product space which minimizes

‖L1(γ, s)‖2A + ‖L2(γ, s)‖2B (10)

over all (γ, s) in a similar product space, with suitably defined norms
‖ · ‖A and ‖ · ‖B . Specific details will be provided subsequently. To have more
control over all aspects of the algorithm during the development stage, we use a
simple time discretization along with a quasi-Newton iteration to accommodate
the nonlinear terms.

2.1 Time Discretization

Replacing the time derivative in (1) with a difference quotient at t+αk, α ∈ [0, 1],
we define an approximate solution ψk(z, t) for t = nk = nΔt, (i.e. k = Δt),
n = 0, 1, 2, . . . , satisfying

dθ

dψ

∣∣∣∣
ψk(z,t+αk)

(
ψk(z, t + k)− ψk(z, t)

k

)
+

∂K(ψk(z, t + αk))
∂z

− ∂

∂z

[
K(ψk(z, t + αk))

∂ψk(z, t + αk)
∂z

]
= 0. (11)
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Let ψ̄ = ψk(z, t + k) and w =
dθ

dψ

∣∣∣∣
ψ̃

ψk(z, t), where

ψ̃ = ψk(z, t + αk) = (1− α)ψk(z, t) + αψ̄, (12)

Setting the parameter α to 1
2 results in the Crank-Nicolson method. The back-

ward difference formula corresponds to α = 1. We solve the following equation
for ψ̄:

dθ

dψ

∣∣∣∣
ψ̃

ψ̄ + k
∂K(ψ̃)
∂z

− k
∂

∂z
(K(ψ̃)

∂ψ̃

∂z
) = w. (13)

Given function w and step size k = Δt, we seek ψ̄ satisfying (13) on z → ∞
subject to the boundary conditions

K(ψ̃)

(
1− ∂ψ̃

∂z

)
= F (t + αk), at z = 0,

ψ̃ → Ψ, as z →∞.

An equivalent first order system is:

q̃ + K(ψ̃)

(
∂ψ̃

∂z
− 1

)
= 0, 0 < z <∞, (14)

dθ

dψ

∣∣∣∣
ψ̃

ψ̄ + k
∂q̃

∂z
= w, 0 < z <∞, (15)

q̃ = F (t + αk), at z = 0, (16)
ψ̃ → Ψ, as z →∞. (17)

2.2 Newton Iteration

We linearize equations (14) and (15) before constructing the least-squares ap-
proximation. The procedure is described as follows. Let ψ̃ = ψ̃0 + δ, where ψ̃0 is
the initial guess and δ is the correction in the Newton iteration. Then equation
(14) becomes

q̃ +
(
K(ψ̃0) + K ′(ψ̃0)δ

)[(∂ψ̃0

∂z
+

∂δ

∂z

)
− 1

]
= 0.

Dropping the quadratic terms in δ and rearranging, we have the following ap-
proximation of equation (14):

q̃ + K(ψ̃0)
∂δ

∂z
+ K ′(ψ̃0)δ

[
∂ψ̃0

∂z
− 1

]
= K(ψ̃0)

(
1− ∂ψ̃0

∂z

)
. (18)
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Using (12), equation (15) can be written as

1
α

dθ

dψ

∣∣∣∣
(ψ̃0+δ)

[
ψ̃0 + δ − (1− α)ψk(z, t)

]
+ k

∂q̃

∂z
= w.

Rewriting this equation and evaluating
dθ

dψ
at ψ̃0, we have

dθ

dψ

∣∣∣∣
ψ̃0

δ

α
+ k

∂q̃

∂z
= w − 1

α

(
dθ

dψ

∣∣∣∣
ψ̃0

[
ψ̃0 − (1− α)ψk(z, t)

])
. (19)

Since
dθ

dψ
is evaluated at ψ̃0 in (19), the linearization corresponding to (18) and

(19) is a quasi-Newton approach and the convergence may be slow if the initial
guess is not close to the solution. Note that equations (18) and (19) form a linear
system in δ and q̃.

2.3 Least Squares Variational Principle

First we define the spaces

S = {γ | γ ∈ H1(0, L), γ(L) = Ψ} and Q = {s | s ∈ H1(0, L), s(0) = F},

where Ψ and F are specified constants. To form the discrete solution, we intro-
duce finite dimensional subspaces

Sh ⊆ S, Qh ⊆ Q.

The (weighted) least squares variational principle, for the approximate problem,
is stated as follows. Given ψ̃0 ∈ Sh, and discrete solution at time t, ψkh(z, t) ∈ Sh,
determine the functions δh ∈ S0

h, q̃h ∈ Qh which minimize the functional

χ‖sh + K(ψ̃0)
∂εh
∂z

+ K ′(ψ̃0)

[
∂ψ̃0

∂z
− 1

]
εh −

[
K(ψ̃0)

(
1− ∂ψ̃0

∂z

)]
‖2

+‖ dθ

dψ

∣∣∣∣
ψ̃0

εh
α

+ k
∂sh
∂z

−
[
w − 1

α

(
dθ

dψ

∣∣∣∣
ψ̃0

[
ψ̃0 − (1− α)ψkh(z, t)

])]
‖2. (20)

over all functions εh ∈ S0
h, sh ∈ Qh, where χ is a positive weighting function.

Note that the discrete pressure at time t + k is then ψ̄h ∈ Sh, where

ψ̄h =
1
α

[
ψ̃0 + δh − (1− α)ψkh(z, t)

]
.

The space S0
h differs from Sh only in that the (possibly) nonhomogeneous bound-

ary value Ψ is set to zero. The norm in (20) is the L2 norm.
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2.4 Mesh Considerations

As in [6], we use the grading function described in [7]. The problem in the
general setting is to construct an appropriate mesh for constructing a continuous
piecewise interpolant uh, of degree k, for a given continuous function u on the
interval [a, b]. We consider the case k = 1 in the current work. Suppose that
[a, b] is to be divided into M subintervals with grid points {zi}, i = 0, 1, . . . ,M .
The strategy is based on determination of a grading function ξ(z) which has the
property, after equidistribution, that the inverse of ξ at i

M is zi. The goal is to
minimize the error e = u− uh in the Hm-seminorm, i.e.

|e|2m =
∫ b

a

(e(m))2dx.

As shown in [7] and [6], a mesh which is nearly optimal with respect to error
minimization and equistribution is found by choosing the grading function as

ξ(z) =

∫ z
a
(u′′)2/[2(2−m)+1]dx∫ b

a
(u′′)2/[2(2−m)+1]dx

.

We choose m = 1, i.e. we minimize the L2-norm of the error, so that

ξ =

∫ z
a
(u′′)2/5dx∫ b

a
(u′′)2/5dx

. (21)

Since the grading function is nonlinear, the Brent-Dekker scheme is used to locate
the grid points and the stopping criterion is measured by the relative error in ξ
to be less than a chosen tolerance τ :

max
i

∣∣∣∫ zi+1

zi
(u′′)2/5dx− 1

M

∫ b
a
(u′′)2/5dx

∣∣∣
1
M

∫ b
a
(u′′)2/5dx

< τ.

3 Numerical Results and Conclusions

Now we compare the results of the Galerkin finite element formulation and the
weighted least squares finite element approach. The weight χ in (20) is deter-
mined according to the analysis in [5] and [6] as χ = Δt‖ dθ

dψ

∣∣∣
ψ̃0

‖∞/ [α‖K(ψ̃0)‖∞].

Solution profiles for each method are compared in Figure 3. These results con-
firm that the profiles developing early in time (up to approximately 1 minute)
are nearly identical. The Galerkin finite element solution was computed using
the same spatial grid and time-steps as the results given in Section 1. The least
squares solution was computed on a grid of up to 121 spatial points, clustered ac-
cording to the method described in Section 2, using the Crank-Nicolson method
with a time step of Δt = 0.01 seconds. Convergence with respect to time was
confirmed for the least squares solution by observing that the solution did not
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change when calculated with Δt = 0.005 seconds. The next step in this research
effort will be to implement more efficient time-stepping and linearization pro-
cedures in the least squares code. The advantages of the least squares scheme
over the Galerkin finite element code will be realized more strongly in higher di-
mensions. The two-dimensional mesh strategy developed in [8] for problems with
moving fronts will be generalized to the case with discontinuous coefficients. For
that problem, as in the 1D model, solution of a first order system with flux as
an unknown will preclude the necessity of jump boundary conditions at layer
interfaces. Experimental verification of numerical results, using physical data, is
also planned.
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Fig. 3. Comparison of solution profiles at early times
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Abstract. A complete perturbation analysis of the H∞-optimization
problem for continuous-time linear systems is presented. Both local and
nonlocal perturbation bounds are obtained, which are less conservative
than the existing perturbation estimates.

1 Introduction

In this paper we present local and nonlocal perturbation analysis of the H∞-
optimization problem for continuous-time linear multivariable systems. First,
nonlinear local perturbation bounds are derived for the matrix equations which
determine the problem solution. The new local bounds are tighter than the
existing condition number based linear perturbation estimates.

Then, using the nonlocal perturbation analysis techniques developed by the
authors, the nonlinear local bounds are incorporated into nonlocal perturbation
bounds which are less conservative than the existing nonlocal perturbation esti-
mates for the H∞-optimization problem. The nonlocal perturbation bounds are
valid rigorously in contrast to the local bounds in which higher order terms are
neglected.

We use the following notations: Rm×n – the space of real m × n matrices;
Rn = Rn×1; In – the unit n×n matrix; A� – the transpose of A; ‖A‖2 = σmax(A)
– the spectral norm of A, where σmax(A) is the maximum singular value of A;
‖A‖F =

√
tr(A�A) – the Frobenius norm of A; ‖ .‖ is any of the above norms;

vec(A) ∈ Rmn – the column-wise vector representation of A ∈ Rm×n; Π ∈
Rn2×n2

– the (vec)permutation matrix, i.e. vec(A�) = Πvec(A) for A ∈ Rn×n.
The notation “:=” stands for “equal by definition”.

2 Statement of the Problem

Consider the linear continuous-time system

ẋ(t) = Ax(t) + Bu(t) + Ev(t)
y(t) = Cx(t) + w(t)

z(t) =

[
Dx(t)
u(t)

] (1)

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 232–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rr and z(t) ∈ Rp are the system state,
input, output and performance vectors respectively, v(t) ∈ Rl and w(t) ∈ Rr are
disturbances and A,B,C,D,E are constant matrices of compatible dimensions.

The H∞-optimization problem is stated as follows: Given the system (1) and
a constant λ > 0, find a stabilizing controller

u(t) = −Kx̂(t)
˙̂x(t) = Âx̂ + L((y(t)− Cx̂(t))

which satisfies
‖H‖∞ := sup

Re s≥0
‖H(s)‖2 < λ

where H(s) is the closed-loop transfer matrix from v, w to z.
If such a controller exists, then [1]

K = BTX0

Â = A− Y0(CTC −DTD/λ2)
L = Z0Y0C

T

where X0 ≥ 0 and Y0 ≥ 0 are the stabilizing solutions to the Riccati equations

ATX + XA−X(BBT − EET /λ2)X + DTD = 0 (2)

AY + Y AT − Y (CTC −DTD/λ2)Y + EET = 0 (3)

and the matrix Z0 is defined from

Z0 = (I − Y0X0/λ
2)−1 (4)

under the assumption ‖Y0X0‖2 < λ2.
In the sequel we shall write equations (2), (3) as

ATX + XA−XSX + Q = 0 (5)

AY + Y AT − Y RY + T = 0 (6)

where Q = DTD, T = EET , S = BBT − T/λ2, R = CTC −Q/λ2.
Suppose that the matrices A, . . . , E in (1) are subject to perturbations

ΔA, . . . , ΔE. Then we have the perturbed equations

(A + ΔA)TX + X(A + ΔA)−X(S + ΔS)X + Q + ΔQ = 0 (7)

(A + ΔA)Y + Y (A + ΔA)T − Y (R + ΔR)Y + T + ΔT = 0 (8)

Z = (I − Y X/λ2)−1 (9)where

ΔQ = ΔDTD + DTΔD + ΔDTΔD, ΔT = ΔEET + EΔET + ΔEΔET

ΔS = ΔBBT + BΔBT + ΔBΔBT −ΔT/λ2

ΔR = ΔCTC + CTΔC + ΔCTΔC −ΔQ/λ2.
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Denote by ΔM = ‖ΔM‖ the absolute perturbation of a matrix M . It is
natural to use the Frobenius norm ‖ .‖F identifying the matrix perturbations
with their vector-wise representations.

Since the Fréchet derivatives of the left-hand sides of (5), (6) in X and Y
at X = X0 and Y = Y0 are invertible (see the next section) then, according to
the implicit function theorem [2], the perturbed equations (7), (8) have unique
solutions X = X0 + ΔX and Y = Y0 + ΔY in the neighborhoods of X0 and
Y0 respectively. Assume that ‖Y X‖ < λ2 and denote by Z = Z0 + ΔZ the
corresponding solution of the perturbed equation (9).

The sensitivity analysis of H∞-optimization problem aims at determining
perturbation bounds for the solutions X,Y and Z of equations (5), (6) and (4)
as functions of the perturbations in the data A,S,Q,R, T .

In [3, 4] local perturbation bounds for the H∞-optimization problem have
been obtained, based on the condition numbers of equations (5), (6) and (4).
However, the local estimates, based on condition numbers, may eventually pro-
duce pessimistic results. At the same time it is possible to derive local, first order
homogeneous estimates, which are tighter in general [5, 6]. In this paper, using
the local perturbation analysis technique developed in [5, 6], we shall derive local
first order perturbation bounds which are less conservative than the condition
number based bounds in [3, 4].

Local perturbation bounds have a serious drawback: they are valid in a usu-
ally small neighborhood of the data A, . . . , T , i.e. for Δ = [ΔA, . . . , ΔT ]T asymp-
totically small. In practice, however, the perturbations in the data are always
finite. Hence the use of local estimates remains (at least theoretically) unjustified
unless an additional analysis of the neglected terms is made, which in most cases
is a difficult task. In fact, to obtain bounds for the neglected nonlinear terms
means to get a nonlocal perturbation bound.

Nonlocal perturbation bounds for the continuous-time H∞-optimization prob-
lem have been obtained in [3, 4] using the Banach fixed point principle. In this
paper, applying the method of nonlinear perturbation analysis proposed in [5, 6],
we shall derive new nonlocal perturbation bounds for the problem considered,
which are less conservative than the nonlocal bounds in [3, 4].

3 Local Perturbation Analysis

Consider first the local sensitivity analysis of the Riccati equation (5). Denote
by F (X,Σ) = F (X,A, S,Q) the left-hand side of (5), where Σ = (A,S,Q) ∈
Rn.n ×Rn.n ×Rn.n. Then F (X0, Σ) = 0.

Setting X = X0 + ΔX, the perturbed equation (7) may be written as

F (X0 + ΔX,Σ + ΔΣ) = (10)

F (X0, Σ) + FX(ΔX) + FA(ΔA) + FS(ΔS) + FQ(ΔQ) + G(ΔX,ΔΣ) = 0

where FX(.), FA(.), FS(.) and FQ(.) are the Fréchet derivatives of F (X,Σ) in
the corresponding matrix arguments, evaluated for X = X0, and G(ΔX,ΔΣ)
contains the second and higher order terms in ΔX, ΔΣ.
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A straightforward calculation leads to

FX(M) = ATc M + MAc, FA(M) = X0M + MTX0

FS(M) = −X0MX0, FQ(M) = M

where Ac = A− (BBT − EET /λ2)X0. Denote by MX ∈ Rn2.n2
, MA ∈ Rn

2.n2
,

MS ∈ Rn
2.n2

the matrix representations of the operators FX(.), FA(.), FS(.) :

MX = ATc ⊗In+In⊗ATc , MA = In⊗X0+(X0⊗In)Π, MS = −X0⊗X0 (11)

where Π ∈ Rn2.n2
is the permutation matrix such that vec(MT ) = Πvec(M)

for each M ∈ Rn.n and vec(M) ∈ Rn2
is the column-wise vector representation

of M .
It follows from (10)

FX(ΔX) = −FA(ΔA)− FS(ΔS)−ΔQ−G(ΔX,ΔΣ). (12)

Since Ac is stable, the operator FX(.) is invertible and (12) yields

ΔX = −F−1
X ◦FA(ΔA)−F−1

X ◦FS(ΔS)−F−1
X (ΔQ)−F−1

X (G(ΔX,ΔΣ)). (13)

The operator equation (13) may be written in a vector form as

vec(ΔX) = N1vec(ΔA) + N2vec(ΔS) + N3vec(ΔQ)−M−1
X vec(G(ΔX,ΔΣ))

(14)
whereN1 = −M−1

X MA, N2 = −M−1
X MS , N3 = −M−1

X .
It is easy to show that the well-known condition number based perturbation

bound [3, 4] is a corollary of (14). Indeed, it follows from (14)

‖vec(ΔX)‖2 ≤ ‖N1‖2‖vec(ΔA)‖2 + ‖N2‖2‖vec(ΔS)‖2

+ ‖N3‖2‖vec(ΔQ)‖2 + O(‖Δ̃‖2)

and having in mind that ‖vec(ΔM)‖2 = ‖ΔM‖F = ΔM and denoting KX
A =

‖N1‖2, KX
S = ‖N2‖2, KX

Q = ‖N3‖2, we obtain

ΔX ≤ KX
AΔA + KX

S ΔS + KX
QΔQ + O(‖Δ̃‖2) (15)

where KX
A , KX

S , KX
Q are the absolute condition numbers of (5) and Δ̃ =

[ΔA, ΔS , ΔQ]T .
Relation (14) also gives

ΔX ≤ ‖Ñ‖2‖Δ̃‖2 + O(‖Δ̃‖2) (16)

where Ñ = [N1, N2, N3].
Note that the bounds in (15) and (16) are alternative, i.e. which one is less

depends on the particular value of Δ̃.
There is also a third bound, which is always less than or equal to the bound

in (15). We have

ΔX ≤
√

Δ̃TU(Ñ)Δ̃ + O(‖Δ̃‖2) (17)
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where U(Ñ) is the 3 × 3 matrix with elements uij(Ñ) = ‖NT
i Nj‖2. Since∥∥NT

i Nj
∥∥

2 ≤ ‖Ni‖2‖Nj‖2 we get√
Δ̃TU(Ñ)Δ̃ ≤ ‖N1‖2ΔA + ‖N2‖2ΔS + ‖N3‖2ΔQ.

Hence we have the overall estimate

ΔX ≤ f(Δ̃) + O(‖Δ̃‖2), Δ̃→ 0 (18)
where

f(Δ̃) = min{‖Ñ‖2‖Δ̃‖2,
√

Δ̃TU(Ñ)Δ̃ } (19)

is a first order homogeneous and piece-wise real analytic function in Δ̃.
The local sensitivity of the Riccati equation (6) may be determined using the

duality of (5) and (6). For the estimate of ΔY we have

ΔY ≤ g(Δ̂) + O(‖Δ̂‖2), Δ̂→ 0 (20)

where
g(Δ̂) = min{‖N̂‖2‖Δ̂‖2,

√
Δ̂TU(N̂)Δ̂ } (21)

Δ̂ = [ΔA, ΔR, ΔT ]T and N̂ is determined replacing in (11) Ac and X0 by ÂT

and Y0, respectively.
Consider finally the local sensitivity analysis of equation (4). In view of (9)

we have

ΔZ = [In − (Y0 + ΔY )(X0 + ΔX)/λ2]−1 − Z0 = Z0WZ0 + O(‖W‖2) (22)

where W = (Y0ΔX + ΔYX0 + ΔYΔX)/λ2.
It follows form (22) ΔZ ≤ ‖ZT0 ⊗ Z0‖2‖W‖F + O(‖W‖2) and denoting

ζ0 = ‖ZT0 ⊗ Z0‖2 we get

ΔZ ≤ ζ0(‖Y0‖2 ΔX + ‖X0‖2 ΔY )/λ2 + O(‖(ΔX,ΔY )‖2)

≤ ζ0(‖Y0‖2 f(Δ̃) + ‖X0‖2 g(Δ̂))/λ2 + O(‖Δ‖2). (23)

The relations (18), (20) and (23) give local first order perturbation bounds
for the continuous-time H∞-optimization problem.

4 Nonlocal Perturbation Analysis

The local perturbation bounds are obtained neglecting terms of order O(‖Δ‖2,
i.e. they are valid only asymptotically, for Δ→ 0. That is why, their application
for possibly small but nevertheless finite perturbations Δ requires additional
justification. This disadvantage may be overcome using the methods of nonlinear
perturbation analysis. As a result we obtain nonlocal (and in general nonlinear)
perturbation bounds which guarantee that the perturbed problem still has a
solution and are valid rigorously, unlike the local bounds. However, in some
cases the nonlocal bounds may not exist or may be pessimistic.

Consider first the nonlocal perturbation analysis of the Riccati equation (5).
The perturbed equation (13) can be rewritten in the form
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ΔX = Ψ(ΔX) (24)

where Ψ : Rn.n → Rn.n is determined by the right-hand side of (13). For ρ > 0
denote by B(ρ) ⊂ Rn.n the set of all matrices M ∈ Rn.n satisfying ‖M‖F ≤ ρ.
For U, V ∈ B(ρ) we have

‖Ψ(U)‖F ≤ a0(Δ̃) + a1(Δ̃)ρ + a2(Δ̃)ρ2

and

‖Ψ(U)− Ψ(V )‖F ≤ (a1(Δ̃) + 2a2(Δ̃)ρ)‖U − V ‖F
where

a0(Δ̃) := f(Δ̃), a2(Δ̃) := ‖M−1
X ‖2(‖S‖2 + ΔS) (25)

a1(Δ̃) := 2‖M−1
X ‖2ΔA + (‖M−1

X (X0 ⊗ In)‖2 + ‖M−1
X (In ⊗X0)‖2)ΔS .

Hence, the function h(ρ, Δ̃) = a0(Δ̃) + a1(Δ̃)ρ + a2(Δ̃)ρ2 is a Lyapunov majo-
rant [7] for equation (24) and the majorant equation for determining a nonlocal
bound ρ = ρ(Δ̃) for ΔX is

a2(Δ̃)ρ2 − (1− a1(Δ̃)ρ + a0(Δ̃) = 0. (26)

Suppose that Δ̃ ∈ Ω̃, where

Ω̃ =
{
Δ̃ % 0 : a1(Δ̃) + 2

√
a0(Δ̃)a2(Δ̃) ≤ 1

}
⊂ R3

+. (27)

Then equation (26) has nonnegative roots ρ1 ≤ ρ2 with

ρ1 = φ(Δ̃) :=
2a0(Δ̃)

1− a1(Δ̃) +
√

(1− a1(Δ̃))2 − 4a0(Δ̃)a2(Δ̃)
. (28)

The operator Ψ maps the closed convex set

B(Δ̃) =
{
M ∈ Rn.n : ‖M‖F ≤ φ(Δ̃)

}
⊂ Rn.n

into itself and according to the Schauder fixed point principle there exists a so-
lution ΔX ∈ B(Δ̃) of equation (24), for which

ΔX ≤ φ(Δ̃), Δ̃ ∈ Ω̃. (29)

The elements of ΔX are continuous functions of the elements of ΔΣ.
If Δ̃ ∈ Ω̃1, where

Ω̃1 =
{
Δ̃ % 0 : a1(Δ̃) + 2

√
a0(Δ̃)a2(Δ̃) < 1

}
⊂ Ω̃

then ρ1 < ρ2 and the operator Ψ is a contraction on B(Δ̃). Hence according to
the Banach fixed point principle the solution ΔX, for which the estimate (29)
holds true, is unique. This means that the perturbed equation has an isolated
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solution X = X0 +ΔX. In this case the elements of ΔX are analytical functions
of the elements of ΔΣ.

In a similar way, replacing Ac with ÂT , S with R, Q with T and X0 with
Y0, we obtain a nonlocal perturbation bound for ΔY . Suppose that Δ̂ ∈ Ω̂, where

Ω̂ =
{
Δ̂ : b1(Δ̂) + 2

√
b0(Δ̂)b2(Δ̂) ≤ 1

}
⊂ R3

+
and

b0(Δ̂) = g(Δ̂), b2(Δ̂) = ‖M−1
Y ‖2(‖R‖2 + ΔR)

b1(Δ̂) = 2‖M−1
Y ‖2ΔÂ + (‖M−1

Y ((Y0 ⊗ In))‖2 + ‖M−1
Y ((In ⊗ Y0))‖2)ΔR.

Then
ΔY ≤ ψ(Δ̂), Δ̂ ∈ Ω̂ (30)

where

ψ(Δ̂) =
2b0(Δ̂)

1− b1(Δ̂) +
√

(1− b1(Δ̂))2 − 4b0(Δ̂)b2(Δ̂)
.

Finally, the nonlinear perturbation bound for ΔZ is obtained using (14) and
(37), (38). If 1 /∈ spect(WZ0) we have ΔZ = Z0WZ0(In −WZ0)−1. Hence

ΔZ ≤ ζ0‖W‖F ‖(In −WZ0)−1‖2.

If ‖W‖2 < 1/‖Z0‖2 we have

ΔZ ≤
ζ0‖W‖F

1− ‖Z0‖2‖W‖2
.

It is realistic to estimate ‖W‖ when ΔX,ΔY vary independently. In this case
one has to assume that

‖Y0‖2φ(Δ̃) + ‖X0‖2ψ(Δ̂) + φ(Δ̃)ψ(Δ̂) < λ2/‖Z0‖2
and

ΔZ ≤
ζ0λ

2(‖Y0‖2φ(Δ̃) + ‖X0‖2ψ(Δ̂) + φ(Δ̃)ψ(Δ̂))
λ2 − ‖Z0‖2(‖Y0‖2φ(Δ̃) + ‖X0‖2ψ(Δ̂) + φ(Δ̃)ψ(Δ̂))

. (31)

Relations (29), (30) and (31) give nonlocal perturbation bounds for the
continuous-time H∞-optimization problem.

Note finally that one has to ensure the inequality

‖Y X‖2 < λ2. (32)

Since the unperturbed inequality ‖Y0X0‖2 < λ2 holds true, a sufficient condition
for (32) to be valid is

‖Y0‖2φ(Δ̃) + ‖X0‖2ψ(Δ̂) + φ(Δ̃)ψ(Δ̂) < λ2 − ‖Y0X0‖2.

Note that Δ̃, Δ̂ depend on λ2 through ΔS , ΔR.
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5 Conclusions

The local and nonlocal sensitivity of the continuous-time H∞-optimization prob-
lem have been studied. New local perturbation bounds have been obtained for
the matrix equations determining the problem solution. The new local bounds
are nonlinear functions of the data perturbations and are tighter than the exist-
ing condition number based local bound. Using a nonlinear perturbation analysis
technique, nonlocal perturbation bounds for the H∞-optimization problem are
then derived. These bounds have two main advantages: they guarantee that the
perturbed problem still has a solution, and are valid rigorously, unlike the local
perturbation bounds. The new nonlocal perturbation bounds are less conserva-
tive than the existing nonlocal perturbation estimates for the H∞-optimization
problem.
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Abstract. We consider an optimal control problem defined by semi-
linear parabolic partial differential equations, with convex control con-
straints. Since this problem may have no classical solutions, we also
formulate it in relaxed form. The classical problem is then discretized
by using a finite element method in space and a theta-scheme in time,
where the controls are approximated by blockwise constant classical ones.
We then propose a discrete, progressively refining, gradient projection
method for solving the classical, or the relaxed, problem. We prove that
strong accumulation points (if they exist) of sequences generated by this
method satisfy the weak optimality conditions for the continuous classi-
cal problem, and that relaxed accumulation points (which always exist)
satisfy the weak optimality conditions for the continuous relaxed prob-
lem. Finally, numerical examples are given.

1 Introduction

We consider an optimal control problem defined by semilinear parabolic partial
differential equations, with convex pointwise control constraints. Since this prob-
lem may have no classical solutions, we also formulate it in relaxed form. The
classical problem is then discretized by using a Galerkin finite element method
with continuous piecewise affine basis functions in space and a theta-scheme in
time, where the controls are approximated by blockwise constant classical ones.
We then propose a discrete, progressively refining, gradient projection method
for solving the classical, or the relaxed, problem. We prove that strong accumu-
lation points in L2 (if they exist) of sequences generated by this method satisfy
the weak classical optimality conditions for the continuous classical problem,
and that relaxed accumulation points (which always exist) satisfy the weak re-
laxed optimality conditions for the continuous relaxed problem. For nonconvex
problems with convex control constraints, whose solution is not classical, we
can apply the above methods to the problem formulated in Gamkrelidze relaxed
form, and then approximate the computed Gamkrelidze controls by classical
ones. Finally, numerical examples are given. For discretization and optimization
methods concerning optimal control problems, see [2], [3] and [4].
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2 The Continuous Optimal Control Problems

Let Ω be a bounded domain in Rd with a Lipschitz boundary Γ , and let I =
(0, T ), T <∞, be an interval. Consider the semilinear parabolic state equation

yt + A(t)y = f(x, t, y(x, t), w(x, t)) in Q = Ω × I,
y(x, t) = 0 in Σ = Γ × I, y(x, 0) = y0(x) in Ω,

where A(t) is the second order elliptic differential operator

A(t)y = −
d∑
j=1

d∑
i=1

(∂/∂xi)[aij(x, t)∂y/∂xj ].

The constraints on the control are w(x, t) ∈ U , in Q, where U is a compact
subset of Rd′

, and the cost functional to be minimized is

G(w) =
∫
Q
g(x, t, y, w)dxdt.

Define the set of classical controls

W = {w : (x, t) 
→ w(x, t) |w measurable from Q to U},

and the set of relaxed controls (Young measures, for the theory, see [7], [8] ) by

R={r : Q→M1(U) | r weakly measurable}⊂L∞
w (Q,M(U))≡L1(Q,C(U))∗,

where M1(U) is the set of probability measures on U . The set W is endowed
with the relative strong topology of L2(Q) and the set R with the relative weak
star topology of L1(Q,C(U))∗. The set R is convex, metrizable and compact.
If we identify every classical control with its associated Dirac relaxed control
r(·) = δw(·), then W may be considered as a subset of R, and W is thus dense
in R. For a given function φ ∈ L1(Q,C(U)) and r ∈ R, we use the notation

φ(x, t, r(x, t)) =
∫
U
φ(x, t, u)r(x, t)(du).

The relaxed formulation of the above control problem is the following. Setting
V = H1

0 (Ω), the relaxed state equation (in weak form) is

< yt, v > +a(t, y, v) =
∫
Ω
f(x, t, y(x, t), r(x, t))v(x)dx, for v ∈ V, a.e. in I,

y(x, t) = 0 in Σ = Γ × I, y(x, 0) = y0(x) in Ω,

where a(t, ·, ·) is the usual bilinear form associated with A(t) and < ·, · > the
duality bracket between the dual V ∗ and V . The control constraint is r ∈ R,
and the cost functional to be minimized

G(r) =
∫
Q
g(x, t, y(x, t), r(x, t))dxdt.

We suppose that the functions f, g are measurable for fixed (y, u) and continuous
for fixed (x, t), that f is Lipschitz and sublinear w.r.t. y, g is subquadratic w.r.t
y, and y0 ∈ L2(Ω). For some of the following theoretical results, see [2].

Lemma 1. The operators w 
→ yw, from W to L2(Q), and r 
→ yr, from R
to L2(Q), and the functionals w 
→ G(w) on W , and r 
→ G(r) on R, are
continuous.
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Theorem 1. There exists an optimal relaxed control.

Note that, even when the control set U is convex, the classical problem may
have no classical solutions. We next give some useful results concerning nec-
essary conditions for optimality. We suppose in addition that f ′

y, f
′
u, g

′
y, g

′
u are

measurable for fixed (y, u) and continuous for fixed (x, t), f ′
y is bounded, and g′

y

is sublinear w.r.t. y.

Lemma 2. For r, r′ ∈ R, the relaxed directional derivative of G is given by

DG(r, r′ − r) =
∫
Q
H(x, t, y(x, t), z(x, t), r′(x, t)− r(x, t))dxdt,

where the Hamiltonian H is defined by

H(x, t, y, z, u) = zf(x, t, y, u) + g(x, t, y, u),

and the adjoint state z = zr satisfies the equation

− < zt, v > +a(t, v, z) = (zf ′
y(y, r) + g′

y(y, r), v), for every v ∈ V, a.e. in I,
z(x, t) = 0 in Σ, z(x, T ) = 0 in Ω,

where y = yr. The mappings r 
→ zr, from R to L2(Q), and (r, r′) 
→ DG(r, r′−
r), from R×R to R, are continuous.

Theorem 2. If r ∈ R is optimal for either the relaxed or the classical optimal
control problem, then r is extremal relaxed, i.e. it satisfies the condition

DG(r, r′ − r) ≥ 0, for every r′ ∈ R,

which is equivalent to the strong relaxed pointwise minimum principle

H(x, t, y(x, t), z(x, t), r(x, t)) = min
u∈U

H(x, t, y(x, t), z(x, t), u),a.e. in Q.

If U is convex, then this minimum principle implies the weak relaxed pointwise
minimum principle

H ′
u(x, t, y(x, t), z(x, t), r(x, t))r(x, t)

= min
φ

H ′
u(x, t, y(x, t), z(x, t), r(x, t))φ(x, t, r(x, t)),a.e. in Q,

where the minimum is taken over all Caratheodory functions φ : Q × U → U ,
which in turn implies the global weak relaxed condition∫

Q
H ′
u(x, t, y(x, t), z(x, t), r(x, t))[φ(x, t, r(x, t))− r(x, t)]dxdt ≥ 0, for every

Caratheodory function φ.
A control r satisfying this condition is called weakly extremal relaxed.

Lemma 3. If U is convex, then for w,w′ ∈W the classical directional derivative
of G is given by

DG(w,w′ − w) =
∫
Q
H ′
u(x, t, y(x, t), z(x, t))[w

′(x, t)− w(x, t)]dxdt,

where z = zw and y = yw. The mappings w 
→ zw, from W to L2(Q), and
(w,w′) 
→ DG(w,w′ − w), from W ×W to R, are continuous.
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Theorem 3. If U is convex and w ∈ W is optimal for the classical optimal
control problem, then w is weakly extremal classical, i.e. it satisfies the condition

DG(w,w′ − w) ≥ 0, for every w′ ∈W,

which is equivalent to the weak classical pointwise minimum principle

H ′
u(x, t, y(x, t), z(x, t))w(x, t) = min

u∈U
H ′
u(x, t, y(x, t), z(x, t))u,a.e. in Q.

3 The Discrete Optimal Control Problem

We suppose in the sequel that the domain Ω is a polyhedron, a(t, u, v) is in-
dependent of t and symmetric, U is convex, the functions f ,f ′

y,f
′
u,g,g

′
y,g

′
u are

continuous on Q̄×R×U , and y0 ∈ V . For each integer n ≥ 0, let {Sni }
M(n)
i=1 be

an admissible regular quasi-uniform triangulation of Ω̄ into closed d-simplices,
with hn = maxi[diam(Sni )] → 0 as n→∞, and {Inj }

N(n)−1
j=0 a subdivision of the

interval Ī into intervals Inj = [tnj , t
n
j+1], of equal length Δtn, with Δtn → 0 as

n→∞. We suppose that each Sn+1
i′ is a subset of some Sni and that each In+1

j′

is a subinterval of some Inj . We set Qnij = Sni × Inj . Let V n ⊂ V = H1
0 (Ω) be

the subspace of functions that are continuous on Ω̄ and affine on each Sni . Let
Wn ⊂W be the set of discrete controls

Wn = {wn ∈W
∣∣wn(x, t) = wnij , on

o

Qnij}.
For a given discrete control wn = (wn0 , ..., w

n
N−1) ∈Wn, with wnj = (wn0j , ..., w

n
Mj),

and θ ∈ [1/2, 1], the corresponding discrete state yn = (yn0 , ..., y
n
N ) is given by

the discrete state equation (implicit θ-scheme)

(1/Δtn)(ynj+1 − ynj , v) + a(ynjθ, v) = (f(tnjθ, y
n
jθ, w

n
j ), v),

for every v ∈ V n, j = 0, ..., N − 1,
(yn0 − y0, v)1 = 0, for every v ∈ V n, ynj ∈ V n, j = 0, ..., N − 1,
with ynjθ = (1− θ)ynj + θynj+1, t

n
jθ = (1− θ)tnj + θtnj+1.

The discrete control constraints are wn ∈Wn and the discrete cost functional

Gn(wn) = Δtn
N−1∑
j=0

∫
Ω
g(tnjθ, y

n
jθ, w

n
j )dx.

Lemma 4. The operators wn 
→ ynj and the discrete functional wn 
→ G(wnm)
are continuous.

Lemma 5. The directional derivative of the functional Gn is given by

DGn(wn, w′n − wn) = Δtn
N−1∑
j=0

(H ′
u(t

n
jθ, y

n
jθ, z

n
j,1−θ, w

n
j ), w′n

j − wnj ),

where the discrete adjoint is given by

−(1/Δtn)(znj+1−znj , v)+a(v, znj,1−θ) = (zn1−θf
′
y(t

n
jθ, y

n
jθ, w

n
j )+g′

y(t
n
jθ, y

n
jθ, w

n
j ), v),

for every v ∈ V n, j = N − 1, ...0, znN = 0, znj ∈ V n, j = 0, ..., N − 1.
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Theorem 4. If wn ∈Wn is optimal for the discrete problem, then it is discrete
extremal, i.e. it satisfies the condition

DGn(wn, w′n − wn) = Δtn
N−1∑
j=0

(H ′
u(t

n
jθ, y

n
jθ, z

n
j,1−θ, w

n
j ), w′n − wn) ≥ 0,

for every w′n ∈Wn,
which is equivalent to the discrete blockwise minimum principle

wnij
∫
Sn

i
H ′
u(t

n
jθ, y

n
jθ, z

n
j,1−θ, w

n
ij)dx = min

w′n
ij

∈U
w′n
ij

∫
Sn

i
H ′
u(t

n
jθ, y

n
jθ, z

n
j,1−θ, w

n
ij)dx,

1 ≤ i ≤M, 0 ≤ j ≤ N − 1.

The following classical control approximation result is proved similarly to the
lumped parameter case (see [5] ).

Proposition 1. For every w ∈ W , there exists a sequence of discrete controls
(wn ∈Wn) that converges to w in L2 strongly.

We suppose in the sequel that if θ = 1/2, there exists a constant C, indepen-
dent of n, such that Δtn ≤ C(hn)2, for every n. The next lemma is a consistency
result.

Lemma 6. If wn → w ∈ W in L2 strongly (resp. wn → r in R, the wn con-
sidered as relaxed controls), then the corresponding blockwise constant discrete
states and adjoints yn, zn converge to yw, zw (resp. yr, zr) in L2(Q) strongly, as
n→∞, and

lim
n→∞

Gn(wn) = G(w)(resp. lim
n→∞

Gn(rn) = G(r)),

lim
n→∞

DGn(wn, w′n − wn) = DG(w,w′ − w).

4 Discrete Gradient Projection Method

Let γ ≥ 0, s ∈ [0, 1], b, c ∈ (0, 1), and let (βn) be a positive decreasing se-
quence converging to zero. The progressively refining discrete gradient projection
method is described by the following algorithm.

4.1 Algorithm

Step 1. Set k = 0, n = 0, and choose an initial control w0
0 ∈W 0.

Step 2. Find vnk ∈Wn such that

ek = DGn(wnk , v
n
k − wnk ) + (γ/2) ‖vnk − wnk‖

2

= min
v′n∈Wn

[DGn(wnk , v
′n − wnk ) + (γ/2) ‖v′n − wnk‖

2],

and set dk = DGn(wnk , v
n
k − wnk ).

Step 3. If |ek| ≥ βn, go to Step 4. Else, set

wn = wnk , vn = vnk , dn = dk, en = ek, n = n + 1.
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Step 4. (Armijo step search) Find the lowest integer value l ∈ Z such that
αk = cls ∈ (0, 1] satisfies the inequality

Gn(wnk + αk(vnk − wnk ))−Gn(wnk ) ≤ αkbek.

Step 5. Set

wnk+1 = wnk + αk(vnk − wnk ), k = k + 1,

and go to Step 2.
If γ > 0, we have a gradient projection method, in which case Step 2 amounts

to finding the projection vnkij of wnkij − (1/γ)
∫
Sn

i
H ′
u(t

n
jθ, y

n
jθ, z

n
j,1−θ, w

n
ij)dx onto

U = [c1, c2], for each i, j. If γ = 0, the above Algorithm is a conditional gradient
method and Step 2 reduces to setting, for each i, j

vnkij = c1, if
∫
Sn

i
H ′
u(t

n
jθ, y

n
jθ, z

n
j,1−θ, w

n
ij)dx ≥ 0,

vnkij = c2, if
∫
Sn

i
H ′
u(t

n
jθ, y

n
jθ, z

n
j,1−θ, w

n
ij)dx < 0.

Theorem 5. (i) Let (wn) be a subsequence, considered as a sequence in R, of
the sequence generated by the Algorithm in Step 3 that converges to some r in
the compact set R, as n → ∞. Then r is weakly extremal for the continuous
relaxed problem.

(ii) If (wn) is a subsequence of the sequence generated by the Algorithm in
Step 3 that converges to some w ∈W in L2 strongly as n→∞, then w is weakly
extremal for the continuous classical problem.

Proof. We shall first show that n → ∞ in the Algorithm. Suppose, on the
contrary, that n remains constant, and so we drop here the index n. Let us show
that then dk → 0. Since Wn is compact, let (wk)k∈K , (vk)k∈K be subsequences
of the generated sequences in Steps 2 and 5 such that wk → w̄, vk → v̄, in
Wn, as k →∞, k ∈ K. Clearly, by Step 2, ek ≤ 0 for every k, hence

e = lim
k→∞, k∈K

ek = DG(w̃, ṽ − w̃) + γ
2 ‖ṽ − w̃‖2 ≤ 0,

d = lim
k→∞, k∈K

dk = DG(w̃, ṽ − w̃) ≤ lim
k→∞, k∈K

ek = e ≤ 0.

Suppose that d < 0. The function Φ(α) = G(w + α(v − w)) is continuous on
[0, 1]. Since the directional derivative DG(w, v − w) is linear w.r.t. v − w, Φ is
differentiable on (0, 1) and has derivative

Φ′(α) = DG(w + α(v − w), v − w).

Using the Mean Value Theorem, we have, for each α ∈ (0, 1]

G(wk + α(vk − wk))−G(wk) = αDG(wk + α′(vk − wk), vk − wk),

for some α′ ∈ (0, α). Therefore, for α ∈ [0, 1], by the continuity of DG (Lemma
4), we have

G(wk + α(vk − wk))−G(wk) = α(d + εkα),

where εkα → 0 as k →∞, k ∈ K, and α→ 0+. Since dk = d+ ηk, where ηk → 0
as k →∞, k ∈ K, and b ∈ (0, 1), we have
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d + εkα ≤ b(d + ηk) = bdk,

for α ∈ [0, ᾱ], for some ᾱ > 0, and k ≥ k̄, k ∈ K. Hence

G(wk + α(vk − wk))−G(wk) ≤ αbdk,

for α ∈ [0, ᾱ], k ≥ k̄, k ∈ K. It follows from the choice of the Armijo step αk in
Step 4 that we must have αk ≥ cᾱ for k ≥ k̄, k ∈ K. Hence

G(wk+1)−G(wk)=G(wk+αk(vk−wk))−G(wk) ≤ αkbdk ≤ cᾱbdk ≤ cᾱbd/2,

for k ≥ k̄, k ∈ K. It follows that G(wk) → −∞ as k → ∞, k ∈ K. This
contradicts the fact that G(wk) → G(w̄) as k →∞, k ∈ K, by continuity of the
discrete functional (Lemma 4). Therefore, d = 0, hence e = 0, and ek → e = 0
for the whole sequence, since the limit 0 is unique. But by Step 3 we must
necessarily have n→∞, which is a contradiction. Therefore, n→∞.

(i) Let (wn) be a subsequence (same notation), considered now as a sequence
in R, of the sequence generated in Step 3 that converges to an accumulation
point r ∈ R, as n→∞. By Steps 2 and 3 we have, for every v′n ∈Wn

DGn(wn, v′n − wn) + (γ/2) ‖v′n − wn‖2Q
=

∫
Q
H ′n
u (x, tnθ , y

n
θ , z

n
1−θ, w

n)(v′n − wn)dxdt+(γ/2)
∫
Q

(v′n − wn)2dxdt ≥ en,

Choosing any continuous function φ : Q̄× U → U and setting

x̄n(x) = barycenter of Sni , for x ∈
o

Sni , i = 1, ...,M,

we have∫
Q
H ′n
u (x, tnθ , y

n
θ , z

n
1−θ, w

n)[φ(x̄n(x), tnθ (t), w
n(x, t))− wn(x, t)]dxdt

+(γ/2)
∫
Q

[φ(x̄n(x), tnθ (t), w
n(x, t))− wn(x, t)]2dxdt ≥ en, for every such φ.

Using Lemma 6, and Proposition 2.1 in [1], we can pass to the limit in this
inequality as n→∞ and obtain∫

Q
H ′
u(x, t, y, z, r(x, t))[φ(x, t, r(x, t))− r(x, t)]dxdt

+
∫
Q

[φ(x, t, r(x, t))− r(x, t)]2dxdt ≥ 0, for every such φ.

Replacing φ by u+ λ(φ− u), with λ ∈ (0, 1], dividing by λ, and taking the limit
as λ→ 0, we obtain the weak relaxed condition∫

Q
H ′
u(x, t, y, z, r(x, t))[φ(x, t, r(x, t))− r(x, t)]dxdt ≥ 0, for every such φ,

which holds also by density for every Caratheodory function φ. Therefore, r is
weakly extremal relaxed.

(ii) Let now (wn) be a subsequence (same notation) generated by the Algo-
rithm in Step 3 that converges to some w ∈ W in L2 strongly as n → ∞. Let
any w′ ∈W and, by Proposition 1, let (w′n ∈Wn) be a sequence converging to
w′. By Step 2, we have∫

Q
H ′n
u (x, tnθ , y

n
θ , z

n
1−θ, w

n)(w′n − wn)dxdt+ (γ/2)
∫
Q

(w′n − wn)2dxdt ≥ en.
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Using Proposition 2.1 in [1] and Lemma 6, we can pass to the limit and obtain∫
Q
H ′
u(x, t, y, z, w)(w′ − w)dxdt+(γ/2)

∫
Q

(w′ − w)2dxdt ≥ 0, for every w′ ∈
W .

It follows then, similarly to (i), that∫
Q
H ′
u(x, t, y, z, w)(w′ − w)dxdt ≥ 0, for every w′ ∈W . � 

When directly applied to nonconvex optimal control problems whose solutions
are non-classical relaxed controls, the classical methods yield often very poor
convergence. For this reason, we propose here an alternate approach that uses
Gamkrelidze controls in classical form. We suppose that U = [c1, c2] is a compact
interval. Using the Filippov selection theorem, it can be shown that the relaxed
control problem described in §2 is equivalent to the following classical one, with
the three-dimensional controlled state equation

yt + A(t)y = β(x, t)f(x, t, y, u(x, t)) + [1− β(x, t)]f(x, t, y, v(x, t)), in Q,
y = 0 in Σ, y(x, 0) = y0(x) in Ω,

control constraints

(β(x, t), u(x, y), v(x, t)) ∈ [0, 1]× U × U in Q,

and cost functional

G(β, u, v) =
∫
Q
{β(x, t)g(x, t, y, u)) + [1− β(x, t)]g(x, t, y, v)}dxdt.

We can therefore apply the gradient method described above to this classical
problem, with the obvious modifications due to the three-dimensional control.
The Gamkrelidze relaxed controls computed thus can then be approximated by
piecewise constant classical controls using a standard procedure, see [4]. In the
general case, i.e. if U is not convex, one can use relaxed methods to solve such
strongly nonconvex problems (see [3] and [4]).

5 Numerical Examples

a) Let Ω = (0, π), I = (0, 1). Define the functions

ȳ(x, t) = −e−t sinx + 1
2x(π − x), w̄(x, t) =

{
−1, 0 ≤ t ≤ 0.3
t−0.3
0.35 sinx, 0.3 ≤ t ≤ 1

and consider the following optimal control problem, with state equation

yt − yxx = 1 + sin y − sin ȳ + w − w̄ in Q,
y = 0 in Σ, y(x, 0) = ȳ(x, 0) in Ω,

control constraint set U = [−1, 1], and cost functional

G(w) =
∫
Q

0.5[(y − ȳ)2 + (w − w̄)2]dxdt.

Clearly, the optimal control and state are w̄ and ȳ. The discrete gradient pro-
jection method was applied to this problem, with γ = 0.5, θ = 0.5 ( θ-scheme),
and successive discretizations (M,N) = (30, 10), (60, 20), (120, 40). After 12 it-
erations, we obtained the values Gn0 (wk) = 0.1556 · 10−7, ek = −0.1513 · 10−12,
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εk = 0.3546 · 10−4, ζk = 0.1009 · 10−3, where ek is defined in Step 2 of the Al-
gorithm, εk is the max error for the state at the vertices of the blocks Qij , and
ζk the max error for the control at the centers of the blocks.
b) Choosing the set U = [−0.8, 0.5], the control constraints being now ac-
tive for the method and for the problem, we obtained the values Gn0 (wk) =
0.032000304, ek = −0.3124 · 10−15.
c) Defining the state equation

yt − yxx = 1 + w in Q,

the convex constraint set U = [−1, 1], and the nonconvex cost functional

G(w) =
∫
Q

[0.5(y − ȳ)2 − w2]dxdt,

the unique optimal relaxed control is clearly r̄ = (δ−1+δ1)/2, where δ denotes the
Dirac measure, and the optimal state is y = ȳ. Note that the optimal relaxed cost
G(r̄) = −π can be approximated as closely as desired with a classical control,
but cannot be attained for such a control. Applying the conditional gradient
method (i.e. with γ = 0) to the problem reformulated in Gamkrelidze form (see
end of §4), with initial controls (piecewise constant interpolants of)

β0 = 0.5 + 0.25(x/π + t), u0 = −0.5(x/π + t), v0 = −u0,

we obtained after 20 iterations βk ≈ 0.5 with max error of less than 2 · 10−3,
the controls uk = −1 and vk = 1 exactly, yk ≈ ȳ with max error 0.3727 · 10−3,
Gn(βk, uk, vk) = −3.141592636 ≈ −π, and ek = −0.1521 · 10−4.
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Abstract. In this paper we present an approximation framework and
convergence results for the identification of a nonlinear damping function
in a thermoelastic system. A functional technique is used to demonstrate
that solutions to a sequence of finite dimensional (Galerkin) approximat-
ing identification problems in some sense approximate a solution to the
original infinite dimensional inverse problem. An example and numerical
studies are discussed.

1 Introduction

Based on the approach of Banks, Reich and Rosen in [1], the paper represents
a generalization to the nonlinear case of an identification problem for the linear
thermoelastic model studied by Rosen and Su in [3].

The paper is organized as follows. In the section 2 we define the abstract
thermoelastic system, establish its well-posedness, and state the class of iden-
tification problems. The approximation framework and convergence result are
developed in the third section, and the example and computational issues are
discussed in section 4. The last section contains some concluding remarks.

2 Abstract Thermoelastic System. Identification
Problem

Let Q be a metric space and let Q be a compact subset of Q. The set Q will be
known as the admissible parameter set. For j = 1, 2 let {Hj , 〈 · , · 〉j , | · |j} be real
Hilbert spaces and let {Vj , ‖ · ‖j} be reflexive Banach spaces. We assume that for
j = 1, 2, Vj is densely and continuously embedded in Hj , with |ϕ|j ≤ μj‖ϕ‖j ,
ϕ ∈ Vj . We let V ∗

j denote the continuous dual of Vj . Then with Hj as the
pivot space, we have Vj ↪→ Hj = H∗

j ↪→ V ∗
j with Hj densely and continuously

embedded in V ∗
j . We denote the usual operator norm on V ∗

j by ‖ · ‖j∗ , j = 1, 2.
In the usual manner, 〈 · , · 〉j is understood to denote both the inner product on
Hj and the duality pairing on V ∗

j × Vj , for j = 1, 2.
For each q ∈ Q we consider the abstract nonlinear thermoelastic system

ü(t) + C(q)u̇(t) + A1(q)u(t) + L(q)∗θ(t) � f(t; q), t > 0, (1)

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 249–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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θ̇(t) + A2(q)θ(t)− L(q)u̇(t) = g(t; q), t > 0, (2)

u(0) = u0(q), u̇(0) = v0(q), θ(0) = θ0(q), (3)

where for each t > 0, u(t) ∈ H1 and θ(t) ∈ H2. Assume that for each q ∈ Q,
A1(q) ∈ L(V1, V

∗
1 ), A2(q) ∈ L(V2, V

∗
2 ), L(q) ∈ L(V1, V

∗
2 ), C(q) : Dom(C(q)) ⊂

V1 → 2V
∗
1 , u0(q) ∈ V1, v0(q) ∈ Dom(C(q)), θ0(q) ∈ H2, and f( · ; q) ∈ L1(0, T ;

H1), g( · ; q) ∈ L1(0, T ;H2), for some T > 0. L(q)∗ ∈ L(V2, V
∗
1 ) is defined by

〈L(q)∗ψ,ϕ〉1 = 〈L(q)ϕ,ψ〉2, ψ ∈ V2, ϕ ∈ V1. (4)

We shall also require the following further assumptions.
(A1) (Symmetry): For each q ∈ Q the operator A1(q) is symmetric in the sense

that 〈A1(q)ϕ,ψ〉1〈A1(q)ψ,ϕ〉1, for all ϕ,ψ ∈ V1.
(A2) (Continuity): For ϕ ∈ V1 and ψ ∈ V2, the mappings q → A1(q)ϕ, q →

A2(q)ψ are continuous from Q ⊂ Q into V ∗
1 or V ∗

2 (which ever is appro-
priate).

(A3) (Uniform Coercivity): For j = 1, 2 there exist constants αj , βj ∈ IR, inde-
pendent of q ∈ Q, βj > 0, such that 〈Aj(q)ϕ,ϕ〉j+αj |ϕ|2j ≥ βj‖ϕ‖2j , ϕ ∈
Vj .

(A4) (Uniform Boundedness) There exist positive constants γj , j = 1, 2, inde-
pendent of q ∈ Q, for which ‖Aj(q)ϕ‖j∗ ≤ γj‖ϕ‖j , ϕ ∈ Vj , j = 1, 2.

For each q ∈ Q the operator C(q) : Dom(C(q)) ⊂ V1 → 2V
∗
1 satisfies the

following conditions:
(C1) (Domain): Dom(C(q)) = Dom(C) is independent of q for q ∈ Q, and

0 ∈ Dom(C);
(C2) (Continuity): For each ϕ ∈ Dom(C), the map q → (C(q))ϕ is lower semi-

continuous from Q ⊂ Q into 2V
∗
1 ;

(C3) (Maximal Monotonicity): For (ϕ1, ψ1), (ϕ2, ψ2) ∈ Cq ≡ {(ϕ,ψ) ∈ V1×V ∗
1 :

ϕ ∈ Dom(C), ψ ∈ C(q)ϕ} we have 〈ψ1 − ψ2, ϕ1 − ϕ2〉1 ≥ 0 with Cq not
properly contained in any other subset of V1 × V ∗

1 for which (C3) holds;
(C4) (Uniform Boundedness): The operators C(q) map V1-bounded subsets of

Dom(C) into subsets of V ∗
1 which are uniformly V ∗

1 -bounded in q for q ∈ Q.

For each q ∈ Q the operator L(q) ∈ L(V1, V
∗
2 ) and L(q)∗ ∈ L(V2, V

∗
1 ) satisfy

(L1) (Continuity): For ϕ ∈ V1 and ψ ∈ V2 the mappings q ∈ L(q)ϕ and
q → L(q)∗ψ are continuous from Q ⊂ Q into V ∗

1 or V ∗
2 (which ever is

appropriate).
(L2) (Uniform Boundedness): There exists positive constant ρ, independent of

q ∈ Q, for which ‖L(q)ϕ‖2∗ ≤ ρ‖ϕ‖1, ϕ ∈ V1.

We require that the mappings q → u0(q), q → v0(q) and q → θ0(q) are
continuous from Q ⊂ Q into V1, H1, and H2, respectively, as are the mappings
q → f(t; q) and q → g(t; q) into H1 and H2, respectively, for a.e. t ∈ [0, T ].

(D) (Uniform Domination) There exist f0, g0 ∈ L1(0, T ), independent of q ∈ Q,
for which |f(t; q)|1 ≤ f0(t), |g(t; q)|2 ≤ g0(t), a.e. t ∈ [0, T ] and every q ∈ Q.



Identification of a Nonlinear Damping Function in a Thermoelastic System 251

We prove the well-posedness of the system (1)–(3) for each q ∈ Q by first
rewriting it as an equivalent first order system in an appropriate product Hilbert
space and then applying results from nonlinear evolution systems theory.

Let X be the Banach space defined by X = V1 ×H1 ×H2 with norm | · |X
give by |(ϕ,ψ, η)|X = (‖ϕ‖1 + |ψ|21 + |η|22)1/2. For each q ∈ Q, let X(q) denote
the Hilbert space which is set equivalent to X and which is endowed with the
inner product 〈 · , · 〉q given by

〈(ϕ1, ψ1, η1), (ϕ2, ψ2, η2)〉q〈A1(q)ϕ1, ϕ2〉1 + α1〈ϕ1, ϕ2〉1 + 〈ψ1, ψ2〉1 + 〈η1, η2〉2,

for (ϕi, ψi, ηi) ∈ X, i = 1, 2. We denote the norm on X(q) induced by the inner
product 〈 · , · 〉q by | · |q and note that it is clear that assumptions (A3) and (A4)
imply that the norms | · |X and | · |q are equivalent, uniformly in q ∈ Q. That
is, there exist positive constants m and M , independent of q ∈ Q, for which

m| · |q ≤ | · |X ≤M | · |q (5)

For each q ∈ Q define the operator A(q) : Dom(A(q)) ⊂ X(q) → X(q) by

A(q)(ϕ,ψ, η) = (−ψ, {A1(q)ϕ + C(q)ψ + L(q)∗η} ∩H1, {−L(q)ψ + A2(q)η} ∩H2),

with Dom(A(q)) = {(ϕ,ψ, η) ∈ V1 × V1 × V2 : ψ ∈ Dom(C),
{A1(q)ϕ + C(q)ψ + L(q)∗η} ∩H1 �= Ø,
{−L(q)ψ + A2(q)η} ∩H2 �= Ø}

(6)

Theorem 1. ([2]) There exists an ω ∈ IR, independent of q ∈ Q, for which the
operator A(q) + ωI is m-accretive.

For each q ∈ Q define F ∈ L1(0, T ;X(q)) by F (t; q)(0, f(t; q), g(t; q)), a.e.,
t ∈ (0, T ), and set x0(q) = (u0(q), v0(q), θ0(q)) ∈ X. Theorem 1 yields that A(q)
and F ( · ; q) generate a nonlinear evolution system {U(t, s; q) : 0 ≤ s ≤ t ≤ T}
on Dom(A(q)). Henceforth we shall assume that x0(q) ∈ Dom(A(q)) for each
q ∈ Q. We refer to the function x( · ; q) = (u( · ; q), v( · ; q), θ( · ; q)) given by

x(t; q) = U(t, 0; q)x0(q), t ∈ [0, T ], (7)

as the unique mild solution to the abstract thermoelastic system (1)–(3).

We now define an identification problem corresponding to (1)–(3). Let Z
denote an observation space. For i = 1, 2, . . . , ν and z ∈ Z, let Φi( · , · ; z) :
X×Q→ IR+ denote a continuous map from X×Q ⊂ X×Q into the nonnegative
real numbers. We consider the following parameter estimation problem.

(ID) Given observations {zi}νi=1 ⊂ ×νi=1Z at times {ti}νi=1 ⊂ ×νi=1[0, T ] deter-
mine parameters q ∈ Q which minimize

J(q) =
ν∑
i=1

Φi(x(ti; q), q; zi), (8)

where for each q ∈ Q and ti ∈ [0, T ], x(ti; q) is given by (1)–(3).



252 G. Dimitriu

3 Approximation Framework and Convergence Result

Using a standard Galerkin technique we construct a sequence of finite dimen-
sional approximations to the abstract thermoelastic system (1)–(3). A sequence
of approximating identification problems results. For j = 1, 2 and for each nj =
1, 2, . . . let Hnj

j be a finite dimensional subspace of Hj with H
nj

j ⊂ Vj , for all nj .
Let Pnj

j : Hj → H
nj

j denote the orthogonal projection of Hj onto H
nj

j computed
with respect to the 〈 · , · 〉j inner product. Assume that Pn1

1 Dom(C) ⊂ Dom(C)
and that the following approximation condition holds

(P) (Approximation): For j = 1, 2 lim
nj→∞

‖Pnj

j ϕ− ϕ‖j = 0, ϕ ∈ Vj .

For each q ∈ Q we define the operators A
nj

j (q) ∈ L(Hnj

j ), j = 1, 2, Cn1(q) :
Dom(Cn1) ⊂ Hn1 → 2H

n1 , and Ln(q) ∈ L(Hn1
1 , Hn2

2 ) using standard Galerkin
approximation. More precisely, for j = 1, 2, and ϕnj ∈ H

nj

j , we set Anj

j (q)ϕnj =
ψnj ∈ H

nj

j where ψnj is the unique element in H
nj

j guaranteed to exist by the
Riesz representation theorem satisfying 〈Aj(q)ϕnj , χnj 〉j〈ψnj , χnj 〉j , χnj ∈ H

nj

j .
Similarly we set Ln(q)ϕn1 = ψn2 , where χn2 ∈ Hn2

2 satisfies 〈L(q)ϕn1 , χn2〉2〈ψn2 ,
χn2〉2, χn2 ∈ Hn2

2 . We define the operator Ln(q)∗ ∈ L(Hn2
2 , Hn1

1 ) to be the
Hilbert space adjoint of the operator Ln(q). For ϕn1 ∈ Dom(Cn1) ≡ Dom(C) ∩
Hn1 �= Ø, let

Cn1(q)ϕn1 = {ψn1 : 〈ψ, χn1〉 = 〈ψn1 , χn1〉, χn1 ∈ Hn1 , for some ψ ∈ C(q)ϕn1}.

We set un1
0 (q) = Pn1

1 u0(q), vn1
0 (q) = Pn1

1 v0(q) and θn2
0 (q) = Pn2

2 θ0(q), and
set fn1(t; q) = Pn1

1 f(t; q) and gn2(t; q) = Pn2
2 g(t; q) for almost every t ∈ [0, T ].

We then consider the finite dimensional system of ordinary differential equa-
tions in Hn = Hn1

1 ×Hn2
2 given by

ün(t) + Cn1(q)u̇n(t) + An1
1 (q)un(t) + Ln(q)∗θn(t) � fn1(t; q), t > 0, (9)

θ̇n(t) + An2
2 (q)θn(t)− Ln(q)u̇n(t) = gn2(t; q), t > 0, (10)

un(0) = un1
0 (q), u̇n(0) = vn1

0 (q), θn(0)θn2
0 (q) (11)

We next rewrite (9)–(11) as an equivalent first order system. For each n1, n2 =
1, 2, . . . and n = (n1, n2) let Xn = Hn1

1 ×Hn1
1 ×Hn2

2 be considered as a subspace
of the Banach space X, and for each q ∈ Q let Xn(q) = Xn be considered as a
subspace of the Hilbert space X(q). For each q ∈ Q let An(q) : Dom(An(q)) ⊂
Xn(q) → 2X

n(q) be given by

An(q)(ϕn1 , ψn1 , ηn2) = (−ψn1 , {An1
1 (q)ϕn1 + Cn1(q)ψn1 + Ln(q)∗ηn2},

{−Ln(q)ψn1 + An2
2 (q)ηn2}),

Fn(t; q) = (0, fn1(t; q), gn2(t; q)), a.e. t ∈ [0, T ], xn0 (q) = (un1
0 (q), vn1

0 (q), θn2
0 (q)).

Setting xn(t) = (un(t), u̇n(t), θn(t)), we rewrite (9)–(11) as

ẋn(t) + An(q)xn(t) � Fn(t; q), t > 0, xn(0) = xn0 (q). (12)
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The solution to the initial value problem (12) is given by

xn(t; q) = Un(t, 0; q)xn0 (q), (13)

for t ∈ [0, T ], where {Un(t, s; q) : 0 ≤ s ≤ t ≤ T} is the nonlinear evolution
system on Xn (or Xn(q)). Note that Fn( · ; q) ∈ L1(0, T ;Xn(q)) and that the
assumptions that x0(q) ∈ Dom(A(q)) and Pn1Dom(C) ⊂ Dom(C) imply that
xn0 (q) ∈ Dom(A(q)).

It is not difficult to show that An(q) + ωI is m-accretive in Xn(q). It fol-
lows that for each n and each q ∈ Q, An(q) and Fn( · ; q) generate a nonlinear
evolution system, {Un(t, s; q) : 0 ≤ s ≤ t ≤ T} on Dom(A(q)).

Definition 1. By a mild solution xn(q) = xn( · ; q) to the initial value prob-
lem (12) we shall mean the V1 ×H1 × V2-continuous function xn( · ; q)(un( · ; q),
u̇n( · ; q), θn( · ; q)) given by xn( · ; q) = Un( · , 0; q)xn0 (q). The V1-continuous first
component of xn( · ; q) will be taken to be un( · ; q), H1-continuous second com-
ponent of xn( · ; q) will be taken to be u̇n( · ; q) and the V2-continuous third
component of xn( · ; q) will be taken to be θn( · ; q).

We define the finite dimensional approximating identification problems:

(IDn) Given observations {zi}νi=1 ⊂ ×νi=1Z at times {ti}νi=1 ⊂ ×νi=1[0, T ], find

parameters qn ∈ Q which minimize Jn(q) =
ν∑
i=1

Φi(xn(ti; q), q; zi), where

for each q ∈ Q and ti ∈ [0, T ], xn(ti; q) is given by (12).

Theorem 2. ([2]) For each n, (IDn) admits a solution qn ∈ Q. Moreover, the
sequence {qn}∞

n=1 has a convergent subsequence {qnk
}∞
k=1 with limk→∞ qnk

=
q ∈ Q, where q is a solution to problem (ID).

4 An Example and Numerical Results

We consider the problem of estimating or identifying the nonlinear damping
term in the following thermoelastic system:

∂2u

∂t2
(t, x)− a(qa)

(
∂u

∂t
(t, x)

)
− qA1

∂2u

∂x2 (t, x) + qL∗
∂θ

∂x
(t, x) � f0(t, x), (14)

∂θ

∂t
(t, x)− qA2

∂2θ

∂x2 (t, x)− qL
∂3u

∂x2∂t
(t, x) = g0(t, x), (15)

for 0 < x < #, and t > 0. With the introduction into the first equation above
of the Voigt-Kelvin viscoelastic damping term, equations (14) and (15) describe
the longitudinal, or axial, vibrations of a thin visco-thermoelastic rod of length
#. Here u denotes the axial displacement, θ the absolute temperature and f0 and
g0 represent, respectively, an externally applied axial force and thermal input.

We are interested in studying (14), (15) together with initial conditions

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x), θ(0, x) = θ0(x), (16)
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for 0 < x < # and the Dirichlet boundary conditions:

u(t, 0) = u(t, #) = 0, θ(t, 0) = θ(t, #) = 0, t > 0. (17)

We assume that f0, g0 ∈ L2((0, T )× (0, #)), u0 ∈ H1
0 (0, 1) and v0 ∈ L2(0, 1). Let

Q be a metric space and let Q ⊂ Q be compact. For each q ∈ Q we assume that
the mapping a(qa)(·) : IR→ 2IR\Ø satisfies the following conditions:

(a1) We have 0 ∈ a(qa)(0),
(a2) The mapping qa → a(qa)(ζ) is lower semi-continuous from Qa ⊂ Q into

2IR for almost every ζ ∈ IR,
(a3) For each qa ∈ Qa the mapping a(qa)(·) is nondecreasing and for some λ > 0

the inclusion ζ + λa(qa)(ζ) � ξ has a solution ζ ∈ IR for each ξ ∈ IR (i.e.,
a(qa)(·) is maximal monotone in IR),

(a4) There exists a polynomial p, independent of qa ∈ Qa, for which |ζ̃| ≤ p(|ζ|)
for all ζ̃ ∈ a(qa)(|ζ|), and for almost every ζ ∈ IR.

We set H1 = L2(0, #) endowed with the standard inner product (to be denoted
by 〈 · , · 〉1) and set H2(0, #) with the inner product

〈ϕ,ψ〉2 =
∫ �

0
ϕψ.

In the case of the boundary conditions (17) we define both V1 and V2 to be
the Sobolev space H1

0 (0, #). For each q ∈ Q we define the operators Aj(q) ∈
L(Vj , V ∗

j ), j = 1, 2, and L(q) ∈ L(V2, V
∗
2 ) by

(Aj(q)ϕ)(ψ) =
∫ �

0
qAj

DϕDψ, ϕ, ψ ∈ Vj , j = 1, 2. (18)

(L(q)ϕ)(ψ) = −
∫ �

0
qLDϕψ, ϕ ∈ V1, ψ ∈ V2. (19)

Definition (19) then yields that the operator L(q)∗ ∈ L(V2, V
∗
1 ) is given by

(L(q)∗ψ)(ϕ) =
∫ �

0
qL∗Dψϕ, ϕ ∈ V1, ψ ∈ V2. (20)

We assume that u0 ∈ H1
0 (0, #), v0, θ0 ∈ L2(0, #), f0, g0 ∈ L1(0, T ;L2(0, #))

for almost every (t, x) ∈ [0, T ] × [0, #]. It is a simple matter to show that the
assumptions (A1)–(A4), (L1)–(L2) and (D) stated in Section 2 are satisfied.

The definition of the operator C(q) uses the notion of a subdifferential of a
proper convex lower semicontinuous mapping. For each qa ∈ Qa, let a0(qa)(·)
denote the minimal section of the mapping a(qa)(·) is the single-valued mapping
from IR into IR defined by a0(qa) = ζ̃, where ζ̃ is the unique element in a(qa)(ζ)
of minimal absolute value. Since Dom(a(qa)(·)) = IR, the proper, convex, lower
semi-continuous function j( · ; qa) : IR→ IR can be defined by

j(ζ; qa) =
∫ ζ

0
a0(qa)(ξ) dξ.



Identification of a Nonlinear Damping Function in a Thermoelastic System 255

For each qa ∈ Qa define γ( · ; qa) : H1
0 (0, 1) → IR by

γ(ϕ; qa) =
∫ 1

0
j(ϕ(x); qa) dx.

Then γ( · ; qa) is also proper, convex and lower semi-continuous and we define
the operators C(qa) : V → 2V

∗
by

C(qa)ϕ = ∂γ(ϕ; qa). (21)

It can be shown, that C(qa) given by (21) satisfies the conditions (a1)–(a4).
Specifically, we are concern with the estimation of the constant parameters

qa = (α0, β0, ζ0) in the saturation function with polynomial growth given by

a(qa)(ζ) =
{
α0|ζ|β0sgn(ζ), −ζ0 ≤ ζ ≤ ζ0,
α0|ζ0|β0sgn(ζ), |ζ| > ζ0.

(22)

We take Q = IR3, Qa = {(α0, β0, ζ0) : 0 ≤ α0 ≤ α0, 0 ≤ β0 ≤ β0, 0 ≤ ζ0 ≤ ζ0},
for some α0, β0, ζ0 ≥ 0 given and fixed. In order to actually test our identification
problem numerically, we set

q∗
a(ζ) =

{
α|ζ|βsgn(ζ), −ζq∗

a
≤ ζ ≤ ζq∗

a
,

α|ζq∗
a
|βsgn(ζ), |ζ| ≥ ζq∗

a
,
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Fig. 1. Initial, true and estimated profiles for the saturation function
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with α = .16, β = 2, and ζq∗
a

= 2.4. With u(t, x) = (sin t)(sinπx) and θ(t, x) =
et(x3 − x2), for t > 0 and x ∈ [0, 1], we set

f(t, x) =
∂2u

∂t2
(t, x) + q∗

a

(
∂u

∂t
(t, x)

)
− q∗

A1

∂2u

∂x2 (t, x) + q∗
L∗

∂θ

∂x
,

g(t, x) =
∂θ

∂t
(t, x)− q∗

A2

∂2θ

∂x2 (t, x)− q∗
L

∂3u

∂x2∂t

with q∗
A1

= q∗
L∗ = q∗

A2
= q∗

L = 1, u0(x) = u(0, x) = 0, and u1(x) = ∂u
∂t (0, x) =

sinπx, for t > 0 and x ∈ [0, 1]. For observations upon which to base our fit, we
took z = {(zi,1, zi,2)}10i=1 with zi,1 = u(.5i, .12) and zi,2(x) = ∂u

∂t (.5, x), x ∈ [0, 1],
i = 1, 2, . . . , 10. As an initial guess we set

q0
a(ζ) =

{
.6ζ −1.2 ≤ ζ ≤ 1.5,
.6sgn(ζ) |ζ| ≥ 1.5.

The results of the estimation for the saturation function a(qa) given in (22) are
illustrated in Fig. 1. We notice that a good estimation is obtained when n = 32
(the true and estimated plots become indistinguishable).

5 Concluding Remarks

In this study we considered a parameter identification problem in a thermoelas-
tic system. The approach started from an abstract operator formulation consist-
ing of a coupled second order hyperbolic equation of elasticity and first order
parabolic equation for heat conduction. A functional technique is used to demon-
strate that solutions to a sequence of finite dimensional (Galerkin) approximat-
ing identification problems in some sense approximate a solution to the original
infinite dimensional inverse problem. A specific example containing the estima-
tion of a saturation function with polynomial growth is discussed. Future work
will be devoted to identification of functional parameters involving spline based
numerical schemes, along with theoretical and numerical studies on convergence
rates of the estimations.
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Abstract. In this work we consider the rendering equation derived from
the illumination model called Cook-Torrance model. A Monte Carlo
(MC) estimator for numerical treatment of the this equation, which is the
Fredholm integral equation of second kind, is constructed and studied.

1 Introduction

Photorealistic image creation is the main task in the area of computer graph-
ics. The classical Radiosity and Ray Tracing algorithms have been developed
to solve the global illumination for diffuse and specular scenes, respectively.
However, application of these algorithms to general environments with multiple
non-ideal reflection is restricted [8], due to local illumination model usage for
image calculation. Monte Carlo algorithms provide with a proper rule for global
illumination estimation of a scene, where the light radiated from the light sources
is propagated through the scene objects to the human eye.

In order to estimate the global illumination in the scene, it is required to apply
a suitable illumination model. The illumination model (see [14] for a survey of
illumination models) describes the interaction of the light with a point on the
surface in the scene. The simplest illumination model is independent of viewer
direction and applicable for perfectly diffuse light reflecting scenes. It considers
the light reflection as a sum of two components: ambient and Lambertian diffuse,
reflecting light equally in all directions. In 1975 Phong [7] introduces an empirical
three-component model with adding to illumination a new specular reflecting
component. For the calculation of specular part, the viewer direction becomes
more significant.

The first physical based illumination has been developed by Blinn [1] in 1977.
And after that in 1982 Cook and Torrance [2] have suggested the complete im-
plementation of the illumination model based on closer look to the physics of a
surface. Cook-Torrance illumination model is an isotropic model and considers
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the NSF of Bulgaria through grant # I-1201/02.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 257–265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



258 I.T. Dimov, T.V. Gurov, and A.A. Penzov

the geometry of object surface to be non-ideally smooth but as composed of
many microfacets. The microfacet surfaces are V shaped grooves where some
microfacets shadow or mask each other. This fact leads up to some attenuation
of reflected light. The roughness of the surface is defined by the microfacet dis-
tribution. Surface reflectance is described by Fresnel term of a single microfacet
and may be obtained theoretically from the Fresnel equations [13].

Many others physical based illumination models develop and/or extend the
Cook-Torrance model. An extension presented in [4] splits the diffuse reflection
component into directional-diffuse and uniform-diffuse components. Anisotropic
model of Ward [9] extends the scope of physical based illumination models.
The physical illumination models are also applicable for photorealistic rendering
when transparent objects exist in the scene [3].

Further in this paper we consider basically Cook-Torrance illumination model
at construction of the Monte Carlo estimator for photorealistic image creation.

2 Rendering with Cook-Torrance Illumination Model

The goal of rendering is to calculate an image from a described 3D scene model.
Photorealistic rendering requires realistic description of the scene model with
accounting all physical characteristics of the surfaces and environment. The scene
model consists of numerical definition of all objects and light sources in the
scene, as well the virtual camera from which the scene is observed. Colours in
computer graphics are frequently simulated in the RGB colour space, so the
radiance L = (r, g, b), where r, g, and b are the intensities for the selected
wavelenghts of primary monitor colours (red, green and blue).

2.1 Basic Assumptions

The objects represent real physical objects including solid light sources like lamps
with arbitrary defined position and orientation in the scene space. Usually the
real solid objects are well modeled by approximation with planar surface prim-
itives like triangles or rectangles. The number M of all surface primitives Aj
is very large to ensure good object approximation for realistic rendering. Since

the objects are independent scene units the scene domain, S =
M⋃
j=1

Aj , is union

of disjoint two-dimensional surface primitives Aj . The physical properties like
reflectivity, roughness, and colour of the surface material are characterized by
the bidirectional reflectance distribution function (BRDF), fr. This function de-
scribes the light reflection from a surface point as a ratio of outgoing to incoming
light. It depends on the wavelength of the light, incoming, outgoing light direc-
tions and location of the reflection point. The BRDF expression receives various
initial values for the objects with different material properties. The same val-
ues for the BRDF expression are assigned to all surface primitives with equal
material characteristics in the scene. Therefore, the number of surfaces with dif-
ferent material properties in the scene is m and the inequality 1 ≤ m ≤ M
is hold.
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The light sources can be both point light sources or solid light sources. The
point light sources are defined by own position in the scene space and radiate
light equally to all directions. The solid light sources are treated like ordinary
scene objects itself radiating light. The total light intensity of solid light sources
is distributed equally in a characteristic set of points generated on its surface
and each point is considered like point light source.

The virtual camera frequently is assumed to be a pinhole camera and defines
the eye view point position xeye and orientation of scene observation. The image
window situated in the projection plane of the camera is divided into matrix
of rectangular elements and corresponds to the pixel matrix of the image to be
generated. In order to generate an image, we have to calculate the radiance LP
propagated in the scene and projected on each pixel area P in the image pixel
matrix. This radiance value is radiated through the pixel area P into the eye
view point xeye. The radiance LP is mean value integral:

LP =
1
|P |

∫
P

L(xeye, xp)dxp (1)

where L(xeye, xp) is the radiance incoming from the nearest scene point x ∈ S
seen from the eye view point xeye through the pixel position xp into direction of
the eye view point xeye.

2.2 Rendering Equation by Cook-Torrance BRDF

The light propagation in a scene is described by rendering equation [5], which
is a second kind Fredholm integral equation. According to Keller indications in
[6], the radiance L, leaving from a point x ∈ S on the surface of the scene in
direction ω ∈ Ωx, where Ωx is the hemisphere in point x, is the sum of the self
radiating light source radiance Le and all reflected radiance:

L(x, ω) = Le(x, ω) +
∫
Ωx

L(h(x, ω′),−ω′)fr(−ω′, x, ω) cos θ′dω′, (2)

or in an operator form L = Le + IKL. Here y = h(x, ω′) ∈ S is the first point
that is hit when shooting a ray from x into direction ω′ and determines the
objects visibility in the scene (see Fig. 1). The radiance Le has non-zero value if
the considered point x is a point from solid light source. Therefore, the reflected
radiance in direction ω is an integral of the radiance incoming from all points,
which can be seen through the hemisphere Ωx in point x attenuated by the
surface BRDF fr(−ω′, x, ω) and the projection cos θ′, which puts the surface
S×Ω → IR+ perpendicular to the ray (x, ω′). The angle θ′ is the angle between
surface normal in x and the direction ω′. The transport operator is physically
correct when ‖IK ‖ < 1, because a real scene always reflects less light than it
receives from the light sources due to light absorption of the objects. The law
for energy conservation holds, i.e.: α(x, ω) =

∫
Ωx

fr(−ω′, x, ω) cos θ′dω′ < 1.
That means the incoming photon is reflected with a probability less than 1,
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Fig. 1. The geometry for the rendering equation

because the selected energy is less than the total incoming energy. Another
important property of the BDRF is the Helmholtz principle: the value of the
BRDF will not change if the incident and reflected directions are interchanged,
fr(−ω′, x, ω) = fr(−ω, x, ω′). In the terms of the Cook-Torrance illumination
model [2], the BRDF is sum of diffuse fr,d and specular fr,s components:

fr(−ω′, x, ω) = fr,d(x) + fr,s(−ω′, x, ω) =
1
π

(
F (λ, θ′ = 0) + F (λ,θ′)D(θh)G

cos θ cos θ′

)
,

where the angle θ is the angle between surface normal in x and the direction ω.
The microfacets distribution function is denoted by D(θh) and G(θh, β, θ, θ′) is
geometrical attenuation factor. Fresnel function F (λ, θ′) depends on the wave-
length λ, incident angle θ′ of the light in point x, index of refraction, and absorp-
tion coefficient of surface material (see [13]). The diffuse part fr,d(x) of BRDF
is the fraction of reflected radiance, independently of incoming and outgoing di-
rections, and may be calculated from the Fresnel equations at angle of incident
light θ′ = 0, or fr,d(x) = F (λ,θ′=0)

π . Both values of the microfacets distribution
function D(θh) and the geometrical attenuation factor G(θh, β, θ, θ′) are positive
and can not exceed a maximum value of 1 (see [1]) in any real scene situation.
Therefore, the specular part fr,s(−ω′, x, ω) of BRDF reaches the maximum value
when the Fresnel spectral term has absolute maximum for some light wavelength.

2.3 Analysis of the Neumann Series

Consider the first-order stationary linear iterative process for Eq. (2).

Li = IKLi−1 + Le, i = 1, 2, . . . , (3)

where i is the number of the iterations. In fact (3) defines a Neumann series

Li = Le + IKLe + . . . + IKi−1Le + IKiL0, i > 0 ,

where IKi means the i-th iteration of the integral operator. If IK is a contraction,
then limi→∞IKiL0 = 0. Thus L∗ =

∑∞
i=0 IK

iLe. If i = k and L0 = 0, one can
get the value of the truncation error, namely, Lk − L∗ =

∑∞
i=k IK

iLe.
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It is clear that every iterative algorithm uses a finite number of iterations k.
In the presented MC approach below, we evaluate the iterations Li, 1 ≤ i ≤ k
with an additional statistical error. In practice the truncation parameter k is
not a priori given. To define it let us denote ‖IK ‖IL1

= maxx,ω |α(x, ω)| = q < 1
and ‖Le‖IL1

= Le∗. Further, in order to estimate the error we have

‖Lk − L∗‖IL1
≤ Le∗q

k 1
1− q

Finally, to obtain a desired truncation error ε we have to select kε = min{k ≥
c1| ln ε|+ c2}, where c1 = 1/| ln(q)| and c2 = | ln((1− q)/(Le∗))|/| ln(q)|. In other
cases the iteration parameter is obtained from the following condition: the dif-
ference between the stochastic approximation of two successive approximations
has to be smaller than the given sufficiently small parameter ε.

3 A Monte Carlo Approach

Consider the problem for evaluating the following functional:

Jg(L) = (g, L) =
∫
S

∫
Ωx

g(x, ω)L(x, ω)dxdω. (4)

The radiance L(., .) : S ×Ω → IR+ and the arbitrary function g(., .) : S ×Ω →
IR+ belong to the spaces IL1 and IL∞, respectively. The case when g(x, ω) =
χP (x)

|P | δ(ω) is of special interest, because we are interested in computing the mean
value of the radiance LP over pixel area (1). Here χP (x) = 1 when x ∈ P , and
χP (x) = 0, otherwise. δ(ω) is the Dirac delta-function. Since the Neumann series
of the integral equation (2) converges, the functional (4) can be evaluated by a
MC method. Let us introduce the following notation: ω′

0 = ωp, x0 = xp, x1 =
h(x0,−ω′

0), x2 = h(x1,−ω′
1), x3 = h(x2,−ω′

2) = h(h(x1,−ω′
1),−ω′

2), . . . , and
define the kernels: K(xj , ω′

j) = fr(ω′
j , xj , ω

′
j−1) cos θ′

j , j = 1, 2, . . . , kε. Consider
a terminated Markov chain (x0,−ω′

0) → . . . → (xj ,−ω′
j) → . . . → (xkε

,−ω′
kε

),
such that (xj ,−ω′

j) ∈ S × Ωx, j = 1, 2, . . . , kε (see Fig. 2). The initial point

Fig. 2. One simulation of the terminated Markov chain
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(x0,−ω′
0) is chosen with an initial density p0(x, ω′). The other points are sampled

using an arbitrary transition density function p(x, ω′) which is tolerant (see
definition in [10]) to the kernel in equation (2). The biased MC estimator for
evaluating the functional (4) has the following form:

ξkε
[g] =

g(x0, ω
′
0)

p0(x0, ω′
0)

kε∑
j=1

WjL
e(xj , ω′

j), j = 1, . . . , kε , (5)

where the weights are defined as follows

W0 = 1, Wj = Wj−1
K(xj , ω′

j)
p(xj , ω′

j)
, j = 1, . . . , kε.

Theorem 1. The expected value of the estimator (5) is equal to the functional
(4) in case when we replace the radiance L with its iterative solution Lkε , i.e.

E(ξkε
[g]) = Jg(Lkε

).

Proof. Taking into account the definition for an expected value of a random
variable and the Neumann series of the Eq.(3), we obtain:

E(ξkε [g]) = E

⎛⎝ g(x0, ω
′
0)

p0(x0, ω′
0)

kε∑
j=1

WjL
e(xj , ω′

j)

⎞⎠ =

=
kε∑
j=1

E

(
g(x0, ω

′
0)

p0(x0, ω′
0)
WjL

e(xj , ω′
j)
)

=
kε∑
j=1

(g, IKjLe) = (g, Lkε
) = Jg(Lkε

).

This completes the proof.

It is clear that when kε → ∞ (this is the case of a infinite Markov chain) the
MC estimator (5) evaluates the functional (4).

Using N independent samples of the estimator (5) we can compute the mean
value:

ξkε
[g] =

1
N

N∑
i=1

(ξkε [g])i
Prob−→ Jg(Lkε) ≈ Jg(L), (6)

where Prob−→ means stochastic convergence as N →∞; Lkε
is the iterative solution

obtained by the Neumann series of Eq.(2).
The root mean square deviation is defined by the relation (see [11]):

E(ξkε
[g]− Jg(L))2 = V ar(ξkε

[g]) + (E(ξkε
[g])− Jg(L))2,

where V ar(ξkε
[g]) is the variance of the MC estimator. Hence

E(ξkε
[g]−Jg(L))2 =

V ar(ξkε
[g])

N
+(Jg(L)−E(ξkε [g]))

2 ≤ d0

N
+ c3ε

2 = μ2, (7)
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where μ is the desired error; d0 is upper boundary of the variance; ε is a pri-
ori given small parameter, and c3 is the constant. Therefore, if the variance is
bounded, the optimal order of the quantities N and ε must be N = O(μ−2) and
ε = O(μ). In order to estimate the variance let us introduce notation:

θj =
g(x0, ω

′
0)

p0(x0, ω′
0)
WjL

e(xj , ω′
j),

p(x0, ω
′
0, x1, ω

′
1, . . . , xj , ω

′
j) = p0(x0, ω

′
0)p(x1, ω

′
1) . . . p(xj , ω

′
j), j = 1, 2, . . . , .

Theorem 2. Let us choose the initial density and transition density in the fol-
lowing way:

p0(x0, ω
′
0) =

|g(x0, ω0)|∫
S

∫
Ωx0

g(x0, ω0)dx0dω0
, p(x, ω′) =

K(x, ω′)∫
Ωx

K(x, ω′)dω′ . (8)

Then the variance of the MC estimator (5) is bounded.

Proof. It is enough to prove that E(ξ2
kε

[g]) is bounded. Taking into account the
following inequality (see [10])⎛⎝ ∞∑

j=1

θj

⎞⎠2

≤
∞∑
j=1

t−j

1− t
θ2
j , 0 < t < 1,

we have
V ar(ξkε

[g]) ≤ E(ξ2
kε

[g]) = E

⎛⎝ kε∑
j=1

θj

⎞⎠2

≤ E

⎛⎝ ∞∑
j=1

θj

⎞⎠2

≤

∞∑
j=1

t−j

1− t
E(θ2

j ) =
∞∑
j=1

t−j

1− t

∫
Sx0

∫
Ωx0

∫
Ωx1

. . .

∫
Ωxj

g2(x0, ω
′
0)

p2
0(x0, ω′

0)
×

W 2
j (Le)2(xj , ω′

j)p(x0, ω
′
0, x1, ω

′
1, . . . , xj , ω

′
j)dx0dω0 . . . dωj .

Taking in acount the choice of the densities we obtain

V ar(ξkε
[g]) ≤

∞∑
j=1

t−j

1− t

(∫
Sx0

∫
Ωx0

∫
Ωx1

. . .

∫
Ωxj

g(x0, ω
′
0)×

K(x0, ω
′
0) . . .K(xj , ω′

j)L
e(xj , ω′

j)dx0dω0 . . . dωj
)2 ≤ ∞∑

j=1

t−j

1− t
g2

∗(Le∗)
2(q2)j ,

where g∗ = ‖g‖L∞ . If we choose, 1 > t > q, then we have

V ar(ξkε [g]) ≤ g2
∗(Le∗)

2 q2

(1− t)(t− q2)
.

This completes the proof.



264 I.T. Dimov, T.V. Gurov, and A.A. Penzov

The choice Eq.(8) of the initial and transition densities leads to a reduction of
the variance. We note that this choice is used in practice and it is very closely to
the importance sampling strategy for variance reduction. The density functions
(8) are called ”almost optimal” densities [12]. In other cases when is not possi-
ble the choice (8), but the densities are chosen to be proportional to the main
contribution from the kernel of the rendering equation.

When g(x, ω) = χP (x)
|P | δ(ω) the MC estimator (5) evaluates the mean value

of the radiance LP over pixel area (1). In this case, we can take ε = 1/(2.28)
because the primary colours in the RGB colour system are presented by 8-bit
numbers.

4 Summary and Issues for Future Work

The presented MC estimator evaluates the rendering equation derived from the
Cook-Torance illumination model. It is proved that the variance of this estima-
tor is bounded when we use almost optimal initial and transition densities. We
obtain condition for balancing of systematic and stochastic errors. The advan-
tages of the studied MC approach lie in the direct estimation of the functional
value in fixed phase space points. Also, this approach is easy for parallel re-
alizations over MIMD (multiple instruction - multiple data) architectures and
Grid’s. Finally, the future research of the MC approach under consideration for
Cook-Torance model could be developed in the following directions: 1. Devel-
opment of computational MC algorithms for creation of photorealistic images.
2. Investigation of the computational complexity of the algorithms for different
materials. 3. Creation of parallel MC algorithms for high performance and Grid
computing.
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Abstract. We prove that almost all continuous multifunctions are Lips-
chitz continuous with respect to a Kamke function. We obtain as a corol-
lary that almost every differential inclusion with continuous right-hand
side satisfies the relaxation property.

We point out also the possible applications in Bolza problem, given
for differential inclusions.

1 Introduction

Consider the following differential inclusion:

ẋ(t) ∈ F (t, x(t)), x(0) = x0, t ∈ I = [0, 1]. (1)

Here F is a map from I × R
n into CC(Rn) (the set of all nonempty convex

compact subsets of R
n). If F (·, ·) is continuous then ext F (·, ·) is lower semicon-

tinuous (proposition 6.2 of [4]) and hence the system

ẋ(t) ∈ ext F (t, x(t)), x(0) = x0, t ∈ I (2)

has a solution. Here ext A := {a ∈ A : a = λb+ (1− λ)c, b, c ∈ A, λ ∈ (0, 1) ⇒
a = b or a = c}.

It is well known the connection between control systems:

ẋ(t) = f(t, x(t), u(t)), t ∈ I, u(t) ∈ U, x(0) = x0,

where U is metric compact and the system (1) (set F (t, x) = co f(t, x, U)).
Central role there plays the so called relaxation property, which means that

the solution set of (2) is dense in the solution set of (1) in uniform metric. Other
important thing is the numerical approximation of the solution set with respect
to C(I,Rn) and W 1,1(I,Rn).

Let M be a complete metric space. A set A ⊂ M is said to be of the first
Baire category if it is a subset of an union of countable many closed subsets of
M every one with an empty interior. A set B ⊂ M is said to be residual if M \B
is of the first category. The set C is said to be Gδ if it is intersection of countable
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many open and dense subsets of M. We said that some property hold for almost
all elements of M if it holds on a residual subset of M.

Our aim is to prove that almost all (in Baire sense) continuous multifunctions
F (·, ·) are locally Kamke Lipschitz (CL).

Proving that we will derive as a corollary that for almost all F relaxation
property holds and moreover, the usual Euler scheme approximates the solution
set of (1) in C(I,Rn) and W 1,1(I,Rn). Using the later one can show that for
almost all optimal control problems the solution is a limit of appropriate discrete
optimal solutions. Due to the lenght limit we will not provide all the proofs (they
will be given in other paper).

When the right-hand side F is single valued (acting in a Banach space) it
is proved in [9] that for almost all F the differential equation (1) admits an
unique solution, which depends continuously on the initial condition and on the
right-hand side. Using Fort’ lemma (cf. [7]) it is shown in [12] that for almost
all (multi-functions) F the system (1) has a solution set depending continuously
on (F, x0). We mention also [1], where the existence of solutions for almost all
differential inclusions in a Hilbert space is proved. This result is then extended in
[5] for functional differential inclusions in Banach spaces. Using Baire categories
De Blasi and Pianigiani investigated in a number of papers (among others [2, 3])
existence of solutions and some properties of the solution set of non-convex
differential inclusions. However, to the author’s knowledge in the literature there
are not papers devoted to the genericity of the relaxation property (the solution
set of (2) is dense in the solution set of (1)).

We refer to [4, 8] for all the concept used here but not explicitly discussed.
We will denote by C(Rn) and CC(Rn) the set of all nonempty compact re-

spectively convex compact subsets of R
n. For a subset A of a Banach space

we let diam(A) = sup{|x − y| : x, y ∈ A}. By co A (Ā) we denote the con-
vex (closed) hull of A. For A,B ∈ C(Rn)we define DH(A,B) = max{max

a∈A
min
b∈B

|a − b|,max
b∈B

min
a∈A

|a − b|} – the Hausdorff distance between the compact set A

and B. A multifunction is called continuous when it is continuous with re-
spect to the Hausdorff metric. We denote by C(I ×K) the set of all continuous
(multi)functions from I ×K (K is nonempty compact or R

n) into CC(Rn).

Definition 1. A continuous function w : I × R
+ → R

+ is said to be Kamke
function if w(t, 0) ≡ 0 and the unique solution of the differential equation ṡ(t) =
w(t, s(t)), s(0) = 0 is s(t) ≡ 0.

The multifunction F is called (locally) Kamke Lipschitz (CL) if for every com-
pact K there exists a Kamke function w(·, ·) such that DH(F (t, x), F (t, y)) ≤
w(t, |x− y|) for every x, y from K.

Multifunction F (·, ·) is said to be locally Lipschitz if for every compact K ⊂
R
n there exists a constant L(K,F ) such that DH(F (t, x), F (t, y)) ≤ L(K,F )|x−

y| for every x, y ∈ K.
Given a compact set D ⊂ R

n we consider the distance:

CD(F,G) := max
t∈I

max
x∈D

DH

(
F (t, x), G(t, x)

)
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To avoid the problem of the continuation of the solutions we will consider in
the sequel only multimaps |F (t, x)| ≤ λ(1 + |x|), where λ is a positive constant.
Under this assumption the solution set of (1) is C(I,Rn) compact.

The following theorem is well known (cf. [11]).

Theorem 1. If F (·, ·) is locally CL, then the solution set R2 of (2) is dense in
the solution set R1 of (1). Moreover R2 (and hence R1) depends continuously
on x0 and on F .

2 The Results

In this section we consider the case of jointly continuous right-hand side F (·, ·).
If F (·, ·) is continuous on I × R

n, then it is uniformly continuous on I ×K for
every compact K ⊂ R

n. Consequently there exists a (jointly) continuous function
wF : I × [0, diam(K)] → R+ such that wF (t, 0) ≡ 0 and DH(F (t, x), F (t, y)) ≤
wF (t, |x− y|) for every x, y ∈ K.

We define the following metric, which generates the topology of uniform con-
vergence of bounded subsets ob R

n.

ρH(F (t, x), G(t, x)) :=
∞∑
n=1

CnB(F,G)
2n
(
1 + CnB(F,G)

)
, (3)

where B is the closed unit ball in R
n. It is easy to see that endowed with this

metric C(I × R
n) becomes a complete metric space.

Theorem 2. For every compact set K ⊂ R
n there exists a residual subset C̃K ⊂

C(I ×K) such that every F ∈ C̃K is locally CL.

Proof. We have only to prove that for almost all continuous F (·, ·) the differential
equation

ṡ(t) = wF (t, s(t)), s(0) = 0 (CE)

has the unique solution s(t) ≡ 0. Obviously s(t) ≡ 0 is a solution of (CE).
Consider the differential inequality:

|ṡ(t)− wF (t, s(t))| ≤ ε, s(0) = 0. (IE)

Its solution set (denoted by SolF (ε)) consists of all absolutely continuous func-
tions s(·) satisfying (IE) for a.a. t ∈ I. If lim

ε→0+
diam(SolF (ε)) = 0 then the

unique solution of (CE) is s(t) ≡ 0.

Denote by (SR)n :=
{
F ∈ C(I × R

n) : lim
ε→0+

diam(SolF (ε)) <
1
n

}
.

Claim. For every natural n the set (SR)n is open and dense.

i) Obviously (SR)n is dense in C(I × R
n), because every locally Lipschitz

F ∈ (SR)n.
ii) If F and G are multimaps with |wF −wG|C ≤

ε

2
then every s(·) ∈ SolF (

ε

2
)

belongs to SolG(ε) and vice versa. Let Fi /∈ (SR)n and let Fi → F with
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respect to C(I×R
n). Obviously in this case wFi

(t, s) → wF (t, s) uniformly
on I × [0, diam(K)]. Consequently F /∈ (SR)n. Due to the Claim the set

C̃n =
∞⋂
n=1

(SR)n is a residual subset of C(I × R
n). � 

Corollary 1. Almost all continuous multifunctions are CL.

Proof. Denote Kn = nB̄. Due to Theorem 2 the set C̃Kn
is a residual subset of

C(I ×R
n) and hence

∞⋂
n=1

CKn = C̃ is a residual subset of C(I ×R
n). Obviously

every F ∈ C̃ is CL. � 

The following result is a trivial consequence of Theorem 2 and Corollary 1.

Theorem 3. There exists a residual subset C̃ of C(I×R
n), such that for every

F ∈ C̃ relaxation property holds.

Remark 1. The main result of [12] follows directly from Corollary 1, because the
solution set of (1) depend continuously on x0 and on F on the class of locally
CL functions.

To ”justify” our results we will prove:

Proposition 1. The set of all locally Lipschitz multimaps is of first Baire cat-
egory in C(I × R

n, CC(Rn)).

Proof. Given a compact set K ⊂ R
n we denote by Lip(K,n) the set of all

Lipschitz on I × K with a constant n multifunctions. It is well known that
the set of all non locally Lipschitz multi-functions is dense in C(I × R

n). Let
Fk ∈ Lip(K,n) and let Fk → F . Obviously F ∈ Lip(K,n). Therefore NL(n) =

C(I×R
n)\Lip(K,n) is open and dense, i.e. Ñ =

∞⋂
n=1

NL(n) is Gδ set. Obviously

every F ∈ Ñ is not locally Lipschitz. � 

Consider now discrete approximations of (1) with respect to W 1,1(I,Rn), i.e.

|x(·)−y(·)|W := max
t∈I

{
|x(t)− y(t)|+

∫ 1

0
|ẋ(t)− ẏ(t)| dt

}
. Consider the uniform

grid: hk =
1
k

= tj+1 − tj . The discrete approximation scheme is:

xkj+1 ∈ xkj + hkF (tj , xkj ), x(0) = x0. (4)

On [tj , tj+1] x(·) is defined as a linear function.

A1. There exists a constant M such that |F (t, x)| ≤ M for all (t, x) and
F (·, ·) is with nonempty convex compact values.

A2. The multifunction F (·, x) is continuous and F (t, ·) is CL.

The following theorem can be proved using the same manner as in [10]:
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Theorem 4. Let x(·) be a trajectory of (1) under A1, A2. Then there exists a

sequence xk(·) converging uniformly to x(·) and vk(t) =
xj+1 − xj

hk
converges to

ẋ(·) in L1(I,Rn).
Proof. Let ΔN be a sequence of uniform subdivisions of I and let vN (·) be a
corresponding to ΔN sequence of step functions converging in L1[I,Rn] to ẋ(·).

Denote yN (t) = x0 +
∫ t

0
vN (τ) dτ . It is easy to see that

dist(vN (t), F (t, yN (t)) ≤ dist(vN (t), F (t, x(t))
+DH(F (t, x(t)), F (t, yN (t))) ≤ |vN (t)− ẋ(t)|+ w(t, |x(t)− yN (t)|).

Using the proximal point algorithm described in [10] (see also [6]) one can com-
plete the proof. � 

With the help of the previous result we can approximate the following optimal
control problem.

Minimize:

J(x(·)) := ϕ(x(1)) +
∫ 1

0
f(t, x(t), ẋ(t)) dt. (5)

Under on the solution set of (1).
Following Mordukhovich [10] we give the following definition:

Definition 2. The arc x̄(·) is said to be a local minimum if there exist ε > 0 and
α ≥ 0 such that J [x̄] ≤ J [x] for any other trajectory x(·), satisfying |x̄(t)−x(t) <

ε, ∀t ∈ I and α

∫ 1

0
|ẋ(t)− x̄′(t)| dt < ε.

Given a local minimum ẋ′(·) we want to minimize

Jk(xk) = ϕ(xkk)+hk

k−1∑
j=0

f

(
tkj , x

k
j ,

xkj+1 − xkj
hk

)
+
k−1∑
j=0

∫ tj+1

tj

∣∣∣xkj+1 − xkj
hk

−x̄′(t)
∣∣∣ dt,
(6)

for discrete trajectories xk(·) such that |xkj − x̄(tj)| ≤
ε

2
, j = 0, 1, . . . , k and

k−1∑
j=0

∫ tj+1

tj

∣∣∣xkj+1 − xkj
hk

− x̄′(t)
∣∣∣ dt ≤ ε

2
. (7)

The functions f(·, ·, ·) and ϕ(·) are continuous.

Theorem 5. Let x̄(·) be a local minimum of the optimal control problem (1)–(5).
Under the hypotheses above every sequence of solutions of (4)–(6)–(7) converges
to x̄(·) in W 1,1(I,Rn) as k →∞.

The proof follows closely the proof of theorem 3.3 in [10] and is omitted.
The following result is a consequence of Theorem 2 and Theorem 5.
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Theorem 6. Let K ⊂ R
n be a compact set. There exists a residual set C̃K ⊂

C(I × K) such that if F ∈ C̃K then for every local minimum x̄(·) of (1)–(5)
the sequence xk(·) of solutions of (4–(6)–(7) converges to x̄(·) in W 1,1(I,Rn) as
k →∞.
Remark 2. From [11] we know that in case of CL right-hand side F the solution
set of (2) is a residual subset of the solution set of (1). Thus we have proved also
that for almost all (in Baire sense) right-hand sides F the solution set of (2) is
residual in the solution set of (1).

It is not difficult also to extend Theorem 2 to the case of Caratheodory
(almost continuous) F .

The results of the paper can be easily extended to the case of functional
differential inclusions, having the form:

ẋ(t) ∈ F (t, xt), x0 = ϕ. (8)

Here xt, ϕ ∈ X = C([−τ, 0],Rn) is defined with xt(s) = x(t + s) for s ∈ [−τ, 0]
(τ > 0).

It will be interesting to extend Theorem 2 and 3 to the case of infinitely
dimensional spaces.

Notice that the main results of [5, 9] are proved for differential equations
(inclusions) in Banach spaces.
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Abstract. A computer program is developed for numerical simulations
of diode lasers operating well above threshold. Three-dimensional struc-
tures of typical single-mode lasers with the goal of efficient fibre coupling
are considered. These devices have buried waveguides with high indices
of refraction. The so-called round-trip operator constructed by a beam
propagation method is non-linear due to gain saturation and thermal
effects. Thus, the problem for numerical modelling of lasing is the eigen-
value problem for the non-linear round-trip operator. Fox-Li iterative
procedure is applied for calculation of a lasing mode. A large size 3D
numerical mesh is employed to discretize a set of equations describing
(a) propagation of two counter-propagating waves using Pade approxi-
mation, (b) lateral diffusion of charge carriers within a quantum well,
and (c) thermal conductivity. So, many important non-linear effects are
properly accounted for: gain saturation, self-focusing, and thermal lens.
A serious problem arising for operation far above threshold is the ap-
pearance of additional lasing modes that usually cause degradation in
optical beam quality. To calculate a critical electric current, at which
additional modes appear, the numerical code incorporates a subroutine
that calculates a set of competing modes using gain and index varia-
tions produced by the oscillating mode. The corresponding linear eigen-
problem is solved by the Arnoldi method. The oscillating mode has an
eigenvalue equal to 1, while higher-order modes have eigenvalues of am-
plitude less than 1, which grow with injection current. These eigenvalues
are calculated at several values of electric current, and the eigenvalues of
the sub-threshold modes are then extrapolated to 1, at which point the
device becomes multimode. Results of numerical simulations for typical
experimental conditions will be presented.

1 Introduction

The diode laser scheme is the same as in [1]. Fig. 1 illustrates schematic of
the structure under consideration in a plane perpendicular to an optical axis
not in scale. The layers 3-5 form the waveguide (so-called separate-confinement-
heterostructure) with one quantum well (active layer 4). The cross-hatched rect-
angles in the layer 8 are buried waveguides. The structure has a mirror symmetry
relative to plane y = 0 and is uniform along optical axis z. Diode laser facets are
located at z = 0 and z = L, where L is length of the laser. The electric current is

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 272–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Scheme of diode laser

Table 1. Allocation of materials

GaAs AlGaAs InGaAsP InGaAs InGaP Ti Au AuSn CuW
1,9 2,6,8 3,5 4 7 10 11,13 12 14

assumed to be uniform within the inner rectangle restricted by dot-and-dashed
line. Its width is 10 μm. The gain is located within the quantum well. Table 1
assigns the allocation of materials across the layers.

2 Statement of the Problem

We start from Maxwell equations and assume that the polarization effects can
be neglected. Eliminating fast oscillatory factor exp(−iω0t) and ignoring even-
tual envelope time-dependence the optical field may be expressed in a scalar
functional form

E(x, y, z) = (E+(x, y, z)eik0n0z + E−(x, y, z)e−ik0n0z),

where k0 = ω0/c is the reference wave number, n0 is the reference index. This
expression implies that there exists a preferred direction of light propagation
collinear to z− axis. The wave field E(x, y, z) satisfies the Helmholtz equation.
Two counter-propagating waves are characterized by slowly varying envelopes
E±(x, y, z) where sign ” + ” corresponds to propagation in a forward direction
of z-axis and sign ” − ” corresponds to propagation in a backward direction.
Parabolic equations

±∂E±
∂z

− i

2k0n0
Δ⊥E± − 1

2
bE± = 0, (1)

for waves E±(x, y, z) are used often. Here
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Δ⊥ =
∂2

∂x2 +
∂2

∂y2 , b = g + i
k0

n0
(n2 − n2

0),

g and n are gain and index respectively. For typical diode laser conditions wide-
angle diffraction could be important. It is reasonable to use more correct wave
equations

±
(

1− i

4k0n0
b +

1
4k2

0n
2
0
Δ⊥

)
∂E±
∂z

− i

2k0n0
Δ⊥E± − 1

2
bE± = 0, (2)

deduced from Helmholtz equation under Pade approximation [2].
We may use boundary conditions E−(x, y, L) = E+(x, y, L)ρ2 at the plane

z = L and E+(x, y, 0) = E−(x, y, 0)ρ1 at the plane z = 0. Here ρ1,2 are the
reflection coefficients.

Besides, we have to set a boundary conditions for envelopes E±(x, y, z) at the
lateral boundaries (y = ±yo) and at the transverse ones (x = xol, x = xor). In
order to describe leaky waves propagating in transverse direction a non-reflecting
boundary conditions must be chosen. The perfectly matched layer boundary
condition [3] was set after some trials.

It is necessary to solve the set of 1D non-linear diffusion equations [4]

∂2Y

∂y2 − Y

Dτnr
− B

D
NtrY

2 − Ig(Y )
g0NDτnrIs

= − J

qDdNtr
(3)

for normalized carrier density Y = N/Ntr in order to determine gain and index
at the active layer (x = xa, −yo < y < yo, 0 < z < L). Here N is the carrier
density

Ntr =
1

2B

(
− 1
τnr

+

√
1
τ2
nr

+
4BJtr
qd

)
is the carrier density for the conditions of transparency, D is the diffusion coef-
ficient, τnr is a recombination time, B is a coefficient of nonlinearity, Jtr is the
current density for the conditions of transparency, I = (|E+|2 + |E−|2)Is, Is =
(h̄ωNtr)/(g0Nτnr) are the light intensity and the intensity of saturation, h̄ω
is the energy of a light quantum, J is the current density, d is the thickness
of the quantum well and q is the elementary charge. Zero boundary condi-
tions for Y (y) are determined at the lateral boundaries of the active layer
(x = xa, y = ±yo, 0 < z < L). Gain and index at the active layer are ap-
proximated by the formulas

g(Y ) = g0N ln(ϕ(Y )), ϕ(Y ) =
{
α + (1− α)Y

1
1−α , Y < 1

Y, Y ≥ 1
, n = ñ0−

R

2k
g+νT,

(4)
where α = e−1 ∼= 0.368, g0N is a gain parameter, ñ0 is an index for the conditions
of transparency, R is the so-called line enhancement factor, ν is a coefficient of
linear temperature dependence of index and T is a temperature relative to a
room temperature.
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Thermal effects are described by solution of a series of 2D thermal conduc-
tivity equations

− ∂

∂x

(
χ
∂T

∂x

)
− ∂

∂y

(
χ
∂T

∂y

)
= f (5)

in a few transverse planes. Here χ is a heat conductivity, f = J2ρ − Ig(Y ) +
NtrY h̄ω/τnr + h̄ωB (NtrY )2 is a heat source, ρ is ohmic resistance. In concor-
dance with experimental cooling scheme we set the Dirichlet boundary condition
T = 0 at the top x = xhr. Von Neumann conditions ∂T/∂n = 0 were set at the
bottom x = xhl and at the left and right edges y = ±yh where the thermal fluxes
are small.

The temperature field T is interpolated over 3D domain for further recalcu-
lations of index by the formula

n(T ) = n|T=0 + νT (6)

We neglect thermal flow in z direction through given approach.
It is obvious that (2) or (1) are the homogeneous equations having trivial

solutions E±(x, y, z) ≡ 0. At the above-threshold condition trivial solution is
unstable to any noise and optical field will increase until to upper limit deter-
mined by gain saturation. Following [5] we construct the so-called round-trip
operator P which transforms the field at a selected cross-section location after a
propagation cycle of a laser beam. In detail, if u(x, y) = E+(x, y, L) then Pu is
the composition of {1} reflection of the wave E+(x, y, L) from the facet z = L,
{2} propagation of the wave E−(x, y, z) to the plane z = 0 according to equa-
tions (2) or (1), (3), (4), (5) and (6), {3} reflection of the wave E−(x, y, 0) from
the facet z = 0, {4} propagation of the wave E+(x, y, z) to the plane z = L
similar the step {2}. Non-trivial lasing modes are found as the eigen-functions
of the operator P provided the carrier density Y and temperature T are found
self-consistently with the wave fields E±. Thus, we have an eigen-value problem

Pu = γu (7)

for a non-linear and non-hermitian operator P. The complex eigenvalue satisfies
the condition |γ| = 1 for steady-state mode, a non-zero phase arg(γ) of the
eigenvalue appears due to non-coincidence of a priori unknown exact value of
the wave number with the reference value k0. To analyze stability of the lasing
mode we consider also the linear eigen-problem of type (7) when gain and index
are established by lasing mode and ”frozen”. The value δ = 1−|γ|2 has a physical
meaning of power loss for one round trip in this case. If all the solutions of a
linear eigen-problem have eigenvalues satisfying the condition |γ| ≤ 1 (δ ≥ 0)
then the lasing mode is stable else we have the unstable mode.

3 Numerical Scheme

The basic block of our numerical code is calculation the round trip. It is realized
by different ways for the general non-linear problem and for the auxiliary linear
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eigen-problem. For the second case wave equations (2) or (1) are solved sep-
arately using split-operator technique relative to second-order derivatives over
lateral and transverse variables and second-order finite-difference scheme. But for
the first case wave equations are solved simultaneously with the carrier diffusion
equation (3) at each step along a variable z. Resulting non-linear finite-difference
equations are solved iteratively at each step. Solving equations (1) and (2) re-
quires nearly the same efforts in programming and computation. An approach
based on (2) is more accurate and can be recommended as a favorable one.
Thermal equations (5) are solved in uniformly arranged transverse planes after
completion of calculations for wave and diffusion equations. The temperature
calculated is used in the next iteration of the round-trip operator P. Fast solver
for equation (5) was realized using FFT transform over y and sweep method for
Fourier coefficients.

The linear eigen-problem with ”frozen” gain and index was solved by the
Arnoldi algorithm [6] from the family of Krylov’s subspace methods. The selec-
tive iteration method [7] was applied for a non-linear problem (7). This method
expands validity of the traditional Fox-Li [5] iteration technique over the whole
range of parameters when single-mode lasing is stable.

4 Simulation Results and Discussion

Some demonstration calculations were performed for length L = 200μm. We
set the following transverse sizes: xhr − xhl = 339μm, 2yh = 500μm, xor −
xol = 4.55μm, 2yo = 45μm, and reflection coefficients ρ1 = 0.99, ρ2 = 0.63.
The optical, electrical and thermal properties of materials were taken from the
electronic archive http://www.ioffe.ru/SVA/NSM. Wavelength is λ0 = 2π/k0 =
0.98μm. The parameters of the active layer are taken from the Table 2.

Numerical mesh consisted of 256 × 256 × 2000 cells for wave equations and
of 750 × 2048 × 10 cells for heat conductivity equations where 750 nodes were
distributed non-uniformly along x− direction. In order to estimate the error of
discretization one of the variants was recalculated with the more fine meshes
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without thermal effect



3D Modelling of Diode Laser Active Cavity 277

Table 2. Parameters of the active layer

Jtr g0N B τnr D d R ñ0

50 A cm−2 2200 cm−1 10−10 cm3 c−1 1 ns 100 cm2 c−1 8.5 nm 2 3.7

512× 512× 8000 and 1500× 4096× 20 cells correspondingly. The relative differ-
ence in the calculated output power amounted 0.009 what is quite satisfactory.
The same variant was recalculated using the parabolic equations (1) for wave
propagation. The relative difference in the calculated output power amounted
0.029 which indicates that the small angle (parabolic) approximation (1) is good
for rough calculations.
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vs. pump current
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Fig. 5. Absolute value of eigenvalues
vs. pump current without thermal ef-
fect

From the physical standpoint, dependence of the output power

W = const×
∫
|E+(x, y, L)|2 dxdy

on the pump intensity and stability of single-mode lasing are of main interest.
The pump intensity is determined by a dimensionless parameter κ = J/Jtr which
means the electric current in units of current for conditions of transparency.
The dependence of the output power on κ is shown in Fig. 2. Note that the
threshold for lasing value of κ is evaluated by extrapolation this dependence
until crossing the x−axis. In our example the threshold is 3.2. The results of
calculations ignoring thermal effects (ν ≡ 0) are shown in Fig. 3 for comparison.
We notice that output power decreases and reveals non-monotonic behavior when
thermal effect neglected. The stability of single-mode lasing for both cases was
analyzed and results are presented in Figs. 4 and 5. The square-marked curves
correspond to operating mode and other curves present the nearest possible
competing modes. We see that single-mode operation is stable everywhere if
thermal effect is considered. On the contrary, if thermal effects are not taken
into consideration single-mode lasing terminates near the value κ ∼= 5.7 when
the eigenvalue of the nearest competing mode crosses unity in absolute value.
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Fig. 6. Near-field intensity distribution
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of the nearest competing mode. κ=6
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Fig. 8. Temperature distribution. κ=6

Figs. 6 and 7 present the intensity distributions |E+(x, y, L)|2 of the output beam
for the operating mode and the nearest competing mode for κ = 6. One can see
that modes differ in shape strongly. Onset of two-mode lasing causes degradation
in optical beam quality. Finally, the Fig. 8 presents the temperature distribution
T (x, y, L) in the same area as the intensity distributions above. Note, that it is
very small part of the whole area where temperature gradients were calculated.
However, in the area in Fig. 8 temperature variations are the strongest.

5 Conclusion

In conclusion, the proposed numerical scheme allows us to gain the physically
significant results for such a complicated laser device. As a result, the threshold
value of pump current and upper limit of current when single-mode lasing is
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stable can be found. Calculations provide complete information about spatial
distributions of laser intensity and temperature and far-field laser pattern, as
well.
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Abstract. The Ant Colony Optimization (ACO) algorithms are being
applied successfully to a wide range of problems. ACO algorithms could
be good alternatives to existing algorithms for hard combinatorial opti-
mization problems (COPs). In this paper we investigate the influence of
model bias in model-based search as ACO. We present the effect of two
different pheromone models for ACO algorithm to tackle the Multiple
Knapsack Problem (MKP). The MKP is a subset problem and can be
seen as a general model for any kind of binary problems with positive
coefficients. The results show the importance of the pheromone model to
quality of the solutions.

1 Introduction

There are many NP-hard combinatorial optimization problems for which it is im-
practical to find an optimal solution. Among them is the MKP. For such problems
the reasonable way is to look for algorithms that quickly produce near-optimal
solutions. ACO [1, 4, 2] is a meta-heuristic procedure for quickly and efficiently
obtaining high quality solutions to complex optimization problems [9]. The ACO
algorithms were inspired by the observation of real ant colonies. Ants are social
insects, that is, insects that live in colonies and whose behavior is directed more
to the survival of the colony as a whole than to that of a single individual com-
ponent of the colony. An important and interesting aspect of ant colonies is how
ants can find the shortest path between food sources and their nest. ACO is
the recently developed, population-based approach which has been successfully
applied to several NP-hard COPs [5]. One of its main ideas is the indirect com-
munication among the individuals of a colony of agents, called “artificial” ants,
based on an analogy with trails of a chemical substance, called pheromones which
real ants use for communication. The “artificial” pheromone trails are a kind of
distributed numerical information which is modified by the ants to reflect their
experience accumulated while solving a particular problem. When constructing
a solution, at each step ants compute a set of feasible moves and select the best
according to some probabilistic rules. The transition probability is based on
the heuristic information and pheromone trail level of the move (how much the
movement is used in the past). When we apply ACO algorithm to MKP different
pheromone models are possible and the influence on the results is shown.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 280–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The rest of the paper is organized as follows: Section 2 describes the gen-
eral framework for MKP as a COP. Section 3 outlines the implemented ACO
algorithm applied to MKP with two different pheromone models. In Section 4
experimental results over test problems are shown. Finally some conclusions are
drawn.

2 Formulation of the Problem

The MKP has received wide attention from the operations research commu-
nity [7, 3, 8], because it embraces many practical problems. Applications include
resource allocation in distributed systems, capital budgeting and cutting stock
problems. In addition, MKP can be seen as a general model for any kind of binary
problems with positive coefficients [6]. They are optimization problems for which
the solutions are sequences of 0 and 1 and the coefficients in objective function
are positive and coefficients in constraints are positive or zero. The MKP can
be thought as a resource allocation problem, where we have m resources (the
knapsacks) and n objects and object j has a profit pj . Each resource has its own
budget cj (knapsack capacity) and consumption rij of resource i by object j.
We are interested in maximizing the sum of the profits, while working with a
limited budget.

The MKP can be formulated as follows:

max
∑n
j=1 pjxj

subject to
∑n
j=1 rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(1)

xj is 1 if the object j is chosen and 0 otherwise.
There are m constraints in this problem, so MKP is also called m-dimensional

knapsack problem. Let I = {1, . . . ,m} and J = {1, . . . , n}, with ci ≥ 0 for all
i ∈ I. A well-stated MKP assumes that pj > 0 and rij ≤ ci ≤

∑n
j=1 rij for

all i ∈ I and j ∈ J . Note that the [rij ]m×n matrix and [ci]m vector are both
non-negative.

In the MKP we are not interested in solutions giving a particular order.
Therefore a partial solution is represented by S = {i1, i2, . . . , ij} and the most
recent elements incorporated to S, ij need not be involved in the process for
selecting the next element. Moreover, solutions for ordering problems have a
fixed length as we search for a permutation of a known number of elements.
Solutions for MKP, however, do not have a fixed length. We define the graph of
the problem as follows: the nodes correspond to the items, the arcs fully connect
nodes. Fully connected graph mens that after the object i we can choose the
object j for every i and j if there are enough resources and object j is not
chosen yet.
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3 ACO Algorithm for MKP

Real ants foraging for food lay down quantities of pheromone (chemical cues)
marking the path that they follow. An isolated ant moves essentially at random
but an ant encountering a previously laid pheromone will detect it and decide to
follow it with high probability and thereby reinforce it with a further quantity of
pheromone. The repetition of the above mechanism represents the auto catalytic
behavior of real ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The ACO algorithm uses a colony of artificial ants that behave as co-operative
agents in a mathematical space were they are allowed to search and reinforce
pathways (solutions) in order to find the optimal ones. Solution that satisfies the
constraints is feasible. After initialization of the pheromone trails, ants construct
feasible solutions, starting from random nodes, then the pheromone trails are
updated. At each step ants compute a set of feasible moves and select the best
one (according to some probabilistic rules) to carry out the rest of the tour.
The transition probability is based on the heuristic information and pheromone
trail level of the move. The higher value of the pheromone and the heuristic
information, the more profitable it is to select this move and resume the search.
In the beginning, the initial pheromone level is set to a small positive constant
value τ0 and then ants update this value after completing the construction stage.
ACO algorithms adopt different criteria to update the pheromone level. In our
implementation we use Ant Colony System (ACS) [4] approach.

In ACS the pheromone updating stage consists of:

3.1 Local Update Stage

While ants build their solution, at the same time they locally update the
pheromone level of the visited paths by applying the local update rule as follows:

τij ← (1− ρ)τij + ρτ0 (2)

Where ρ is a persistence of the trail and the term (1− ρ) can be interpreted
as trail evaporation.

The aim of the local updating rule is to make better use of the pheromone
information by dynamically changing the desirability of edges. Using this rule,
ants will search in wide neighborhood around the best previous solution. As
shown in the formula, the pheromone level on the paths is highly related to
the value of evaporation parameter ρ. The pheromone level will be reduced and
this will reduce the chance that the other ants will select the same solution and
consequently the search will be more diversified.

3.2 Global Updating Stage

When all ants have completed their solution, the pheromone level is updated
by applying the global updating rule only on the paths that belong to the best
solution since the beginning of the trail as follows:
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τij ← (1− ρ)τij + Δτij (3)

where Δτij =

⎧⎨⎩ρLgb if (i, j) ∈ best solution

0 otherwise
,

Lgb is the cost of the best solution from the beginning. This global updating
rule is intended to provide a greater amount of pheromone on the paths of the
best solution, thus intensifying the search around this solution. The transition
probability to select the next item is given as:

pkij(t) =

⎧⎪⎨⎪⎩
τijηij∑

j∈allowedk(t)
τijηij

if j ∈ allowedk(t)

0 otherwise

(4)

where τij is a pheromone level to go from i to j, ηij is the heuristic and
allowedk(t) is the set of remaining feasible items. Thus the higher the value
of τij and ηij , the more profitable it is to include item j in the partial solution.

Let sj =
∑m
i=1 rij . For heuristic information we use:

ηij =

⎧⎨⎩
pd1j /sd2j if sj �= 0

pd1j if sj = 0
(5)

Hence the objects with greater profit and less average expenses will be more
desirable.

There are two possibilities for placing a pheromone. It can be placed on the
arcs of the graph of the problem or on the nodes like in [7]. In the case of arcs
τij , in the formulas, corresponds to the pheromone quantity on the arc (i, j). In
the case of nodes τij corresponds to the pheromone quantity on the node j.

The LS method (move-by-move method) [10] perturbs a given solution to
generate different neighborhoods using a move generation mechanism. In gen-
eral, neighborhoods for large-sized problems can be much difficult to search.
Therefore, LS attempts to improve an initial solution by a series of local im-
proving changes. A move-generation is a transition from a solution S to another
one S′ ∈ V (S) (V (S) is a set of neighbor solutions) in one step. These solutions
are selected and accepted according to some pre-defined criteria. The returned
solution S′ may not be optimal, but it is the best solution in its local neighbor-
hood V (S). A local optimal solution is a solution with the local maximal possible
cost value. Knowledge of a solution space is the essential key to more efficient
search strategies [11]. These strategies are designed to use this prior knowledge
and to overcome the complexity of an exhaustive search by organizing searches
across the alternatives offered by a particular representation of the solution. The
main purpose of LS implementation is to speed up and improve the solutions
constructed by the ACO.
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A practical LS strategy that satisfies the MKP requirements has been devel-
oped and coupled with ACO algorithm. The MKP solution can be represented
by string with 0 for objects that are not chosen and 1 for chosen objects. Our
LS procedure is based on the exchange of the solution’s components. This is a
transition from one solution to another in one step. We use two exchange and
the new solution is accepted if it is better than current solution.

4 Experimental Results

To explain the difference between the two proposed pheromone models we con-
sider a small problem instance with n = 5 objects and one constraint.

max(5x1 + 5x2 + 4x3 + 6x4 + 6x5)

5x1 + 2x2 + 3x3 + 4x4 + 3x5 ≤ 10
(6)

The optimal solution of this problem is (01011) and the optimal value of the
object function is Lopt = 17. One ant will be used and it will start from node 1
of the graph of the problem in the first iteration and from nodes 3, 2 and 5 in the
second, third and fourth iterations respectively, for both pheromone models. In
the case of pheromone on the nodes, the achieved solutions are (11001) L = 16,
(01101) L = 15, (11001) L = 16, (11001) L = 16. We observe that in iterations
3 and 4 the ant starts from nodes belonging to the optimal solution but it can
not find the optimal one. In the case of pheromone on the arcs, the achieved
solutions are (11001) L = 16, (01101) L = 15, (01011) L = 17, (01011) L = 17.
In this case we observe that when the ant starts from the node belonging to the
optimal solution it finds the optimal one.

When the pheromone is on the nodes some of them accumulates large amount
of pheromone and become much more desirable then all others. In the other case
this pheromone is dispersed on the arcs that enter the node.

We show the computational experience of the ACS using MKP from “OR-
Library” available within WWW access at http://mscmga.ms.ic.ac.uk/jeb/orlib.
To provide a fair comparison for the above implemented ACS algorithm, a pre-
defined number of iterations, K=500, is fixed for all the runs. The developed
technique has been coded in C + + language and implemented on a Pentium 3
(450 MHz). Because of the random start of the ants we can use less ants then the
number of the nodes (objects). After the tests we found that 10 ants are enough
to achieve good results. Thus we decrease the running time of the program. The
results on the Figure 1 shows the advantage of putting the pheromone on the
arcs. The reported results are average value of the objective function over 20
runs of the program with different number of iterations. For all tested problems
our algorithm achieves, in some runs, the best results found in the literature.

We observe that we have very early stagnation of the algorithm in the case
of pheromone on nodes. We can explain this appearance with a large pheromone
accumulation on some nodes and thus ants repeat same solution over and over
again. In the case of pheromone on the arcs the difference between the amount
of the pheromone on the arcs is not so big.
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Fig. 1. The figures shows the average solution quality (value of the total cost of the
objects in the knapsack) per iteration over 20 runs
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5 Conclusion

The design of a meta-heuristic is a difficult task and highly dependent on the
structure of the optimized problem. In this paper two models of the pheromone
placement have been proposed. The comparison of the performance of the ACS
coupled with these pheromone models applied to different MKP problems are
reported. The results obtained are encouraging and the ability of the developed
models to rapidly generate high-quality solutions for MKP can be seen. For
future work another important direction for current research is to try different
strategies to explore the search space more effectively and provide good results.
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Abstract. We will present a higher order discretization method for
convection dominated transport equations. The discretisation for the
convection-diffusion-reaction equation is based on finite volume meth-
ods which are vertex centered. The discretisation for the convection-
reaction equation is improved with embedded analytical solutions for
the mass. The method is based on the Godunovs-method, [10]. The ex-
act solutions are derived for the one-dimensional convection- reaction
equation with piecewise linear initial conditions. We introduce a special
cases for the analytical solutions with equal reaction-parameters, confer
[9]. We use operator-splitting for solving the convection-reaction-term
and the diffusion-term. Numerical results are presented and compared
the standard- with the modified- method. Finally we propose our fur-
ther works on this topic.

1 Introduction and Mathematical Model

The motivation for the study came from computational simulations of radioac-
tive contaminant transport in flowing groundwater [4, 5] that are based on the
following mathematical equation

∂tRi ci + ∇ · (v ci −D∇ci) = −Ri λi ci +
∑
k=k(i)

Rk λk ck . (1)

The unknown concentrations ci = ci(x, t) are considered in Ω × (0, T ) ⊂ IRM ×
IR+. The retardation factor is given as Ri ≥ 0 and is constant. The decay-factors
are given as λi ≤ 0 and the indices of the predecessors are denotes as k(i) .
Further D is the Scheidegger diffusion-dispersion tensor and v is the velocity
vector.

The aim of this paper is to derive analytical solutions for the one-dimensional
convection-reaction equation and embed this solution in an explicit higher order
finite volume discretisation method for the convection-equation.

This will be done by using the Godunovs method. So we have no splitting
error and we have an exact discretisation for the one-dimensional problem.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 288–295, 2005.
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The higher order finite volume method for the convection term is based on the
TVD-methods and constructed under the local discrete minimum and maximum-
principle, confer [7].

For the new method we will focus us on the convection-reaction-equations
with linear decay-chain and our equations are given by

∂tRi ci + ∇ · v ci = −Ri λici + Ri−1 λi−1ci−1 , (2)
i = 1, . . . ,M , ui = (u1, . . . , uM )T ∈ IRM ,

with trivial inflow and outflow boundary conditions where u = 0. We use trape-
zoidal impulses as initial conditions.

The analytical solution is derived for piecewise constant velocities v ∈ IRn,
n is the space-dimension for the equation.

The analytical solution is derived in the next section.

2 Analytical Solutions

For the next section we deal with the following system of one-dimensional
convection-reaction-equations without diffusion. The equation is given as

∂tci + vi∂xci = −λici + λi−1ci−1 , (3)

for i = 1, . . . ,M . The unknown M is the number of components. The un-
known functions ci = ci(x, t) denote the contaminant concentrations. They are
transported with piecewise constant (and in general different) velocities vi .
They decay with constant reaction rates λi. The space-time domain is given by
(0,∞)× (0, T ).

We assume simple (irreversible) form of decay chain, e.g. λ0 = 0 and for
each contaminant only single source term λi−1ci−1 is given. For a simplicity, we
assume that vi > 0 for i = 1, . . . ,M .
We describe the analytical solutions with piecewise linear initial conditions. But
all other piecewise polynom functions could be derived, confer [9].

For boundary conditions we take zero concentrations at inflow boundary
x = 0 and the initial conditions are defined for x ∈ (0, 1) with

c1(x, 0) =
{
ax + b , x ∈ (0, 1)
0 otherwise ,

ci(x, 0) = 0 , i = 2, . . . ,M ,

(4)

where a, b ∈ IR+ are constants.
We use the Laplace-Transformation for the transformation of the partial dif-

ferential equation into the ordinary differential equation. We solve the ordinary
differential equations, described in [3], and retransformed the solution in the
original space of the partial differential equations. We could then use the solu-
tion for the one-dimensional convection-reaction-equation, confer [9]. In the next
subsection we introduce the special solutions for equal reaction-parameters, i.e.
λl = λa(l).
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2.1 Special Solutions

For the special solutions we use the same method as described in the general
case. We focus us on the case of 2 components for λ1 = λ2 , the further special
solutions are described in [9].

The solution for i = 2 and (l, a(l)) = (1, 2) are given as :

c2 = λ1 exp(−λ1t)
(

1
v2 − v1

α1 +
1

v1 − v2
α2

)
, (5)

αl =

⎧⎨⎩
0 0 ≤ x < vlt

a (x−vlt)2

2 + b(x− vlt) vlt ≤ x < vlt + 1
a1

2 + b vlt + 1 ≤ x

. (6)

The solutions are derived in the transformed Laplace-space and the term λl−λa(l)
is skipped because of the singular point. The generalisation of this method is
described in [9].

In the next section we derive the analytical solution for the mass.

2.2 Mass Reconstruction

For the embedding of the analytical mass in the discretisation method, we need
the mass transfer of the norm-interval (0, 1) . We use the construction over the
total mass given as

mi,sum(t) = mi,rest(t) + mi,out(t) (7)

The integrals are computed over the cell (0, 1). We integrate first the mass that
retain in the cell i and then we calculate the total mass. The difference between
the total mass and the residual mass is the outflowing mass which is used for
the discretisation.

The residual mass is described in [9] and is the integration of the analytical
solution over the interval (0, 1).

The total mass is calculated by the solution of the ordinary equation and
the mass of the initial condition, confer [9]. The outflowing mass is defined for
further calculations

mi,out(τn) = mi,sum(τn)−mi,rest(τn) , (8)
mi,out(τn) = mi,out(a, b, τn, v1,j , . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi) , (9)

whereby τn is the time-step, v1,j , . . . , vi,j are the velocity-, R1, . . . , Ri are the
retar-dation- , λ1, . . . , λi the reaction-parameters and a, b are the initial condi-
tions. In the next section we describe the modified discretisation-method.
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3 Discretisation

For the discretisation of the convection-reaction-equation we use finite volume
method and reconstruction of higher order with an explicit time-discretisation
(e.g. forward Euler). For the diffusion equation we use the finite volume method
with central difference method and implicit time-discretisation (e.g. backward
Euler). The two equations are coupled together with an Operator-Splitting
method, confer [9].

We will focus us on the new discretisation method for the convection-reaction
equation and introduce the used notations.

The time steps are defined by (tn, tn+1) ⊂ (0, T ) , for n = 0, 1, . . .. The
computational cells are Ωi ⊂ Ω with i = 1, . . . , I. The unknown I is the number
of the nodes on the dual mesh.

To use the finite volumes we have to construct the dual mesh for the tri-
angulation T of the domain Ω , see [7]. The finite elements for the domain Ω
are T e, e = 1, . . . , E. The polygonal computational cells Ωi are related with the
vertices xi of the triangulation.

To get the relation between the neighbor cells and to use the volume of each
cell we introduce the following notation. Let Vi = |Ωi| and the set Θj denotes
the neighbor-nodes j of the node i. The line segments Γij , with i �= j is given
with Ωi ∩Ωj .

The idea of the finite volumes is to construct an algebraic system of equation
to express the unknowns cni ≈ c(xi, tn). The initial values are given with c0i . The
expression of the interpolation schemes could be given naturally in two ways,
the first is given with the primary mesh of the finite elements

cn =
I∑
i=1

cni φi(x) , (10)

with φi are the standard globally finite element basis functions [2]. The second
expression is for the finite volumes with

ĉn =
I∑
i=1

cni ϕi(x) , (11)

where ϕi are piecewise constant discontinuous functions defined by ϕi(x) = 1
for x ∈ Ωi and ϕi(x) = 0 otherwise.

3.1 Finite Volume Discretisation of Second Order

For the second order discretisation scheme we use the linear interpolation scheme
for the numerical solutions.

The reconstruction is done in the paper [7] and it is here briefly explained
for the next steps. We us the following definitions for the element-wise gradient
to define the linear construction

un(xi) = cni , ∇un|Vi
=

1
Vi

E∑
e=1

∫
T e∩Ωi

∇cndx , with i = 1, . . . , I .
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The piecewise linear function is given by

unij = cni + ψi∇un|Vi
(xij − xi) , with i = 1, . . . , I ,

where ψi ∈ (0, 1) is the limiter which has to fulfill the discrete minimum maxi-
mum property, as described in [7].

We also use the limitation of the flux to get no overshooting, when transport-
ing the mass. Therefore the Courant-condition for one cell is τi = RiVi/νi with
νi =

∑
k∈out(i) vik and the time steps are restricted by τ ≤ min{τi, i = 1, . . . , I}

and we get the restriction for the concentration

ũnij = unij +
τi
τ

(cni − unij) . (12)

Using all the previous schemes the discretisation for the second order is writ-
ten in the form

φiVic
n+1
i = φiVic

n
i − τn

∑
j∈out(i)

ũnijvij + τn
∑

k∈in(i)

ũnkivki , (13)

whereby in(j) := {k ∈ Θj , vjk < 0} are the inflow-boundaries and out(j) :=
{k ∈ Θj , vjk ≥ 0} are the outflow-boundaries.

3.2 Finite Volume Discretisation Reconstructed with One
Dimensional Analytical Solutions

The idea is to apply the Godonovs method, described in [10], for the discreti-
sation. We reduce the equation to a one dimensional problem, solve the equa-
tion exactly and transform the one dimensional mass to the multi-dimensional
equation.

The equation for the discretisation is given by

∂tci + ∇ · vi ci = −λici + λi−1ci−1 , i = 1, . . . ,M . (14)

The velocity vector is divided by Ri and M is the number of concentrations.
The initial conditions are given by c01 = c1(x, 0) , else c0i = 0 for i = 2, . . . ,M
and the boundary conditions are trivial ci = 0 for i = 1, . . . ,M .

We first calculate the maximal time step for cell j and concentration i with
the use of the total outflow fluxes

τi,j =
VjRi
νj

, νj =
∑

j∈out(i)
vij . (15)

We get the restricted time step with the local time steps and the velocity of the
discrete equation are given as

τn ≤ min
i=1,...,I

j=1,...,M

τi,j , vi,j =
1
τi,j

. (16)
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We calculate the analytical solution of the mass with equation (9) with

mn
i,jk,out = mi,out(a, b, τn, v1,j , . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi) , (17)

whereby a = VjRi(cni,jk − cni,jk′) , b = VjRic
n
i,jk′ are the parameter for the linear

initial-impulse for the finite-volume cell and cni,jk′ is the concentration on the
left, cni,jk is the concentration on the right boundary of the cell j.

The discretisation with the embedded analytical mass is calculated by

mn+1
i,j −mn

i,j = −
∑

k∈out(j)

vjk
νj

mi,jk,out +
∑

l∈in(j)

vlj
νl

mi,lj,out , (18)

whereby vjk

νj
is the retransformation for the total mass mi,jk,out in the partial

mass mi,jk. In the next section we apply the modified discretisation method for
a benchmark problem.

4 Numerical Experiments

We compare the standard with the modified method using a benchmark problem.
The standard method is based on an operator-splitting method done with

the convection- and reaction-term, confer [6].
The modified method is described in the previous section with the embedded

analytical solution of the mass.
For the experiment we use an one dimensional problem with triangular ini-

tial conditions. The analytical solutions are given, confer [9] and compare the
analytical solution with the numerical solutions.

We calculate the solutions on a two dimensional domain, for which the veloc-
ity field is constant in the x-direction with the constant value of v = (1.0, 0.0)T .
We use only the convection-reaction equation with 4 components, given as

Ri ∂tci + v · ∇ci = −Riλici + Ri−1λi−1ci−1 , i = 1, . . . , 4 , (19)

whereby the inflow/outflow boundary condition are n ·v ci = 0.0, with no inflow
and outflow. The initial condition for the components are defined as

c1(x, 0) =

⎧⎨⎩x 0 ≤ x ≤ 1
2− x 1 ≤ x ≤ 2
0 otherwise

, ci(x, 0) = 0 , i = 2, . . . , 4 . (20)

For the problem we could compare the numerical solutions cni,j with the analytical
solutions ci(xj , yj , tn) using the L1-norm.
The error is given on grid-level l as Eli,L1

:=
∑
j=1,...,I Vj |cni,j − ci(xj , yj , tn)|.

The model domain is presented as a rectangle of 8×1 units. The initial coarse
grid is given with 8 quadratic elements. We refine uniformly till the level 7, which
has 131072 elements.

The parameters are chosen to get the nearly same maximum values at the
end of the calculation to skip the numerical effects with different scalars.
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Fig. 1. Concentration for the 4 components with descending retardation factors at
time t = 6

We use the reaction-parameters as λ1 = 0.3, λ2 = 0.4, λ3 = 0.5, λ4 = 0.0
and the retardation-parameters as R1 = 16, R2 = 8, R3 = 4, R4 = 2.

The model time is done from t = 0, . . . , 6. We compared the results at the
end-time t = 6.0. To do this we compared the L1-norm and the numerical
convergence-rate, which we compute by ρli = (log(Eli,L1

) − log(El−1
i,L1

))/ log(0.5)
for the levels l = 4, . . . , 7.

The results for the standard and modified method are presented by

Table 1. L1-error and the convergence-rate for the descending retardation-factors for
the standard and modified method

standard method modified method
l El

3,L1 ρl
3,L1 El

4,L1 ρl
4,L1 El

3,L1 ρl
3,L1 El

4,L1 ρl
4,L1

4 1.069 10−2 2.502 10−2 1.43 10−3 1.255 10−3

5 5.16 10−3 1.051 1.225 10−2 1.02 3.07 10−4 2.22 2.82 10−4 2.15
6 2.52 10−3 1.033 6.056 10−3 1.01 7.94 10−5 1.95 6.81 10−5 2.05
7 1.24 10−3 1.023 3.00 10−3 1.01 2.04 10−5 1.96 1.68 10−5 2.02

The results confirm our theoretical results. The standard method has the
order O(τn) because of the splitting error. The modified method has a higher
convergence order for the higher components because of the exact computation
of the convection-reaction-term. The convergence order for the modified method
is derived from the space-discretisation for the convection term and is O(h2) (h
is the grid-width). The results of the calculation is presented at the end point
t = 6 in the figure 1.
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5 Conclusion

We have presented a modified discretisation method with embedded analytical
solutions for the convection-reaction-equation. The idea of the derivation for
the general and special analytical solution with Laplace-transformation are de-
scribed. We confirm the theoretical results for the modified method of higher
order discretisation. The analytical solution could also used for further discreti-
sation methods based on flux or mass transfer, e.g. Discontinuous Galerkin meth-
ods. The main reason for the derivation of the analytical solutions for the coupled
equations are to skip the splitting error. We will work out the application for
analytical solutions combined with the diffusion term and kinetic sorption. This
methods force the explicit solutions methods for the reaction term and solve the
stiffness problem for different reaction-parameters.
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Abstract. Nonlinear multi-valued differential equations containing sev-
eral small parameters reflecting different time scales are under consider-
ation. Exponential stability type conditions are presented, under which
a re-iterated averaging procedure leads to a reduced order system, whose
solution set contains all possible limit trajectories of the slowest subsys-
tem, as the perturbation parameters tend to zero. Approximation rates
are given as well. It turns out that the order of approximation does not
depend on the number of time scales. However, the convergence is not
as fast as in the case of nonlinear ordinary differential equations.

1 Introduction

Single-valued differential equations with several time scales have been investi-
gated very early, see for instance [7, 9], under asymptotic stability suppositions
on the fast subsystems. The situation in the multi-valued framework is much
different. Whereas there is a wide literature available on two-scale multi-valued
differential equations, it seems that multi-scale differential inclusions have not
yet been investigated in a systematic way. We are only aware of a small num-
ber of manuscripts treating nonlinear control systems with three time scales,
see [2, 3, 5, 6]. Linear control systems with several time scales have been studied
much earlier using the reduced system approach, compare [1, 8]. It is impor-
tant to note that, for multi-scale differential equations, the step from two-scale
to three-scale systems is the crucial one. Once an order reduction method for
three-scale systems is understood, it becomes obvious how to generalize it to
multi-scale systems.

2 Order Reduction of Two-Scale Differential Inclusions

In this section we present an order reduction procedure for two-scale differential
inclusions, whose fast subsystems fulfill one-sided Lipschitz conditions with a
uniform negative Lipschitz constant. It turns out that the exponential stabil-
ity properties related to this Lipschitz condition guarantee the convergence of

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 296–303, 2005.
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certain multi-valued averages. Furthermore, even for fully coupled systems, an
approximation of order O(ε1/2) can be proven. Surprisingly, the two-scale result
provided here can be extended to three-scale systems without suffering losses
of the approximation order. We consider the singularly perturbed differential
inclusion

ż(t) ∈ εF (z(t), y(t)), z(0) = z0,

ẏ(t) ∈ G(z(t), y(t)), y(0) = y0, t ∈
[
0,

1
ε

]
,

in IRm × IRn.

Notation. Given a normed space X, we denote by C(X) the family of compact,
nonvoid subsets of X. By CC(X), we denote the family of compact, convex,
nonvoid subsets of X. For two subsets A,B ∈ C(X), the distance of A to B is
given by distH(A,B) := supa∈Adist(a,B), where, as usual we set dist(x,B) :=
infb∈B‖x − b‖, for x ∈ X. The Hausdorff metric is defined by dH(A,B) :=
max{distH(A,B),distH(B,A)}. The n-dimensional Euclidean space is denoted
by IRn, we write 〈·, ·〉 for the Euclidean inner product.

Assumption 1 (One-Sided Lipschitz Continuity). The multi-valued map-
pings F : IRm × IRn → CC (IRm) and G : IRm × IRn → CC (IRn) are Lipschitz
continuous with Lipschitz constant L ≥ 0. Furthermore, there is a constant α > 0
such that for all z ∈ IRm, y1, y2 ∈ IRn, v1 ∈ G(z, y1) there is a v2 ∈ G(z, y2) with

〈v2 − v1, y2 − y1〉 ≤ −α‖y2 − y1‖2.

This one-sided Lipschitz condition replaces the exponential stability condi-
tions used for singularly perturbed differential equations in the Tychonov theory.
It guarantees the existence of certain multi-valued averages, constructed below.

Definition 1. For z ∈ IRm, y0 ∈ IRn, S > 0, we define the individual finite
time average as the set

FS(z, y0) :=
⋃
y(·)

1
S

∫ S

0
F (z, y(t))dt,

where the union is taken over all solutions to the multi-valued differential equa-
tion ẏ(t) ∈ G(z, y(t)), y(0) = y0, t ∈ [0,∞). The multi-valued integral is com-
puted in the Aumann sense.

First, we investigate the convergence of the individual finite time averages.
For this purpose we collect some simple implications of the one-sided Lipschitz
continuity.

Lemma 1. Let Assumption 1 be effective. Then the following statements are
valid.
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(i) For all z ∈ IRm, y0
1 , y

0
2 ∈ IRn, and solutions y1(·) of ẏ(t) ∈ G(z, y(t)),

y(0) = y0
1, there is a solution y2(·) of ẏ(t) ∈ G(z, y(t)), y(0) = y0

2, with

‖y2(t)− y1(t)‖ ≤ e−αt‖y0
2 − y0

1‖

for all t ≥ 0.
(ii) For all z ∈ IRm, y0

1 , y
0
2 ∈ IRn, S > 0 the individual finite time averages fulfill

the estimate

dH
(
FS(z, y0

2), FS(z, y0
1)
)
≤ L(‖y0

2 − y0
1‖)

αS
.

(iii) For all w, z ∈ C([0,∞); IRm), y0 ∈ IRn and all solutions yw(·) of ẏ(t) ∈
G(w(t), y(t)), y(0) = y0, there is a solution yz(·) of ẏ(t) ∈ G(z(t), y(t)), y(0) =
y0, with

sup
t≥0

‖yw(t)− yz(t)‖ ≤
2LeL

1− e−α sup
t≥0

‖w(t)− z(t)‖.

Proof. This is an easy exercise. (i) follows from the Filippov lemma together
with Assumption 1. (ii) follows from (i). (iii) is a consequence of (i) together
with the Filippov theorem. � 

The exponential stability of the fast subinclusions ensures the existence of
a parametrized family of minimal invariant sets, where the slow states serve as
parameters. Hence, the equilibria manifold of the Tychonov theory is replaced
by more general objects in the multi-valued setting. This is the content of the
following lemma.

Lemma 2. Let Assumption 1 be effective. Then the following statements are
valid.

(i) For any z ∈ IRm there is a unique minimal compact forward invariant set
A(z) ⊂ IRn of the differential inclusion ẏ(t) ∈ G(z, y(t)).

(ii) The multi-valued mapping A : IRm → C(IRn) is Lipschitz continuous with
Lipschitz constant 2LeL

1−e−α ≥ 0.
(iii) For any compact set M ⊂ IRm and any compact set N0 ⊂ IRn, there is

a compact set N ⊂ IRn containing N0, which is forward invariant with respect
to the differential inclusion ẏ(t) ∈ G(z, y(t)) for any fixed z ∈M .

Proof. (i) and (iii) follow from Lemma 1 (i). (ii) follows from Lemma 1 (iii). � 

Since the forward invariant subsets A(z) in general contain more than one
point, it is not sufficient to set ε = 0 and to solve the corresponding algebraic
equations in order to obtain an appropriate limit system. But the one-sided
Lipschitz condition is strong enough to ensure that the finite time averages
converge.

Lemma 3. Let Assumption 1 be effective. Let M×N0 ⊂ IRm×IRn be a compact
subset and let N ⊂ IRn be the corresponding forward invariant set for the differ-
ential inclusions ẏ(t) ∈ G(z, y(t)), for z ∈ M . Then there is a Lipschitz contin-
uous multi-valued mapping F0 : M → CC(IRm) with dH

(
FS(z, y0), F0(z)

)
→ 0,
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as S → ∞, such that uniformly in (z, y0) ∈ M × N the individual finite time
averages satisfy the estimate

distH
(
FS(z, y0), F0(z)

)
= O(S−1), as S →∞.

Proof. The existence of the Hausdorff limit follows from Lemma 1 (ii) together
with a compactness argument. The Lipschitz continuity follows from immediately
from Lemma 1 (iii). A complete proof can be found in [4].

The multi-valued mapping F0(·) defines an averaged differential inclusion,

ż(t) ∈ εF0(z(t)), z(0) = z0, t ∈
[
0,

1
ε

]
, (1)

which produces all possible limit trajectories of the perturbed system. Let S0
be the solution mapping of the averaged differential inclusion, and Sε be the
solution mapping of the perturbed two-scale differential inclusion. The following
result is a tightening of a result in [4] for this particular situation, since the
order of approximation is computed. It is not known to the author whether the
approximation order presented is optimal. For singularly perturbed differential
equations, it definitely can be improved.

Theorem 1. Let Assumption 1 be effective. For any compact sets M0 ⊂ IRm,
N0 ⊂ IRn, we can estimate

distH
(
ΠzSε(z0, y0),S0(z0)

)
= O(ε1/2), as ε→ 0,

uniformly in (z0, y0) ∈ M0 × N0, where Πz denotes the projection on the z-
components of the solution mapping.

Proof. Let ε ∈ (0, 1]. On the time interval [0, 1/ε] the trajectories stay in a
compact set M ⊂ IRm, where the convergence FS(z, y0) → F0(z), as S → ∞,
is uniform. We divide the time interval into subintervals of the form [tl, tl+1],
which all have the same length Sε = ε−1/2, except for the last one, which
may be smaller. Accordingly the index l is an element of the index set Iε :=
{0, .., [1/(εSε)]}. We take some initial values (z0, y0) ∈ M0 × N0 and a solu-
tion (zε(·), yε(·)) ∈ Sε(z0, y0). We have zε(tl+1) = zε(tl) +

∫ tl+1

tl
żε(s)ds, where

żε(·) ∈ εF (zε(·), yε(·)) is a measurable selection. For l ∈ Iε we set ξ0 := z0 and
ξl+1 := ξl +

∫ tl+1

tl
wl(s)ds, where wl(·) ∈ εF (ξl, yξl

(·, yε(tl))) is a measurable
selection corresponding to a certain solution yξl

(·, yε(tl)) to ẏ(t) ∈ G(ξl, y(t)),
y(tl) = yε(tl). For t ∈ [tl, tl+1], we interpolate ξl(t) := ξl+

∫ t
tl
wl(s)ds. We choose

yξl
(·, yε(tl)) and wl(·) ∈ εF (ξl, yξl

(·, yε(tl))) in such a way that

Δl(t) := max
tl≤s≤t

‖zε(s)− ξl(s)‖ (2)

tends to zero as ε → 0. Therefore we also define, for l ∈ Iε, Dl(t) := maxtl≤s≤t
‖yε(s)− yξl

(s, yε(tl))‖ and dl(t) := maxtl≤s≤t ‖zε(s)−ξl‖. By Lemma 1 (iii) there
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exists such a solution yξl
(·, yε(tl)) with Dl(t) ≤ dl(t) 2LeL

1−e−α for all t ∈ [tl, tl+1]. In

the sequel we abbreviate C := 2LeL

1−e−α . According to the Filippov Lemma there
is a measurable selection wl(·) ∈ εF (ξl, yξl

(·, yε(tl))) with ‖żε(t) − wl(t)‖ ≤
εLdl(t) + εLDl(t) . We conclude that

Δl(t) ≤ Δl−1(tl) +
∫ t

tl

‖żε(s)− wl(s)‖ds

≤ Δl−1(tl) +
∫ t

tl

(εLdl(s) + εLDl(s)) ds

≤ Δl−1(tl) +
∫ t

tl

(εL(1 + C)dl(s)) ds

≤ Δl−1(tl) +
∫ t

tl

(εL(1 + C)(Δl(s) + εSεP )) ds,

where P ≥ 0 is an upper bound for F on M×N . We apply the Gronwall Lemma
and obtain Δl(tl+1) ≤

(
Δl−1(tl) + ε2S2

εLP (1 + C)
)
eεSεL(1+C) . We can set

Δ−1(0) = 0 and conclude for all l ∈ Iε that Δl(tl+1) ≤
(
ε2S2

εLP (1 + C)
)
eεSεL(1+C)∑l

k=1 e
(k−1)εSεL(1+C). Since l ≤ [1/εSε] we have

Δl(tl+1) ≤ (εSεLP (1 + C)) eεSεL(1+C)eL(1+C). (3)

We now can choose a vl ∈ εF0(ξl) such that
∥∥∥vl − 1

Sε

∫ tl+1

tl
wl(s)ds

∥∥∥ ≤ εO(S−1
ε ).

For all l ∈ Iε we define η0 := z0 and ηl+1 := ηl + Sεvl. We interpolate piecewise
linearly and set ηl(t) := ηl + (t− tl)vl. for t ∈ [tl, tl+1]. Obviously, for all l ∈ Iε
and all t ∈ [tl, tl+1], the estimate

‖ηl(t)− ξl(t)‖ ≤ O(S−1
ε ) (4)

is valid. On the other hand, this piecewise linear curve is almost a solution of
the averaged multi-valued differential equation, since we can estimate dist(η̇l(t),
εF0(ηl(t))) ≤ dH (εF0(ξl), εF0(ηl))+dH (εF0(ηl), εF0(ηl(t))) ≤ εCO(S−1

ε )+ε2CSεP .
According to the Filippov Theorem there is a solution z0(·) ∈ S0(z0) of the av-
eraged multi-valued differential equation with

‖z0(t)− ηl(t)‖ ≤ (CO(S−1
ε ) + CεSεP )eC (5)

for t ∈ [tl, tl+1]. For t ∈ [0, 1/ε], we can estimate ‖zε(t)−z0(t)‖ ≤ ‖zε(t)−ξl(t)‖+
‖ξl(t)−ηl(t)‖+‖ηl(t)− z0(t)‖ , where l ∈ Iε is chosen such that t ∈ [tl, tl+1] and
considering (3), (4), (5), the proof is finished. � 

Actually one can even prove that the convergence stated in the theorem
above is in the Hausdorff sense, see e.g. [4]. However, the rate of approximation
w.r.t. the Hausdorff metric is reduced. Moreover, the distance estimation above
is more useful than its converse, since it can be utilized for verifying exponential
stability of the perturbed system by investigating the exponential stability of
the averaged system.



Order Reduction of Multi-scale Differential Inclusions 301

3 Order Reduction of Three-Scale Differential Inclusions

We re-iterate the averaging method presented in the previous section in order
to construct a limiting system for the slowest motion. Consider the three-scale
differential inclusion

ż(t) ∈ εF (z(t), y(t), x(t)), z(0) = z0,

ẏ(t) ∈ G(z(t), y(t), x(t)), y(0) = y0,

δẋ(t) ∈ H(z(t), y(t), x(t)), x(0) = x0, t ∈
[
0,

1
ε

]
,

in IRm × IRn × IRp, where δ, ε > 0 are small real parameters.

Aassumption 2 (Decoupled One-Sided Lipschitz Continuity). The multi-
valued mappings F : IRm× IRn× IRp → CC(IRm), G : IRm× IRn× IRp → CC(IRn)
and H : IRm× IRn× IRp → CC(IRp) are Lipschitz continuous with Lipschitz con-
stant L ≥ 0. Furthermore, there is a constant α > 0 such that the multi-valued
mappings G,H possess the following properties. For all (z, y1, x) ∈ IRm × IRn ×
IRp, v1 ∈ G(z, y1, x), y2 ∈ IRn there is a v2 ∈ G(z, y2, x) with

〈v2 − v1, y2 − y1〉 ≤ −α‖y2 − y1‖2.

For all (z, y, x1) ∈ IRm × IRn × IRp, w1 ∈ H(z, y, x1), x2 ∈ IRp there is a w2 ∈
H(z, y, x2) with

〈w2 − w1, x2 − x1〉 ≤ −α‖x2 − x1‖2.
According to Lemma 3 we can set

F(ε,0)(z, y) := lim
S→∞

⋃
x(·)

1
S

∫ S

0
εF (z, y, x(t))dt,

G(ε,0)(z, y) := lim
S→∞

⋃
x(·)

1
S

∫ S

0
G(z, y, x(t))dt,

where the union is taken of all solutions x(·) of ẋ(t) ∈ H(z, y, x(t)), x(0) =
x0, t ∈ [0,∞). Let S(ε,0) be the solution mapping of the averaged differential
inclusion

ż(t) ∈ F(ε,0)(z(t), y(t)), z(0) = z0,

ẏ(t) ∈ G(ε,0)(z(t), y(t)), y(0) = y0, t ∈ [0, 1],

and S(ε,δ) be the solution mapping of the perturbed three-scale differential in-
clusion.

Lemma 4. Let Assumption 2 be effective. For any compact subset M0 ×N0
y ×

N0
z ⊂ IRm × IRn × IRp we can estimate

1
ε
distH

(
ΠzS(ε,δ)(z0, y0, x0), ΠzS(ε,0)(z0, y0)

)
= O(δ1/2),
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distH
(
ΠyS(ε,δ)(z0, y0, x0), ΠyS(ε,0)(z0, y0)

)
= O(δ1/2),

as δ → 0, uniformly in ε ∈ (0, 1], (z0, y0, x0) ∈ M0 × N0
y × N0

z , where Πz,
respectively Πy, are the projections on the z-components, respectively on the y-
components, of the corresponding solution mappings.

Proof. The second estimate is an immediate consequence of Theorem 1 applied
to ε = 1 for the case that δ → 0. As for the first estimate, we can apply Theorem
1 to the rescaled variable Z(t) = z(t)/ε. Note that the bound P ≥ 0 for the sets
F remains unchanged and that the Lipschitz constant L ≥ 0 of F can be used
for Z(t) as well. � 

Note that Lemma 4 only gives an estimation on the time interval [0, 1], and
not on the whole time interval [0, 1/ε]. For this reason we have to employ As-
sumption 2 in order to improve Lemma 4.

Lemma 5. Let Assumption 2 be effective. For all (z, y1) ∈ IRm × IRn, v1 ∈
G(ε,0)(z, y1), y2 ∈ IRn there is a v2 ∈ G(ε,0)(z, y2) with

〈v2 − v1, y2 − y1〉 ≤ −α‖y2 − y1‖2.

Proof. Follows in a straight-forward way from Assumption 2. � 

Lemma 6. Let Assumption 2 be effective. For any compact subset M0 ×N0
y ×

N0
x ⊂ IRm×IRn×IRp, the solution set S(ε,0)(z0, y0), obtained on the time interval

t ∈ [0, 1/ε], fulfils the estimate

distH
(
ΠzS(ε,δ)(z0, y0, x0), ΠzS(ε,0)(z0, y0)

)
= O(δ1/2), as δ → 0,

uniformly in ε ∈ (0, 1], (z0, y0, x0) ∈ M0 × N0
y × N0

x , where Πz denote the
projections on the z-component of the corresponding solution mappings.

Proof. We divide the time interval [0, 1/ε] into subintervals of the form [k, k+1],
k ∈ {1, 2, . . . , [1/ε]}. In each subinterval, Lemma 4 is applicable. However, we
still do not obtain a limit trajectory on the whole interval [0, 1/ε], since there
are jumps at tk = k, k ∈ {1, 2, . . . , [1/ε]}. To overcome these jumps we make
use of a refined version of the Filippov theorem, as presented in [10]. By the
one-sided Lipschitz continuity of G(ε,0)(z, ·), the εO(δ1/2) approximation of the
y-components given by Lemma 4 on the subintervals [k, k + 1] even takes place
on the whole time interval [0, 1/ε], whereas the εO(δ1/2) approximation of the z-
components on the subintervals [k, k+1] is reduced to an O(δ1/2) approximation
on the whole interval [0, 1/ε]. � 

According to Lemma 3 and Lemma 5 we can set

F(0,0)(z) := lim
S→∞

⎛⎝⋃
y(·)

1
S

∫ S

0
F(ε,0)(z, y(t))dt

⎞⎠ ,
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where the union is taken of all solutions y(·) of ẏ(t) ∈ G(ε,0)(z, y(t)), y(0) = y0,
t ∈ [0,∞). Let S(0,0) be the solution mapping of the (twice) averaged differential
inclusion

ż(t) ∈ F(0,0)(z(t)), z(0) = z0, t ∈ [0, 1/ε].

Theorem 2. Let Assumption 2 be effective. For any compact subset M0×N0
y ×

N0
x ⊂ IRm × IRn × IRp, the solution set S(0,0)(z0) fulfils the estimate

distH
(
ΠzS(ε,δ)(z0, y0, x0), ΠzS(0,0)(z0)

)
= O(ε1/2 + δ1/2), as (ε, δ) → 0,

uniformly in (z0, y0, x0) ∈ M0 ×N0
y ×N0

x , where Πz denote the projections on
the z-component of the corresponding solution mappings.

Proof. Follows immediately from Lemma 6 and from Theorem 1. � 
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Computing Eigenvalues of the Discretized
Navier-Stokes Model by the Generalized

Jacobi-Davidson Method
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Laboratoire de Mathématiques,
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Abstract. In this work the stability analysis of a 3D Navier-Stokes
model for incompressible fluid flow is considered. Investigating the sta-
bility at a steady state leads to a special generalized eigenvalue problem
whose main part of the spectrum is computed by the Jacobi-Davidson-
QZ algorithm.

1 Introduction

We consider a three dimensional incompressible fluid flow Navier-Stokes problem,
described by the following system of equations:⎧⎨⎩

∂ṽ
∂t+ < ṽ,∇ṽ >= −∇p +�μ,ν ṽ,

div ṽ = 0.
(1)

The operator �μ,ν denotes μ
(
∂2

∂x2 + ∂2

∂y2

)
+ ν ∂2

∂z2 , where x and y are horizontal
Cartesian coordinates, z is the vertical Cartesian downward coordinate, and μ,
ν are the coefficients of horizontal and vertical turbulent diffusivities; p is the
effective pressure and ṽ = (u, v, w) the fluid velocity; u, v and w are the velocity
components in the directions of x, y and z respectively.

The study is carried out in the rectangular domain defined below:

{(x, y, z) : 0 < x < xmax, 0 < y < ymax, 0 < z < zmax} ,

with boundary conditions set as follows:

. u = ∂v
∂x = ∂w

∂x = 0 at lateral surfaces x = 0 or x = xmax,

. ∂u
∂y = v = ∂w

∂y = 0 at lateral surfaces y = 0 or y = ymax,

. ∂u
∂z = ∂v

∂z = w = 0, at the bottom surface z = zmax,

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 304–311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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. ν ∂u∂z = τ sin πx
xmax

cos πy
ymax

, ν ∂v∂z = −τ cos πx
xmax

sin πy
ymax

, w = 0,

at the top surface z = 0.

After discretization, the Navier-Stokes equations are linearized at a steady
state. Stability analysis around this steady state requires the solution of a non-
symmetric generalized eigenvalue problem with the characteristic of being sin-
gular. We discuss how to reduce the eigenvalue problem to a regular one, more
stable for computations, along with the techniques adapted to investigate its
spectral characteristics.

The outline of the paper is as follows in section 2 we give the adapted approx-
imation and discretization schemes. Section 3 presents how stability analysis at
a steady state leads to the abovementioned generalized eigenvalue problem. In
section 4 the generalized Jacobi-Davidson method to compute the main part of
the spectrum is briefly discussed. Section 5 lists numerical experiments.

2 Discretization

Applying the marker and cell grid discretization [4, 7] to the rectangular domain,
with I, J , K ∈ N+ discretization parameters for the three axis respectively, we
get a 3D grid with IJK cells. A vertex (xα, yβ , zγ) is defined by

xα =
xmax
I

α, yβ ,=
ymax
J

β, zγ =
zmax
K

γ,

where α, β and γ are integer or half integer numbers.
The velocity and pressure components are discretized on the grid as follows:

u, v and w are approximated at vertices of type (i, j−1/2, k−1/2), (i−1/2, j, k−
1/2) and (i−1/2, j−1/2, k) respectively, where i, j and k are integers, while the
pressure p components are approximated at vertices of type (i−1/2, j−1/2, k−
1/2). Thus the velocity is assigned at n = (I − 1)JK + I(J − 1)K + IJ(K − 1)
total number of the inner grid vertices and the pressure at m = IJK total inner
grid vertices.

Centered finite difference approximations applied to (1) in the rectangular
domain discretized as described above leads to the following ordinary differential
and algebraic system of equations⎧⎨⎩

dvd

dt = F (vd)−Gpd,

GT vd = 0,
(2)

where vd ∈ Rn denotes the discrete fluid velocity components, pd ∈ Rm the dis-
crete values of the pressure. G is a real n-by-m matrix having a one-dimensional
null-space. G results from the discretization of the gradient of the pressure and
has the following block form:

G =

⎛⎝ -G1
-G2
-G3

⎞⎠ .
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The one dimensional null-space property of G is due to the fact that the pressure
is known up to an additive constant. F is a quadratic function Rn → Rn of the
form:

F =

⎛⎝ -A1(vd) + D1 0 0
0 -A2(vd) + D2 0
0 0 -A3(vd) + D3

⎞⎠ .

The
{
Dl

}3
l=1 blocks of F result from the discretization of �μ,ν applied to the

velocity components and the
{
−Al(vd)

}3
l=1 blocks come from the discretization

of the < ṽ,∇ṽ > term in (1). It is clear that the quadratic terms are due to the
presence of the −Al(vd) blocks in F .

3 Eigenvalue Problem at the Steady State

A steady state (vs, ps) of the Navier-Stokes model is a solution of (2) such that
vs is constant. To compute (vs, ps) we use the Crank-Nicolson scheme [4, 5]. At
each time stepping the solution of an algebraic nonlinear system is required, we
achieve this by using the Newton-GMRES method [1].

To examine the behavior of the Navier-Stokes model around this steady state,
we consider small deviations v′ and p′ such that vd = v′ + vs and pd = p′ + ps.
By substituting vd, pd in (2) and taking into account that F (vd) is quadratic in
vd, we get ⎧⎨⎩

dv′
dt = Jv′ −Gp′ +O(‖v′‖2),

GT v′ = 0,
(3)

where J ∈ Rn×n is the Jacobian of F at the steady state. We assume now that
v′ = v0e

λ0t and p′ = p0e
λ0t, where v0 and p0 are some fixed vectors. Keeping

only linear terms in (3), we derive the following system of approximate equations
for λ0, v0 and p0: {

λ0v0 = Jv0 −Gp0,
GT v0 = 0. (4)

The latter is equivalent to the generalized eigenvalue problem :

λ0

(
I 0
0 0

)(
v0
p0

)
=

(
J −G
GT 0

)(
v0
p0

)
, (5)

where I is the identity matrix of order n. Hence a normal mode (v0, p0) of (3)
is an eigenvector of (5) and λ0 the corresponding eigenvalue. Thus to determine
stability and study the behavior of system (1) around the steady state, we need
to compute the set of eigenvalues with largest real parts and the corresponding
“leading modes” or eigenvectors of (5).

The matrix pencil

λ

(
I 0
0 0

)
−
(

J −G
GT 0

)
(6)
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is singular since vectors of the form
(

0
q

)
with q ∈ null(G) belong to null spaces

of both
(
I 0
0 0

)
and

(
J −G
GT 0

)
.

To overcome this difficulty, let q be a non-zero vector in null(G) and consider
the matrix L

L =
(

Im−1
0

... q
)
.

Multiplying (6) on the right with diag(I, L) and on the left by its transpose,
leads to a strictly equivalent matrix pencil [3, 6] with a regular leading part of
order n + m− 1: (

J − λI −Ḡ
ḠT 0

)
,

and zero rest. Ḡ is the n-by-(m− 1) matrix formed by the first m− 1 columns
of G. Hence deleting the last zero row and the last zero column of (6) gives us
a regular matrix pencil λB −A of order n + m− 1 with :

A =
(

J −Ḡ
ḠT 0

)
, B =

(
I 0
0 0

)
. (7)

4 Generalized Jacobi-Davidson Method

When the size of the pencil (7) is not large, the computation of the whole spec-
trum can then be done using the QZ method applied to the pencil (7). For
large sizes we are confronted with the high computational cost and storage re-
quirements. Fortunately, in practice we need only to find a main part of the
spectrum, i.e. a few finite eigenvalues of largest real parts and the corresponding
eigenvectors. To this end, we have chosen to use the Jacobi-Davidson method for
generalized eigenvalue problems [2]. This method is a subspace iteration variant
of the QZ algorithm. It computes an approximation of the partial generalized
Schur decomposition of the pencil (7) in the form

(A− λB)Q = Z(SA − λSB),

where Q and Z are rectangular matrices with orthonormal columns and SA−λSB
is the corresponding upper triangular pencil.

The method works as follows: suppose we are interested in the rightmost
eigenvalue and the corresponding eigenvector of (7). The algorithm constructs
two orthonormal bases of the same dimension which increase at each step. Denote
by X and X̃ two matrices whose columns form such orthonormal bases, then in
each step, the method finds a scalar λ and a vector q that satisfy the Petrov-
Galerkin condition:

q ∈ rangeX and r = (A− λB)q ⊥ rangeX̃.
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This leads to a generalized eigenvalue problem with the small pencil H − λL,
H = X̃TAX and L = X̃TBX.

The generalized Schur decomposition W (SH −λSL)UT of the pencil H −λL
can be used to approximate the desired rightmost eigenvalue. More precisely,
the decomposition can be reordered such that the rightmost eigenvalue of the
pencil SH−λSL appears in the top left corner. The matrices U and W are sorted
accordingly, hence the right and left approximate Schur vectors corresponding
to the rightmost eigenvalue are q = XU(:, 1) and z = X̃W (:, 1). When an
approximate eigenpair (λ, q) is not accurate enough the correction equation

t ⊥ q and [(I − zz∗)(A− λB)(I − qq∗)] t = −r

is solved for t and used to expand the bases X and X̃. If several rightmost eigen-
values are also of interest, the method proceeds by deflation once an eigenvalue
has been computed. It is important to note that the methods restarts to limit
storage requirements and keep orthogonality of both bases. In our simulations
we use the JDQZ implementation coded by G.W. Sleijpen et al. [2] with a choice
of bases suitable for our matrix pencil.

5 Numerical Experiments

For numerical experiments we set μ = 107m2/s, ν = 10−4m2/s and τ =
10−3m2/s2 for the hydrodynamics equations, xmax = ymax = 6 × 106m and
zmax = 4 × 103m for the rectangular domain. We apply discretization and ap-
proximation schemes discussed in section 2 to get system (2). After computation
of the steady state, we form the regular pencil of order n + m− 1 and compute
“the stability determining” rightmost eigenvalues and the corresponding eigen-
vectors using JDQZ. Because of space limitations, this paper concentrates only
on the latter point. For the three simulations given below the correction equation
is solved with the method GMRES. The parameter lmax denotes the maximum

Table 1. Rightmost eigenvalues computed by JDQZ with tol = 10−10 in the case
n+m-1=1375

Eigenvalues Residuals # iteration # MVP
−2.7065 10−6 −6.4518 10−9i 1.2856 10−11 34 6849
−2.7065 10−6 +6.4524 10−9i 2.3594 10−11 34 6849
−2.7067 10−6 −1.3548 10−13i 7.3112 10−12 53 10668
−2.7069 10−6 −1.0372 10−13i 1.9581 10−11 54 10869
−2.7071 10−6 −2.9205 10−13i 2.6093 10−11 56 11271
−2.7080 10−6 −3.2344 10−8i 7.2179 10−12 59 11874
−2.7080 10−6 +3.2344 10−8i 1.6681 10−11 61 12276
−2.7067 10−6 −4.1508 10−15i 2.3064 10−11 80 16095
−2.7069 10−6 +5.2544 10−14i 1.7039 10−11 83 16698
−2.7071 10−6 +2.9451 10−15i 1.5182 10−11 88 17703
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Fig. 1. Residual norm history for n+m-1=1375

dimension for the bases and lmin the number of columns of U and W kept at
every restart. We set lmin = 15, lmax = 50. For the convergence test the program
uses tol0 = tol/

√
p, with p the number of required eigenvalues.

5.1 Matrix Pencil of Order n+m-1=1375 (I = J = 8, K = 6)

For the given values of the discretization parameters we get a matrix pencil with
small dimensions, therefore computing the entire spectrum by the QZ algorithm
is not very expensive. We obtained 766 infinite eigenvalues and 609 finite ones.
We computed 10 rightmost eigenpairs with JDQZ with the threshold tol equal
to 10−10. Table 1 shows the computed eigenvalues and the corresponding resid-
ual norms, the iteration number at convergence along with the total number of
matrix-vector products. Figure 1 plots the residual norm history versus the iter-
ation number. Comparison between the ten exact eigenvalues with largest real
parts given by QZ and the ones given by JDQZ shows that the latter computed
the same eigenvalues as QZ with minor differences in the imaginary parts.

5.2 Matrix Pencil of Order n+m-1=11647 (I = J = 16, K = 12)

For this size of the matrix pencil the computation of all the finite eigenvalues is
very expensive. We ran JDQZ with tol = 10−8 to compute 8 eigenvalues with
largest real parts, the results are presented in Table 2 and Figure 2. We observe
that although the first two eigenvalues, which form a complex conjugate pair,
both converged at iteration 50, the third one required 60 more iterations. This
behavior is due to the fact that the matrix pencil we deal with has very close
clustered eigenvalues, which stalls the method when locating several eigenvalues
in the same cluster, having very close real parts.
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Table 2. Rightmost eigenvalues computed by JDQZ with tol = 10−8 in the case
n+m-1=11647

Eigenvalues Residuals # iteration # MVP
−2.7328 10−6 −1.5635 10−8i 2.8767 10−9 50 10056
−2.7328 10−6 +1.5641 10−8i 2.8419 10−9 50 10056
−2.7328 10−6 −4.5108 10−11i 3.3209 10−9 110 22125
−2.7341 10−6 +1.4949 10−9i 2.9352 10−9 111 22326
−2.7342 10−6 −1.5796 10−9i 2.5173 10−9 111 22326
−2.7353 10−6 +7.8288 10−10i 2.4670 10−9 111 22326
−2.7354 10−6 −6.5655 10−10i 2.0403 10−9 111 22326
−2.7398 10−6 −6.8790 10−8i 2.4546 10−9 112 22527
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Fig. 2. Residual norm history for n+m-1=11647

5.3 Matrix Pencil of Order n+m-1=95743 (I = J = 32, K = 24)

The last simulation deals with a matrix pencil of very large dimensions, thus
we compute 4 eigenvalues with tol = 10−7. The resulted eigenvalues as well
as information about the convergence are given in Table 3, residual history is
plotted in Figure 3. For this case, the method required more iterations to locate
the first eigenvalue, this is natural since the large size of the matrix pencil makes

Table 3. Rightmost eigenvalues computed by JDQZ with tol = 10−7 in the case
n+m-1=95743

Eigenvalues Residuals # iteration # MVP
−2.7402 10−6 +3.4028 10−8i 4.9120 10−8 83 16698
−2.7400 10−6 −3.4195 10−8i 4.7387 10−8 84 16899
−2.7695 10−6 −1.4179 10−7i 3.0006 10−8 84 16899
−2.7695 10−6 +1.4184 10−7i 4.7360 10−8 84 16899
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the solution of the correction equation more difficult. We note that the rightmost
eigenvalues are all located in the left side of the complex plane which confirms
stability. This is true for the previous two simulations as well.
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Abstract. We present a modified iterative method for removing random-
valued impulse noise. This method has two phases. The first phase uses
an adaptive center-weighted median filter to identify those pixels which
are likely to be corrupted by noise (noise candidates). In the second
phase, these noise candidates are restored using a detail-preserving reg-
ularization method which allows edges and noise-free pixels to be pre-
served. This phase is equivalent to solving a one-dimensional nonlin-
ear equation for each noise candidate. We describe a simple secant-
like method to solve these equations. It converges faster than Newton’s
method, requiring fewer function and derivative evaluations.

1 Introduction

Images are often corrupted by impulse noise due to noisy sensors or communi-
cation channels. There are two types of impulse noise: fixed-valued noise and
random-valued noise [1]. In this report, we focus on general random-valued im-
pulse noise. Cleaning such noise is far more difficult than cleaning fixed-valued
impulse noise since for the latter, the differences in gray levels between a noisy
pixel and its noise-free neighbors are significant most of the times.

The main approach for removing impulse noise is to use median-based filters,
see [2], [3], [4]. In particular, decision-based median filters are popular in remov-
ing impulse noise because of their good denoising power and computational effi-
ciency, see [5], [6], [7], [8], [9], [10], [11]. However, the blurring of details and edges
are clearly visible when the noise level is high. To improve performance, a detail-
preserving variational method has been proposed to restore impulse noise [12].
This variational method does not smear edges. However when removing noise
patches involving several adjacent pixels, the distortion of some uncorrupted
image pixels at the edges cannot be avoided. To overcome the drawbacks, the
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two-phase schemes recently proposed in [1], [13] combine decision-based median
filters and the detail-preserving variational method to clean the noise.

The first phase in the methods proposed in [1] is based on the adaptive center-
weighted median filter (ACWMF) [6] to locate those pixels which are likely to be
corrupted by noise (noise candidates). The second phase is to restore those noise
candidates by the variational method (DPVM) given in [12]. These two phases
are applied alternately. Like other medium-type filters, ACWMF can be done
very fast. The aim of DPVM is to minimize the objective functional consisting of
a data-fitting term and an edge-preserving regularization term. It is equivalent
to solving a system of nonlinear equations for those noise candidates. Usually,
Newton’s method is preferred to solve these nonlinear equations and a method
to locate the initial guess is proposed in [14]. However the complexity of the
algorithm is not ideal. To improve timing, we give a simple algorithm which we
shall call secant-like method to solve these nonlinear equations. It converges in
fewer number of iterations than Newton’s method with both methods requiring
the same number of function and derivative evaluations per iteration.

The outline of this report is as follows. In §2, we review the two-phase denois-
ing scheme proposed in [1] for cleaning impulse noise. The secant-like method
is given in §3. Numerical results and conclusions are presented in §4 and §5,
respectively.

2 Two-Phase Scheme

We first review the details of the two-phase scheme. Let xij be the gray level of
a true image x at pixel location (i, j) and [nmin, nmax] be the dynamic range of
x. Let yij be the gray level of the noisy image y at pixel (i, j), then

yij =
{
rij , with probability r,
xij , with probability 1− r,

where rij ∈ [nmin, nmax] are random numbers and r is the noise ratio.
A two-phase iterative method for removing random-valued impulse noise was

proposed in [1]. In the first phase, it used the ACWMF [6] to identify noise
candidates. In the second phase, these noise candidates are restored using a
detail-preserving regularization method [12]. These two phases are applied al-
ternately.

At the second stage, the noise candidates are restored by minimizing a convex
objective functional Fy:

Fy(x) =
∑

(i,j)∈NT

|xij − yij |

+
β

2

⎛⎝ ∑
(i,j)∈NT

∑
(m,n)∈Vij

ϕα(xij − xmn)

+
∑

(m,n)∈VNT

∑
(i,j)∈Vmn∩NT

ϕα(ymn − xij)

⎞⎠
(1)
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where NT is the set of noise candidates, ϕα is an edge-preserving potential
function, β is a regularization parameter, Vij denotes the four closest neighbors

of (i, j), not including (i, j), and VNT
=

(⋃
(i,j)∈NT

Vij
)
\ NT . Possible choices

for ϕα are:
ϕα(t) = |t|α, 1 < α ≤ 2,

ϕα(t) = 1 +
|t|
α
− log(1 +

|t|
α

), α > 0,

ϕα(t) = log
(
cosh(

t

α
)
)
, α > 0,

ϕα(t) =
√
α + t2, α > 0,

see [15], [16], [17], [18], [19].
The minimization algorithm is given in [12]. It is a Jacobi-type relaxation

algorithm and works on the residual z = x − y. The minimization scheme is
restated as follows.

Minimization Scheme

1. Initialize z
(0)
ij = 0 for each (i, j) in the noise candidate set NT .

2. At each iteration k, do the following for each (i, j) ∈ NT :
(a) Calculate

ξ
(k)
ij = β

∑
(m,n)∈Vij

ϕ′
α(yij − zmn − ymn),

where zmn, for (m,n) ∈ Vij , are the latest updates and ϕ′
α is the deriva-

tive of ϕα.
(b) If |ξ(k)

ij | ≤ 1, set z
(k)
ij = 0. Otherwise, find z

(k)
ij by solving the nonlinear

equation

β
∑

(m,n)∈Vij

ϕ′
α(z(k)

ij + yij − zmn − ymn) = sgn(ξ(k)
ij ). (2)

3. Stop the iteration when

max
i,j

{|z(k+1)
ij − z

(k)
ij |} ≤ τA and

Fy(y + z(k))− Fy(y + z(k+1))
Fy(y + z(k))

≤ τA,

where τA is some given tolerance.

It was shown in [12] that the solution z
(k)
ij of (2) satisfies

sgn(z(k)
ij ) = −sgn(ξ(k)

ij ),

and that z(k) converges to ẑ = x̂− y where x̂ is the minimizer for (1).
The second phase is equivalent to solving the one-dimensional nonlinear equa-

tion (2) for each noise candidate. Typically, Newton’s method is preferred to solve
the (2), such as [1], [12], [13]. Since the convergence domain of Newton’s method
can be very narrow, care must be exercised in choosing the initial guess. See [14].

This two-phase scheme has successfully suppressed the noise while preserving
most of the details and the edges in both cases, even when the noise level is high.
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3 Secant-Like Method

Newton’s method is one way to solve the minimization problem and from [14]
we know how to find the initial guess such that Newton’s method is guaranteed
to converge. However, if we use ϕα(t) = |t|α, which is applied widely for its
simplicity, as our edge-preserving function, the complexity of the algorithm is not
very good [1]. Fox example, for 30% noise, it will take 30 times more CPU time
than ACWMF. To improve the timing, we describe a simple method which is
called secant-like method to solve (2). This method converges in fewer number of
iterations than Newton’s method with both methods requiring the same number
of function and derivative evaluations per iteration.

According to Step 2(b) of Minimization Scheme, we only need to solve (2)
if |ξ(k)

ij | > 1. We first consider the case where ξ
(k)
ij > 1. When solving (2),

zmn+ ymn− yij , for (m,n) ∈ Vij , are known values. Let these values be denoted
by dj , for 1 ≤ j ≤ 4, and be arranged in an increasing order: dj ≤ dj+1. Then
(2) can be rewritten as

H(z) ≡ −1 + αβ

4∑
j=1

sgn(z − dj)|z − dj |α−1 = 0, (3)

hence (2) has a unique solution z∗ > d1, see [14]. By evaluating {H(dj)}4j=2, we
can check that if any one of the dj , 2 ≤ j ≤ 4, is the root z∗. If not, then z∗ lies
in one of the following intervals:

(d1, d2), (d2, d3), (d3, d4), or (d4,∞).

We first consider the case where z∗ is in one of the finite intervals (dj , dj+1).
For simplicity, we give the details only for the case where z∗ ∈ (d2, d3). The other
cases can be analyzed similarly. Since H is a monotone function in (d2, d3), see
[14], it has an inverse G with G(H) = z. The goal is to compute G(0). Suppose
the following data are known:

G(H1) = z1, G(H2) = z2, G′(H1) = p1, G′(H2) = p2. (4)

Note that
G′(Hi) =

1
dH(zi)
dz

, i = 1, 2.

We approximate G by a cubic polynomial P which satisfies the conditions
(4). Let

z = P (H) = z1 + a(H −H1) + b(H −H1)(H −H2) + cH(H −H1)(H −H2)

for some constants a, b, c. From the conditions zi = P (Hi), pi = P ′(Hi), i = 1, 2,
we obtain

a =
z2 − z1

H2 −H1
, b =

H2(a− p1) + H1(a− p2)
(H1 −H2)2

.
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Thus the new approximate zero is given by

P (0) = z1 − aH1 + bH1H2.

In summary, the iteration is given by

zn+1 = zn − anH(zn) + bnH(zn)H(zn−1), n ≥ 1

where

an =
zn − zn−1

H(zn)−H(zn−1)
, bn =

H(zn)(an − 1
H′(zn−1)

) + H(zn−1)(an − 1
H′(zn) )

(H(zn)−H(zn−1))2
.

Given z0, the iterate z1 is taken as the Newton iterate. Then apply the secant-like
method to obtain the solution up to a given tolerance τB , that is, |zn − zn−1| ≤
τB .

Finally, we turn to the case where ξ(k) < −1. The nonlinear equation (3)
becomes:

1 + αβ

4∑
j=1

sgn(z − dj)|z − dj |α−1 = 0,

we can use almost the same method to solve this equation.
The secant-like method is equivalent to scheme 3 on p. 233 of [20], where it

is stated that the order of convergence is 1 +
√

3. Hence the method converges
faster than Newton’s method. In the next section, we see the secant-like method
always takes fewer number of iterations than Newton’s method. Experimentally,
the secant-like method is as robust as Newton’s method although we do not have
any theoretical result in this direction.

4 Numerical Experiments

In this section, we simulate the restoration of the 256-by-256 gray scale image
Lena corrupted by 30% and 50% random-valued impulse noise with dynamic
range [0, 255], see Figure 1.

In the simulations, for each noise pixel, we use ACWMF in the first phase, and
detail-preserving regularization in the second phase. Also, we use the secant-like
method to solve (2) with the potential function ϕ(t) = |t|1.2. We choose β = 2
for all settings. The restored images are shown in Figure 2. We see that the noise
are successfully suppressed while the edges and details are well preserved.

We also compare the number of iterations of secant-like method with New-
ton’s method with different magnitudes of α. The tolerances is chosen to be
τA = (nmax−nmin)× 10−4 and τB = 5× 10−4. In Figure 3, we give, for different
values of α, the total number of iterations.
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(a) (b) (c)

Fig. 1. (a) Original Image, (b) noisy image corrupted with 30% random-valued impulse
noise, (c) noisy image corrupted with 50% random-valued impulse noise

(a) (b)

Fig. 2. Restored images by secant-like solver using α = 1.2 and β = 2. (a) 30% noise,
(b) 50% noise
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Fig. 3. Compare the number of iterations of secant-like method with Newton’s method
(a) restore 30% noisy image (b) restore 50% noisy image

From the figures, we see that the secant-like method converges faster than
Newton’s method. The gain is greater as α approaches 1.
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5 Conclusion

In this report, we give an overview of a 2-phase scheme for cleaning random-
valued impulse noise and show that the second phase is equivalent to solving a
nonlinear equation. We describe a simple secant-like method to solve this equa-
tion. This method converges faster than Newton’s method. Simulation results
show that the images are restored satisfactorily even at very high noise levels.

Acknowledgment

We thank Professor Raymond Chan for his guidance in this project.

References

1. Chan, R.H., Hu, C., Nikolova,M.: An iterative procedure for removing random-
valued impulse noise. IEEE Singal Processing Letters (to appear)

2. Arce, G.R., Foster, R.E.: Detail-preserving ranked-order based filters for image
processing. IEEE Transactions on Acoustics, Speech, and Signal Processing 37
(1989) 83–98

3. Han, W.-Y., Lin, J.-C.: Minimum-maximum exclusive mean (MMEM) filter to
remove impulse noise from highly corrupted images.Electronics Letters 33 (1997)
124–125

4. Lee, Y.H., Kassam, S.A.: Generalized median filtering and related nonlinear filter-
ing techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 33
(1985) 672–683

5. Chen, T.,Wu, H.R.: Space variant median filters for restoration of impulse noise
corrupted images. IEEE Transactions on Circuits and Systems II. 48 (2001) 784–
789

6. Chen, T.,Wu, H.R.: Adaptive impulse detection using center-weighted median fil-
ters. IEEE Singal Processing Letters 8 (2001) 1–3

7. T. S. Huang, T.S., Yang, G.J., Tang, G.Y.: Fast two-dimensional median filter-
ing algorithm.IEEE Transcactions on Acoustics, Speech, and Signal Processing. 1
(1979) 13–18

8. H. Hwang, H. Haddad, R.A.: Adaptive meian filters: new algorithms and results.
IEEE Transactions on Image Processing 4 (1995) 499–502

9. Ko, S.-J., Lee, Y.H.: Center weighted median filters and their applications to image
enhancement.IEEE Transactions on Circuits and Systems 38 (1991) 984–993

10. Pok, G., Liu, J.-C., Nair, A.S.: Selective removal of impulse noise based on ho-
mogeneity level information. IEEE Transactions on Image Processing 12 (2003)
85–92

11. Sun, T., Neuvo,Y.: Detail-preserving median based filters in image processing.
Pattern Recognition Letters.15 (1994) 341–347

12. Nikolova, M.: A variational approach to remove outliers and impulse noise. Journal
of Mathematical Imaging and Vision.20 (2004)99–120

13. Chan, R.H., Ho, C.-W., Nikolova, M.: Impulse noise removal by median-type noise
detectors and edge-preserving regularization. Report, Department of Mathematics,
The Chinese University of Hong Kong, 2003-28 (302)



Variational Approach for Restoring Random-Valued Impulse Noise 319

14. Chan, R.H., Ho, C.-W., Nikolova, M.: Convergence of Newton’s method for a min-
imization problem in impulse noise removal. Journal of Computational Mathemat-
ics.22 (2004) 168–177

15. Black, M., Rangarajan, A.:On the unification of line processes, outlier rejection,
and robust statistics with applications to early vision. International Journal of
Computer Vision 19 (1996) 57–91

16. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving
MAP estimation. IEEE Transactions on Image Processing 2(1993) 296–310

17. Bouman, C., Sauer, K.: On discontinuity-adaptive smoothness priors in computer
vision. IEEE Transactions on Pattern Analysis and Machine Intelligence.17 (1995)
576–586
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Adaptive Filters Viewed as Iterative Linear
Equation Solvers

John H̊akon Husøy

University of Stavanger, Department of Electrical and Computer Engineering,
PO Box 8002, 4068 Stavanger, Norway

Abstract. Adaptive filtering is an important subfield of digital signal
processing having been actively researched for more than four decades
and having important applications such as noise cancellation, system
identification, and telecommunications channel equalization. In this pa-
per we provide a novel framework for adaptive filtering based on the
theory stationary iterative linear equation solvers. We show that a large
number of established, and some quite novel, adaptive filtering algo-
rithms can be interpreted as special cases of a generic update equation
forming the cornerstone of our framework. The novelty of our contri-
bution is the casting of the adaptive filtering problem as a problem in
numerical linear algebra facilitating a clearer understanding and a unified
analysis of the various algorithms.

1 Introduction

Adaptive filtering is an important subfield of digital signal processing having
been actively researched for more than four decades and having important ap-
plications such as noise cancellation, system identification, telecommunications
channel equalization, and telephony acoustic and network echo cancellation. The
various adaptive filtering algorithms that have been developed have traditionally
been presented without a unifying theoretical framework: Typically, each adap-
tive filter algorithm is developed from a particular objective function whose iter-
ative or direct minimization gives rise to the various algorithms. This approach
obscures the relationships, commonalities and differences, between the numer-
ous adaptive algorithms available today. The objective of the present paper is
to provide a novel unifying framework for adaptive filtering based on station-
ary methods for the iterative solution of sets of linear equations. We show how
many known adaptive filtering algorithms can be seen as simple special cases
of a generic update equation within this framework which is based solely on nu-
merical linear algebra. While this is important in its own right, it also facilitates
a clearer and complementary understanding paving the way for possible future
contributions from scientists with other backgrounds than electrical engineering
who, to the present time, have dominated the field.

We have organized our paper as follows: The next section gives a short review
of optimum filtering, the Wiener filter, and adaptive filters. Following this, we
develop our generic filter update equation which can be viewed as an iteration

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 320–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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step in the solution of an estimated and weighted Wiener-Hopf equation. In the
following two sections we first show how established algorithms [1, 2] such as the
Least Mean Squares (LMS) algorithm, its normalized version (NLMS), the Affine
Projection Algorithm (APA), and the Recursive Least Squares (RLS) algortithm
all can be seen as special cases of our unifying theory. Following this, we also
demonstrate that two recently introduced adaptive filter algorithms, the Fast
Euclidean Direction Search (FEDS) algorithm [3] and the Recursive Adaptive
Matching Pursuit (RAMP) algorithm [4], fit nicely into our unified framework.

2 Optimum and Adaptive Filtering

The optimum filtering problem in the discrete time domain is briefly reviewed
with reference to Figure 1. The problem can, in an application independent

Fig. 1. The optimum filtering problem: minh{E(e2(n))}

setting, be stated as: Given a time series, or signal, d(n), often referred to as the
desired signal and some measurements represented by the signal x(n): How do
we filter x(n) such that the filtered signal is an optimum estimate of d(n) in a
mean square sense? Obviously, we have to use a filter vector

h = [h0, h1, . . . , hM−1]T , (1)

where T denotes vector transpose, found as the solution to the minimization
problem

min
h

E{[d(n)− hTx(n)]2}, (2)

where E(.) denotes the expectation operator,

x(n) = [x(n), x(n− 1), . . . , x(n−M + 1)]T , (3)

is an M -vector of signal samples to be filtered, and hTx(n) is the filter output
denoted by y(n) if Figure 1. The optimum filter under statistically stationary
conditions, h, is found as the solution to the Wiener-Hopf equation

Rh = r, (4)

where
R = E{x(n)xT (n)}, (5)
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and
r = E{x(n)d(n)} (6)

are the autocorrelation matrix and cross correlation vector, respectively.
In many important digital signal processing applications, we cannot assume

statistical stationarity, or, if we can, we cannot assume prior knowledge of the
exact nature of the stochastic properties of the signals involved as manifest in
R and r. In both cases there is a demand for a an algorithm that computes the
filter vector in real time based on the the signals d(n) and x(n). Computing such
a filter vector for each sample time instant, n, we get a time varying filter vector
denoted h(n). In the latter case (unknown statistically stationary conditions), we
would require the resulting filter h(n) to converge as rapidly as possible to some
value close to the solution of the underlying Wiener-Hopf equation, Equation 4.
In the former case (non stationary situation) which in most cases can be viewed
as a sequence of shorter or longer time intervals of locally stationary situations,
we require both fast convergence to the Wiener-Hopf solution appropriate for
each time interval as well as an ability to track slow and fast transitions from one
locally stationary situation to the other. Algorithms employed for these purposes
are called adaptive filters. Given the high sampling rates of real life signals to
which adaptive filters are applied (e.g. digital telephony with 8000 samples per
second), the art of devising good adaptive filters involves a tradeoff between
performance and computational complexity.

3 The Estimated Wiener-Hopf Equation

A natural, but neglected, approach to the adaptive filtering problem stated above
is as follows: Estimate the quantities R and r of the Wiener-Hopf equation,
Equation 4, at each time instant n. This gives us an estimated Wiener-Hopf
equation for each n. At each sample time n we propose the application of some
technique for the iterative solution of this estimated equation. In the present
context we interleave the updates for each n of the estimated quantities and the
computations required by the iterative solution procedure. In doing this we have
several choices:

– The number of signal samples to use in the estimates of R and r. A large
number of samples should give reliable estimates, whereas a smaller number
of samples used will give less reliable estimates.

– The selection of a method for the iterative linear equation solver.
– At each sample time, n, we can perform one iteration of the selected method,

we can perform several iterations, or, we can perform parts of an iteration1

It is intuitively plausible that all three choices directly impact both the perfor-
mance and the computational complexity of the resulting adaptive filter algo-
rithm.

1 Example: If the Gauss Seidel method has been selected, one iteration corresponds to
one update of all elements of h(n), whereas it is natural to view each single element
update of h(n) as a partial iteration.



Adaptive Filters Viewed as Iterative Linear Equation Solvers 323

Natural estimates of R and r are

R̂(n) =
1
L

⎛⎜⎜⎜⎜⎜⎝
x(n) x(n − 1) . . . x(n − L + 1)

x(n − 1) x(n − 2) x(n − L)
...

. . .
...

x(n − M + 1) x(n − M) . . . x(n − M − L + 2)

⎞⎟⎟⎟⎟⎟⎠

·

⎛⎜⎜⎜⎜⎜⎝
x(n) x(n − 1) . . . x(n − M + 1)

x(n − 1) x(n − 2) x(n − M)
...

. . .
...

x(n − L + 1) x(n − L) . . . x(n − M − L + 2)

⎞⎟⎟⎟⎟⎟⎠ (7)

and

r̂(n) =
1
L

⎛⎜⎜⎜⎜⎜⎝
x(n) x(n − 1) . . . x(n − L + 1)

x(n − 1) x(n − 2) x(n − L)
...

. . .
...

x(n − M + 1) x(n − M) . . . x(n − M − L + 2)

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
d(n)

d(n − 1)
...

d(n − L + 1)

⎞⎟⎟⎟⎟⎠ .

(8)
With obvious definition for X(n) and d(n), the estimates can be expressed com-
pactly as R̂(n) = X(n)XT (n) and r̂(n) = X(n)d(n). Furthermore, for future
use, we introduce the notation x(n− i) for column no. i of X(n) and x̃(n− j) for
column no. j of XT (n). From the above, we can state our estimated Wiener-Hopf
equation as

X(n)XT (n)h(n) = X(n)d(n). (9)

In many situations involving estimates it is convenient to use weighted estimates.
Various weighted estimates of R and r can be expressed through an L×L weight-
ing matrix W(n) giving R̂(n) = X(n)W(n)XT (n) and r̂(n) = W(n)X(n)d(n)
in which case our weighted, estimated Wiener-Hopf equation can be stated as

X(n)W(n)XT (n)h(n) = W(n)X(n)d(n). (10)

4 Solving the Estimated Wiener-Hopf Equation

A stationary iterative solution procedure applied to a system of linear equations,
Ax = b is expressed as [5]

x(k+1) = [I−M−1A]x(k) + M−1b, (11)

where I is the identity matrix, and M is an invertible matrix given by the splitting
of A

A = M−N = M− (M−A). (12)



324 J.H. Husøy

We point out that the iteration of Equation 11 is meaningful also in the case of
equation sets with singular A matrices [6]. This observation is implicitly invoked
in the following.

Splitting the coefficient matrix of Equation 10 we have

X(n)W(n)XT (n) = C−1(n)− [C−1(n)−X(n)W(n)XT (n)], (13)

where C−1(n) is some full rank M ×M matrix2. If one iteration according to
Equation 11 is performed for Equation 10 at each time instant, n, we can use
common indexing for the signal quantities and the iteration index, i.e. we have

h(n + 1) = [I−C(n)X(n)W(n)XT (n)]h(n)
+ C(n)X(n)W(n)d(n)
= h(n) + C(n)X(n)W(n)e(n), (14)

where e(n), the error vector, is defined by e(n) = d(n)−XT (n)h(n). This clearly
has the flavor of an adaptive filter. We now identify several special cases of
Equation 14 giving rise to well established apaptive filtering algorithms.

5 Classical Adaptive Filters

5.1 Special Case No. 1: LMS/NLMS

It is trivial to observe that if we set L = 1, – that is X(n) = x(n), W(n) = 1,
and C−1(n) = μ−1I in Equation 14, the classical LMS algorithm

h(n + 1) = [I− μx(n)xT (n)]h(n) + μx(n)d(n)
= h(n) + μx(n)e(n), (15)

results. Note that the splitting employed corresponds to the Richardson splitting
[5]. Keeping the choices above, but with W(n) = ‖x(n)‖−2 = [xT (n)x(n)]−1 in
Equation 14, the standard version of the NLMS algorithm

h(n + 1) = h(n) +
μ

‖x(n)‖2x(n)e(n) (16)

results.

5.2 Special Case No. 2: The Affine Projection Algorithm (APA)

Selecting 1 < L < M , C−1(n) as above, and W(n) = [XT (n)X(n)]−1, i.e. we
use what is commonly referred to as data normalized estimates of the quantities
of the Wiener-Hopf equation, the iteration of Equation 14 takes the form

h(n + 1) = h(n) + μX(n){XT (n)X(n)}−1e(n), (17)

2 We prefer to denote the splitting matrix C−1(n) rather than C(n) which would be
more in line with Equation 12.
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which we immediately identify as the standard version of the APA adaptive fil-
ter [1]. There are many versions of the APA, see for example [7] for a tabular
classification of the most common ones. It is important to observe that all ver-
sions of the APA are captured by Equation 17 if appropriate adjustments to the
definitions of W(n) and X(n) are made.

5.3 Special Case No. 3: RLS

With L = 1, – again implying that X(n) = x(n), W(n) = 1, and C−1(n) =
X̃(n)X̃T (n), where X̃(n) is an M ×K,K > M data matrix of the same form as
X(n), but with K taking the role of L., the recursion of Equation 14 becomes

h(n + 1) = h(n) + {X̃(n)X̃T (n)}−1x(n)e(n). (18)

Realizing that the Kalman gain vector in common presentations of the RLS
algorithm is given by [1]

k(n) = {X̃(n)X̃T (n)}−1x(n), (19)

we see that the iteration of Equation 18 is equivalent to a sliding window RLS
algorithm. It is well known that the RLS algorithm gives an exact solution
to X̃(n)X̃T (n)h(n) = X̃(n)d(n) for each n. A consequence of the above is the
interesting alternative interpretation of RLS as a time sequential iterative scheme
applying the matrix splitting

x(n)xT (n) = X̃(n)X̃T (n) (20)
− [X̃(n)X̃T (n)− x(n)xT (n)]

to Equation 10 with L = 1, the same equation that formed the basis for the
derivation of the LMS algorithm above. Thus, the only difference in the deriva-
tion of the LMS and RLS algorithms within the presented framework is the
selection of the rank one coefficient matrix splitting: In Equation 13, the ma-
trix C−1(n) of the splitting for the RLS is selected as X̃(n)X̃T (n), which for
a sufficiently high K > M is a good estimate of the the autocorrelation ma-
trix of the adaptive filter input signal. Accepting the premise that the use of a
good estimate of the autocorrelation matrix as the C−1(n) matrix in the split-
ting of Equation 13 gives rise to well performing adaptive algorithms, the use of
C(n) = μ−1I, the crudest possible estimate/assumption on an autocorrelation
matrix3, naturally positions the LMS and RLS algorithms at opposite ends of
the performance scale for adaptive filtering algorithms.

As a final interpretation of the RLS algorithm, we point out that the appli-
cation of a Richardson splitting to the preconditioned equation set

{X̃(n)X̃T (n)}−1x(n)xT (n)h(n) = {X̃(n)X̃T (n)}−1x(n)d(n) (21)

also gives the RLS algorithm of Equation 18. Preconditioning is an extensively
used technique for speeding up the convergence of an iterative linear equation

3 That is, we assume a white input signal whether this is the case or not.
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solver [5]. Within the present framework we can thus interpret the RLS algorithm
as a particular preconditioned Richardson iteration applied to the rank one (L =
1) matrix equation, Equation 10, forming the basis of the LMS algorithm.

Novel Adaptive Filters

The recently introduced FEDS and RAMP adaptive filtering algorithms [4, 3]
were originally derived from very different perspectives [8]. Nevertheless, as
shown in [8], both algorithms can be interpreted as a Gauss Seidel single element
update at time n applied to the normal equations, Equation 9, with L > M . The
update, when updating only element no. j(n), can be expressed as

h(n + 1) = h(n) +
1

‖x̃(n− j(n))‖2 ij(n)X(n){d(n)−XT (n)h(n)}

= h(n) +
1

‖x̃(n− j(n))‖2 ij(n)X(n)e(n), (22)

where ij(n) is the M ×M matrix with a 1 in position (j(n), j(n)) and zeros in
all other positions, i.e. a matrix leaving intact row no. j(n) of the matrix with
which it is pre multiplied and zeroing out all the other rows. The FEDS and
RAMP algorithms differ only in the sequence in which the element updates are
performed: FEDS updates each element of h(n) in a sequential fashion in exactly
the same way as a standard Gauss Seidel procedure. The RAMP algorithm,
on the other hand, will, for each element update, select the element of h(n)
corresponding to the maximum (in absolute value) element of the residual vector
associated with Equation 9, X(n)e(n) and perform the update on this element.
This variation of the Gauss Seidel scheme is sometimes referred to as Southwell’s
method. Now, associating C(n) with 1

‖x̃(n−j(n))‖2 ij(n), we see that also these
two adaptive filter algorithms can be interpreted as special cases of the generic
iteration of Equation 14. Generalizing the above to the case where more than
one update according to Equation 22 is performed for each sample time index n
is trivial.

6 Summary and Conclusions

Our objective in this paper has been the reformulation of the adaptive filtering
problem in such a way that most, possibly all, adaptive filters can be viewed as
simple special cases of a unified theory. This is in sharp contrast to established
approaches in which each adaptive filter algorithm is derived and analyzed more
or less in without reference to its position in some wider context. Our results are
summarized in Table 1, in which we tabulate selections for the various quantities
of Equation 14, identify the stationary iterative methods employed, and relate
them to the various adaptive filter algorithms. We believe that the introduced
framework facilitates a clearer and complementary understanding of adaptive
filters that will pave the way for future contributions from scientists with other
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Table 1. Correspondence between special cases of Equation 14 and various adaptive
filtering algorithms

L W(n) C(n) Algorithm

1 1 μI LMS

(Richardson iter.)

1 ‖x(n)‖−2 μI NLMS

(Richardson iter.)

1 < L < M [XT (n)X(n)]−1 μI APA

(Richardson iter.)

1 1 [X̃T (n)X̃(n)]−1 RLS

(Precond. Richardson)

L > M I ij(n)‖x̃(n− j(n))‖−2 FEDS

(j(n) = n⊕M , Partial Gauss Seidel)

L > M I ij(n)‖x̃(n− j(n))‖−2 RAMP

(j(n) = arg maxi | eT (n)x̃(n− i)/‖x̃(n− i)‖ | .)
(Partial Gauss Seidel)

backgrounds than electrical engineering who, to the present time, have domi-
nated the field. Its usefulness in the analysis of the performance of some specific
adaptive filtering algorithms has already been demonstrated in [9].
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Abstract. A technique combining the Rothe method with the immersed
interface method (IIM) of R. Leveque and Z. Li, [8] for numerical solution
of parabolic interface problems in which the jump of the flux is propor-
tional to a given function of the solution is developed. The equations are
discretized in time by Rothe’s method. The space discretization on each
time level is performed by the IIM. Numerical experiments are presented.
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1 Introduction and Statement of the Differential
Problem

Let Ω be a bounded domain in R2 with piecewise smooth boundary S = ∂Ω.
Consider the following problem:

ut −Δu = Ff(x, y, t, u), (x, y, t) ∈ QT = Ω × (0, T ), (1)

u(x, y, t) = 0, (x, y, t) ∈ ST = S × [0, T ], (2)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (3)

where F is a functional form C(Ω) → R1, generated by the Dirac-delta function,
Ff = δΓ (x, y)f, defined only on a smooth curve Γ :∫

Ω

δ(x−X(s)δ(y − Y (s)f(x, y)dxdy =
∫
Γ

f(x, y)dσ , f ∈ C(Ω).

The problem (1)-(3) describes some physical phenomena in which the reac-
tions in a dynamical system take place only on some curves in Ω. This causes the
chemical concentration to be continuous, but the gradient of the concentration
to have a jump on these curves. The magnitude of the jump typically depends

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 328–336, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Rothe-Immersed Interface Method 329

on the concentration. Similar processes are also observed in biological systems,
on chemically active membranes, [1], [2], [10] and processes in which the ignition
of a combustible medium is accomplished through the use of either a heated
wire or a pair of small electrodes to supply a large amount of energy to a very
confined area, [3].

The equivalent formulation of the problem (1)-(3) is described as follows:

ut −Δu = 0 in QT \ΓT , (4)

u(x, y, t) = 0, (x, y, t) ∈ ST = S × [0, T ], (5)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (6)

and on the interface ΓT = Γ × [0, T ]

[u] := u+(x, y, t)− u−(x, y, t) = 0, (7)[
∂u

∂n(x, y)

]
= −f(u(x, y, t)), (8)

where n(x, y) is the normal direction at (x, y) ∈ Γ , pointing form Ω− into Ω+

(Ω = Ω− ∪Ω+ ∪ Γ , Ω− ∩Ω+ = ∅) and[
∂u(x, y, t)
∂n(x, y)

]
=

[
∂u(x, y, t)

∂x

]
cos(n, x) +

[
∂u(x, y, t)

∂y

]
cos(n, y).

The global solvability and blow-up of the solution in finite time are studied
in [2].

Various approaches have been used to solve differential equations with dis-
continuous coefficients and concentrated factors numerically. Most of standard
methods are not second order accurate or require the grid points to lie along the
interface. The IIM, [8], [9], [12] does not have such a requirement and is still a
second order accurate even though for arbitrary curve Γ .

The conjugation conditions (7)-(8) are specific, which leads to some new
difficulties, [5], [6]. We must to incorporate the conjugation conditions and to
approximate the unknown solution from the interface to the grid points, which
follows some times to the extension of the standard stencil, [7], [11].

In this paper we develop a Rothe method, [4], combined with the IIM, which
provides first order accuracy in time and second order in space dimension on a
Cartesian grids.

The organization of the paper is as follows: in Section 2 the semidiscretization
in time, using Rothe method is done; in Section 3 the full discretization for 2D
is discussed and in Section 4 numerical experiments are presented.

2 Time Discretization

Consider the problem (4)-(8) and let for simplicity the local reaction term be
linear, i.e. f(x, y, t, u) = −Ku(x, y, t), K = const.
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The method of Rothe we used consists in:

– Divide the interval [0, T ] into N subintervals [tn−1, tn], n = 1, ..., N , tn = nτ ,
τ = T/N ;

– Discretize the time derivative ∂u/∂t, introducing level set functions un(x, y)
at time level tn;

– Solve by recurrence the received system of elliptic equations for un, n =
1, ..., N ;

– Construct the Rothe function

uR(x, y, t) = un−1(x, y)+
(t− tn−1)

τ
(un(x, y)−un−1(x, y)), t ∈ [tn−1, tn].

To overcome some additional difficulties the function f is evaluated on the
previous time level and the semidiscretization looks as follows:

un+1(x, y)− un(x, y)
τ

− Δun+1(x, y) = 0, (x, y) ∈ Ω\Γ,[
un+1(x, y)

]
= 0, (x, y) ∈ Γ, (9)[

∂un+1(x, y)
∂n

]
= Kun(x, y), (x, y) ∈ Γ,

un(x, y) = 0, (x, y) ∈ ∂Ω, u0(x, y) = u0(x, y), (x, y) ∈ Ω.

Proposition 1. Let u0(x) ∈ Cα(Ω)∩C2+α(Ω \Γ ) with u0(x) = 0 on ∂Ω. Then
the problem (4)-(8) admits a unique solution u(x, y, t) ∈ Cα(QT )∩C2+α,1+α/2(QT \
Γ ). If more the solution u(x, y, t) ∈ Cα(QT ) ∩ C2+α,2+α/2(QT \ Γ ) and K ≥ 0
then for sufficiently small τ the solution of the elliptic system (9) convergence
to the solution of the parabolic problem

|u(x, y, t)− uR(x, y, t)| ≤ Cτ,

where the constant C does not depend on τ .

3 Total Discretization Using the IIM

We wish to approximate the solution un(x, y) on a uniform mesh grid in Ω =
[0, 1] × [0, 1] with mesh sizes h1 = 1/M1, h2 = 1/M2, and let xi = ih1 for
i = 0, 1, ...,M1, yj = jh2 for j = 0, 1, ...,M2. Then the difference scheme with
IIM can be written as:

un+1
ij − unij

τ
=

un+1
i+1,j − 2un+1

ij + un+1
i−1,j

h2
1

+ Dn
x,ij

+
un+1
i,j+1 − 2un+1

ij + un+1
i,j−1

h2
2

+ Dn
y,ij , (10)

where unij is an approximation to un(xi, yj) and Dn
x = Dn

xl+Dn
xr, D

n
y = Dn

yt+Dn
yb

are additional terms, choosing later to decrease the local truncation error (LTE).
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With l, r, t, b, we denote, that the interface crosses the left, right, top or bottom
arm of the standard five point stencil respectively at (xi, yj).

Let us introduce the level set function φ(x, y), so that φ(x, y) = 0 when
(x, y) ∈ Γ , φ(x, y) < 0 in Ω− and φ(x, y) > 0 in Ω+. The unit normal is
n(n1, n2), points from Ω− into Ω+. We call the grid point (xi, yj) regular, if
there is no grid crossing with the arms of the stencil and irregular in other case.

At regular grid points the correction terms Dn
x = Dn

y = 0. Let (xi, yj) be
irregular one. We assume without loss of generality that the interface Γ crosses
the right and top arm of the stencil at the points (x∗

ij , yj) and (xi, y∗
ij), see Fig.1.

Then Dn
xl = Dn

yb = 0, but Dn
xr and Dn

yt need more attention.

x i−1 x i x i+1

y j+1

y j

y 
Ω−

Ω+
Γ

y *
ij

x*
ij

θ

n

j−1

Fig. 1. The geometry at the irregular grid point (xi, yj)

Using Taylor expansion near (xi, yj) for the derivatives uxx and uyy we have:

∂2un+1

∂x2

∣∣∣∣
(xi,yj)

=
un+1
i+1,j − 2un+1

ij + un+1
i−1,j

h2
1

+ Dn
x,ij + O(h1),

∂2un+1

∂y2

∣∣∣∣
(xi,yj)

=
un+1
i,j+1 − 2un+1

ij + un+1
i,j−1

h2
2

+ Dn
y,ij + O(h2),

where

Dn
x,ij =

⎧⎨⎩−ρi+1,j

h1
[unx ](x∗

ij
,yj) −

ρ2i+1,j

2 [unxx](x∗
ij
,yj) if φi,j ≤ 0, and φi+1,j > 0,

ρi+1,j

h1
[unx ](x∗

ij
,yj) + ρ2i+1,j

2 [unxx](x∗
ij
,yj) if φi,j > 0, and φi+1,j ≤ 0,

Dn
y,ij =

⎧⎨⎩−ρi,j+1
h2

[uny ](xi,y∗
ij

) −
ρ2i,j+1

2 [unyy](xi,y∗
ij

) if φi,j ≤ 0 and φi,j+1 > 0,
ρi,j+1
h2

[uny ](xi,y∗
ij

) + ρ2i,j+1
2 [unyy](xi,y∗

ij
) if φi,j ≤ 0 and φi,j+1 ≤ 0.

Here ρi+1,j = (xi+1 − x∗
ij)/h1, ρi,j+1 = (yi+1 − y∗

ij)/h2 and φi,j = φ(xi, yj).
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We need to find the jumps [ux], [uy], [uxx] and [uyy] in terms of the known
information for [u] and [un] (for simplicity we omit the superscript n). Using the
idea of Li, [9], we introduce a local coordinates transformation at (x∗

ij , yj) (for
the jumps in x-direction and (xi, y∗

ij) for the jumps in y-direction):

ξ = (x− x∗
ij) cos θ + (y − yj) sin θ,

η = −(x− x∗
ij) sin θ + (y − yj) cos θ,

where θ is the angle between x-axis and the normal direction n at the interface
point. In a neighborhood of this point the interface lies roughly in tangential
direction η and Γ can be locally parameterized by ξ = χ(η), η. So we have:

uξ = ux cos θ + uy sin θ = un,

uη = −ux sin θ + uy cos θ, (11)

The jumps in the new coordinate system are:

[uξ] = [un] = Ku, [uξξ] = χ′′[uξ],
[uη] = [u]η = 0, [uηη] = −χ′′[uξ],

[uηη] = χ′′[uη] + Kuη.
(12)

We come back to the jumps in the x and y direction by the formulas:

[ux] = [uξ] cos θ − [uη] sin θ,

[uy] = [uξ] sin θ + [uη] cos θ, (13)
[uxx] = [uξξ] cos2 θ − 2 [uξη] cos θ sin θ [uηη] sin2 θ,

[uyy] = [uξξ] sin2 θ + 2 [uξη] cos θ sin θ [uηη] cos2 θ.

Plugging (12) in (13) at the point (x∗
ij , yj) we have:

[ux] = Ku cos θ,
[uy] = Ku sin θ,

[uxx] = −2Kuη cos θ sin θ + χ′′Ku(cos2 θ − sin2 θ),
[uyy] = 2Kuη cos θ sin θ − χ′′Ku(cos2 θ − sin2 θ).

The next difficulty for the full discretization is to approximate uη(x∗
ij , yj) and

u(x∗
ij , yj) using the nodes of the stencil. We use bi-variable Lagrange interpola-

tion by linear polynomials in two variables on three nodes (x̃1, ỹ1), (x̃2, ỹ2), and
(x̃3, ỹ3):

u(x∗
ij , yj) ≈ L1u(x̃1, ỹ1) + L2u(x̃2, ỹ2) + L3u(x̃3, ỹ3), (14)

where⎡⎣L1
L2
L3

⎤⎦ = 1
S

⎡⎣ x̃2ỹ3 − x̃3ỹ2 ỹ2 − ỹ3 x̃3 − x̃2
x̃3ỹ1 − x̃1ỹ3 ỹ3 − ỹ1 x̃1 − x̃3
x̃1ỹ2 − x̃2ỹ1 ỹ1 − ỹ2 x̃2 − x̃1

⎤⎦ , S = det

⎛⎝1 x̃1 ỹ1
1 x̃2 ỹ2
1 x̃3 ỹ3

⎞⎠ . (15)
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Lemma 1. If the points (x̃1, ỹ1), (x̃2, ỹ2), and (x̃3, ỹ3) lie not on a line, then
S �= 0 and the approximation (14) is correct.

Lemma 2. (Curve Condition) Let the interface curve Γ ∈ C2. Then for
sufficiently small h = max(h1, h2) there exist three nodes, which all lie in Ω− or
Ω+ and the condition of Lemma 1 is fulfilled.

To approximate the tangential derivative we use:

∂u
∂x ≈

1
S ((ỹ2 − ỹ3)u(x̃1, ỹ1) + (ỹ3 − ỹ1)u(x̃2, ỹ2) + (ỹ1 − ỹ2)u(x̃3, ỹ3)) ,

∂u
∂y ≈

1
S ((x̃3 − x̃2)u(x̃1, ỹ1) + (x̃1 − x̃3)u(x̃2, ỹ2) + (x̃2 − x̃1)u(x̃3, ỹ3)) .

(16)

Then we put this expressions in (11). From (15) it follows, that 0 ≤ |Li| ≤ 2, i =
1, 2, 3 and the coefficients in (16) are of order h−1.

Proposition 2. Let the solution of the differential problem (4)-(8) u(x, y, t) ∈
Cα(QT ) ∩ C4+α,2+α/2(QT \ Γ ), f(u) = −Ku(x, y, t), K ≥ 0 and the curve
Γ ∈ C2. Then for sufficiently small τ/h the solution obtained by the difference
scheme (10) convergence to the solution of the parabolic problem and

|u(xi, yj , tn)− unij | ≤ C(τ + h2),

where the constant C does not depend on τ and h.

4 Numerical Results

Example 1. 1D diffusion problem
Consider the problem

ut = Duxx, x ∈ (0, 1), x �= ξ, 0 < t ≤ T,

[u]ξ = 0, D[ux]ξ = −Ku(ξ, t), 0 < t ≤ T,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

where for D = 1, K = 1, the exact solution is

u0(x) =
{

sinλx/ sinλξ, 0 ≤ x ≤ ξ,
sinλ(1− x)/ sinλ(1− ξ), ξ ≤ x ≤ 1,

and λ is a root of the equation

λ(cot(λx) + cot(λ(1− x))) = 1.

In Table 1 we present the results of the Example 1 for ξ = 0.5 and λ = 2.7865.
We control the absolute error ||E||∞ and relative error ||Er||∞ in maximum
norm:

‖E‖∞ = maxi,j,n |u(xi, yj , tn)− unij |, ‖Er‖∞ = maxi,j,n ‖E‖∞ /|u(xi, yj , tn)|.
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Table 1. Mesh refinement analysis for Example 1 with time step τ = .000005

T = 0.2, n = 20000 T = 1, n = 200000
M ‖E‖∞ ratio ‖Er‖∞ ratio ‖E‖∞ ratio ‖Er‖∞ ratio

21 1.2106e-03 - 5,8047e-02 - 1.1791e-05 - 2.8173e-02 -
41 3.0275e-04 4.00 1.4397e-03 4.03 2.9089e-06 4.05 6.8960e-03 4.09
81 8.2494e-05 3.67 3.9098e-04 4.40 7.9016-07 3.68 1.8670e-03 3.69
161 2.8311e-05 2.91 1.3397e-04 2.92 2.9192e-07 2.71 6.4148e-04 2.91

Table 2. Mesh refinement analysis for Example 2 with time step τ = 0.0001

T = 0.0001, n = 1 T = 1, n = 10000
M1 M2 ‖E‖∞ ratio ‖Tr‖∞ ratio ‖E‖∞ ratio ‖Tr‖∞ ratio

10 10 1.8801e-05 - 0.1896 - 3.7936e-02 - 3.7936e+02 -
20 20 4.2898e-05 0.44 0.4476 0.42 5.5056e-03 6.89 5.5293e+01 6.75
40 40 2.1489e-05 2.00 0.2495 1.79 1.2764e-03 4.31 1.2897e+01 4.28
80 80 9.1365e-06 2.35 0.1421 1.76 2.4941e-04 4.34 2.5887e+00 4.98
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Fig. 2. Global error and numerical solution for Example 2 at T = 1, τ = 0.0001,
M1 = M2 = 20 and r0 = 0.5

The ratio of the successive errors near four confirm second order with respect to
the mesh parameter h for small M . With growing of M we observe the decreasing
of the accuracy. The reason is in O(τ/h)-term in the LTE.

Example 2. 2D diffusion problem
Let consider the following problem:

ut = uxx + uyy +
∫
Γ

C(t)uδ(x−X(s))δ(y − Y (s))ds

on a square [−1, 1]× [−1, 1] and Γ : x2 + y2 = r2
0. With

C(t) =
(
Y ′

0(r0)J0(r0)
Y ′

0(r0)
− J ′

0(r0)
)
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we take the exact solution to be

u(x, y, t) =
{

exp(−t)J0(r), r ≤ r0,
exp(−t)J0(r0)Y0(r)/Y0(r0), r > r0.

(17)

The Dirichlet boundary condition and initial condition are taken from (17).
In Table 2 the maximum error ‖EnM1,M2

‖∞ between the exact and numerical
solution at the n-th time layer and the maximum LTE ‖Trn‖∞ are presented:

‖EnM1,M2
‖∞ = max

i,j
{|u(xi, yj , tn)− unij |}.

We also control the ratios of the successive errors:

ratio = ‖EnM1,M2
‖∞/‖En2M1,2M2

‖∞.

The results confirm first order of the LTE on the first time layer and second
order for the solution at the last time T = 1.

5 Conclusions

Numerical procedures for parabolic problems with interface jump conditions, in
which the solution is continuous, but the jump of the flux is proportional to
the solution, are developed. The Rothe method for discretization in time and
the IIM for discretization in space on a Cartesian grid are used. The numerical
experiments confirm O(τ+h2) rate of accuracy for arbitrary curvelinear interface.
Our next work is to take in (9) the singular term f(x, y, t) = Ku(x, y, t) on the
current time layer. Then the scheme becomes fully implicit, which improves the
stability of the method.
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Abstract. A numerical approach for solving systems of nonautonomous
ordinary differential equations (ODEs) is proposed under suitable as-
sumptions. This approach is based on expansion of the solutions of ODEs
by Volterra series and allows to estimate the distance between the ob-
tained approximation and the true trajectory.

1 Introduction

We propose a numerical approach for solving systems of nonautonomous ordi-
nary differential equations (ODEs). This approach is based on Volterra expansion
of the solutions and allows to estimate the accuracy of the approximation. For
simplicity, we assume that the right-hand side depends on the state-variables in
an analytic way.

The approximation of trajectories of nonlinear control systems is reduced to
the problem of approximation the solutions of nonautonomous systems of ODEs,
whose right-hand sides depend on the time in a discontinuous way. But applying
the traditional numerical schemes of higher order (such as Runge-Kutta schemes)
is a nontrivial task (cf. for example [4], [9], etc.). An approach for solving this
problem for affinelly controlled systems is proposed in [5] and [6]. It is based on
the well known (in the control theory) expansion of the solution of systems of
ODEs by Volterra series (cf. for example [7]). Combining this approach with the
ideas developed in [8], we obtain a method for approximation the trajectories of
analytic control systems with guaranteed accuracy.

The organization of this paper is as follows: We start with some general results
concerning expansion of the solutions of ODEs systems by Volterra series. Next,
we prove a priori criterion for existence of a solution of an ODEs system. The
relation between the local and global approximation errors is also investigated.
At the end, a computational procedure is proposed. Some numerical results are
presented too.

1 This research was partially supported by the Ministry of Science and Higher Edu-
cation – National Fund for Science Research under the contract MM-1104/01.
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2 Systems of ODEs and Volterra Series

First, we introduce briefly some notations and notions: For every point y =
(y1, . . . , yn)T from Rn we set ‖y‖ :=

∑n
i=1 |yi| and let B be the open unit ball

in Rn (according to this norm) centered at the origin. Let x0 ∈ Rn and Ω be a
convex compact neighbourhood of the point x0. C denotes the set of the complex
numbers. If z ∈ C, then |z|, Re z and Im z denote the norm, the real and the
imaginary part of z, respectively. For some σ > 0 we set

Ωσ := {z = (z1, . . . , zn) ∈ Cn : (Re z1, . . . ,Re zn) ∈ Ω + σB;

|Im zi| < σ, i = 1, . . . , n}.
By FσΩ we denote the set of all real analytic functions φ defined on Ω with

bounded analytic extensions φ̄ on Ωσ. We define a norm in the set FσΩ as follows:

‖φ‖σΩ = sup
{
|φ̄(z)| : z ∈ Ωσ

}
.

If h(x) = (h1(x), h2(x), . . . , hn(x)), x ∈ Ω is a vector field defined on Ω, we
identify h with the corresponding differential operator

n∑
i=1

hi(x)
∂

∂xi
, x ∈ Ω.

Let VσΩ be the set of all real analytic vector fields h defined on Ω such that
every hi, i = 1, . . . , n belongs to FσΩ . We define the following norm in VσΩ :

‖h‖σΩ = max{‖hi‖σΩ , i = 1, . . . , n}.

An integrable analytic vector field Xt(x) = (X1(t, x), X2(t, x), . . . , Xn(t, x)),
x ∈ Ω, t ∈ R (parameterized by t) is a map t→ Xt ∈ VσΩ such that:

i) for every x ∈ Ω the functions X1(., x), X2(·, x), . . . , Xn(·, x) are measurable;
ii) for every t ∈ R and x ∈ Ω, |Xi(t, x)| ≤ m(t), i = 1, 2, . . . , n, where m is

an integrable (on every compact interval) function.

Let t0 be a real number, M be a compact set contained in the interior of
Ω and x0 ∈ M , and let Xt be an integrable analytic vector field defined on Ω.
Then there exists T (M,Xt) > t0 such that for every point x of M the solution
y(., x) of the differential equation

ẏ(t, x) = Xt(y(t, x)), y(t0, x) = x (1)

is defined on the interval [t0, T (M,Xt)] and y(T, x) ∈ Ω for every T from
[t0, T (M,Xt)]. In this case we denote by exp

∫ T
t0

Xt dt : M → Ω the diffeo-
morphism defined by

exp
∫ T

t0

Xt dt (x) := y(T, x).
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According to Proposition 2.1 from [1], the positive number T (M,Xt) can be
chosen in such a way that T (M,Xt) > t0 and for every T from the open interval
(t0, T (M,Xt)), for every point x from M and for every function φ from FσΩ , the

following expansion of φ
(
exp

∫ T
t0

Xt dt (x)
)

in Volterra series holds true:

φ

(
exp

∫ T

t0

Xt dt (x)

)
= (2)

φ(x) +
∞∑
N=1

∫ T

t0

∫ τ1

t0

∫ τ2

t0

. . .

∫ τN−1

t0

XτN
XτN−1 . . . Xτ2Xτ1φ(x)dτNdτN−1 . . . dτ1

and the series is absolutely convergent. The proof is based on the following
estimate:

max {|XτN
. . . Xτ2Xτ1φ(x)|, x ∈M} ≤

≤ N !
(

2n
σ

)N
‖XτN

‖σM · · · ‖Xτ2‖σM · ‖Xτ1‖σM · ‖φ‖σM , (3)

for every positive real number σ > 0, for every point x of M , for every function
φ from FσΩ and for every points τN , τN−1, . . . , τ2, τ1 from [t0, T ]. This estimate
implies the following technical lemma.

Lemma 1. Let M be a convex compact subset of Ω, ψ ∈ FσΩ, Xt ∈ VσΩ and
t0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τμ ≤ T . We set

Ψτ1,τ2,...,τμ := Xτμ . . . Xτ2Xτ1ψ.

Then for every σ > 0 and for every two points y1, y2 of M the following inequality
holds true:

|Ψτ1,τ2,...,τμ
(y2)− Ψτ1,τ2,...,τμ

(y1)| ≤

≤ (μ + 1)!
(

2n
σ

)μ+1

‖Xτμ
‖σM · · · ‖Xτ2‖σM · ‖Xτ1‖σM · ‖ψ‖σM · ‖y2 − y1‖.

Let the functions Ei : Ω → R, i = 1, . . . , n, be defined as follows: Ei(y) =
yi. We set E := (E1, . . . , En)T and Xt E := (Xt E1, . . . , XtEn)T . Applying
Lemma 1 we obtain that for every two points y1 and y2 from M the following
estimate holds true:

‖Xτμ
. . . Xτ2Xτ1E(y2)−Xτμ

. . . Xτ2Xτ1E(y1)‖ ≤

≤ nμ!
(

2n
σ

)μ
‖Xτμ‖σM · · · ‖Xτ2‖σM · ‖Xτ1‖σM · ‖y2 − y1‖. (4)

We use this estimate to prove a priori existence criterion for exp
∫ T
t0

Xt dt (x),
where x belongs to a given compact set.
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Proposition 1. Let Xt, t ∈ [t0, T ] be a bounded integrable analytic vector field
defined on Ω. Let M and M1 be convex compact subsets of Ω, σ > 0, T > t0 and
ω be a positive integer such that for every point x ∈M and for every t ∈ [t0, T ]
the following relation holds true:

x +
ω−1∑
N=1

∫ t

t0

∫ τ1

t0

. . .

∫ τN−1

t0

XτN
XτN−1 . . . Xτ1E(x)dτNdτN−1 . . . dτ1 + Kt ⊆M1,

where

Kt =

{
y = (y1, y2, . . . , yn)T : |yi| ≤

1
ω

(
2n
σ

)ω−1 (∫ t

t0

‖Xs‖σM1
ds

)ω}
. (5)

Then exp
∫ T
t0

Xt dt (x) is well defined for every point x ∈ M . Moreover,
exp

∫ τ
t0

Xt dt (x) ∈M1 for every point x ∈M and for every τ from [t0, T ].

Remark 1. If Xt is not bounded on the interval [t0, T ], then Proposition 1 re-
mains true under the additional assumption:

n

(
2n
σ

∫ T

t0

‖Xs‖σM1
ds

)ω
< 1.

This assumption implies that F is contractive with respect we use the usual
uniform norm in C(M1; [t0, T ]).

The next proposition helps us to estimate the global approximation error
using the local approximation error and motivates our approximation procedure.

Proposition 2. Let σ > 0, ω be a positive integer, α > 0, exp
∫ T
t0

Xt dt (x0) be
well defined and

exp
∫ t

t0

Xτ dτ (x0) ∈ Ω

for every t ∈ [t0, T ]. Let t0 < t1 < . . . < tk = T ,

2n
σ

∫ ti+1

ti

‖Xs‖σΩ ds <
1
2

and
n

ω

(
2n
σ

)ω−1 (∫ ti+1

ti

‖Xs‖σΩ ds

)ω
<

1
3kα+1 ,

where i = 0, . . . , k − 1. Then there exist compact subsets Mi of Ω such that
exp

∫ ti
t0

Xt dt (x0) belongs to Mi, i = 0, 1, . . . , k, and

di := diam Mi <
1
kα

exp
(

4n2

σ

∫ ti+1

t0

‖Xs‖σΩ ds

)
,

where diam M := max {‖y2 − y1‖ : y1, y2 ∈M}.
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3 A Computational Procedure

Let us consider the following system of ODEs:

d

dt
x(t) = f(t, x(t)), x(t0) ∈M0, (6)

where M0 is a convex and compact subset of Rn. We assume that there exist
σ > 0 and a convex and compact neighbourhood Ω of the set M0 such that f(t, ·)
belongs to VσΩ for each t from [t0, T̂ ]. Trajectories are the absolutely continuous
functions x(t), t ∈ [0, T̂ ] satisfying (6) for almost every t in this interval.

Let ε > 0. First, using Proposition 1 we can find a positive real T , t0 <
T ≤ T̂ , such that for every point x0 from M0 the corresponding trajectory
x(·, x0) : [t0, T ] → Rn starting from x0 is well defined on [t0, T ] and x(t) ∈ Ω
for every t from [t0, T ]. Next, we show how to calculate a point y ∈ Ω such that
|x(T, x0)− y| < ε. We choose the points t0 < t1 < . . . < tk = T such that

2n
σ

∫ ti+1

ti

‖f(s, ·)‖σΩ ds <
1
2

for each i = 0, . . . , k − 1. Let α > 1 be so large that

1
kα

exp

(
4n2

σ

∫ T

t0

‖f(s, ·)‖σΩ ds

)
< ε.

At the end we determine the accuracy of the local approximation by choosing
the positive integer ω to be so large that the following inequality holds true

n

ω

(
2n
σ

)ω−1 (∫ ti+1

ti

‖f(s, ·)‖σΩ ds

)ω
<

1
3kα+1 .

We set y0 := x0 and

yi+1 := yi +
ω−1∑
N=1

∫ ti+1

ti

∫ τ1

ti

. . .

∫ τN−1

ti

f(τN , ·) . . . f(τ1, ·)E(yi)dτNdτN−1 . . . dτ1

for every i = 0, 1, . . . , k − 1. Since the trajectory x(·, x0) : [t0, T ] → Rn is well
defined on [0, T ] and belongs to Ω, we obtain according to Proposition 2 that
|x(T, x0)− yk| < ε.

Remark 2. Our choice of the points t0, t1, . . . , tk, of the positive real α and of the
positive integer ω guarantee the needed accuracy of the numerical approxima-
tion. But, the used estimates are not sharp enough and practically the obtained
accuracy is much better than the expected one (cf. the illustrative examples from
the next section).
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Fig. 1. The true solution

Example 1. Let us consider the following ODE:

ẋ =
γ

t1−γ x
2, x(0) = x0 > 0,

where γ ∈ (0, 1]. For T ≥ (1/x0)1/γ it can be directly checked that there does
not exist a compact set M1 satisfying the assumptions of Proposition 1. Hence,
we can not conclude that the solution of this ODE is well defined on [0, T ]
(actually, such a solution does not exist). Now, let us choose an arbitrary T ,
0 ≤ T < (1/x0)1/γ . By setting f(t, x) := γx2/t1−γ , it can be directly calculated
that ∫ t

0

∫ τ1

0
. . .

∫ τk−1

0
f(τk, ·) . . . f(τ1, ·)E(x0)dτk . . . dτ1 = xk+1

0 tkγ .

Hence, the series (2) for this ODE is:

x0 + x2
0t
γ + x2

0t
3γ + · · ·xk+1

0 tkγ + . . . ,

which is convergent for our choice of t and tends to its analytic solution

x(t) =
x0

1− x0tγ
, t ∈

[
0, (1/x0)1/γ

)
,



Volterra Series and Numerical Approximations of ODEs 343

0

50

100

150

200

5 10 15 20 25 30 35

Fig. 2. A Runge-Kuta approximation
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Fig. 3. Projection of the reachable set with two jump controls

as k tends to infinity. We make some numerical experiments with MAPLE for
γ = 0.125 and x0 = 1. The corresponding results are shown on Fig. 1 and Fig. 2.
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Example 2. Let us consider the following control system:∣∣∣∣∣∣∣∣∣∣
ẋ1 = u
ẋ2 = x1
ẋ3 = v
ẋ4 = x3
ẋ5 = x1v

|u| ≤ 1

x(0) = (0, 0, 0, 0, 0).

The Volterra series of the system is finite. For every control we can calculate
the exact trajectory. The reachable set R(1) consists of all end-trajectory points
at the moment 1. Figure 3 presents a 3-dimensional projection of the set R(1)
in the space of variables x1, x2 and x5 using piecewise controls with two jumps
(see also http://www.math.bas.bg/~nkirov/2003/csys/consys.html).
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Abstract. The Farey tree is a binary tree containing all rational num-
bers from [0, 1] in ordered way. It is constructed hierarchically, level by
level, using the Farey mediant sum. Some extreme properties of the Farey
sum tree, i.e., the set of points {p + q} associated with Farey tree in the
way that rationals {p/q} belong to k-th level of the Farey tree are inves-
tigated.

1 Introduction

Farey tree is the collection of sets (called levels) FT = {T−1,T0,T1, ...}, where
the n-th level Tn = {r2n , ..., r2n+1−1}, (n = 0, 1, ...) is the decreasing sequence
of rationals rj ∈ IQ(0, 1) and T−1 = {r−1 = 0/1, r0 = 1/1} is called seed of
the tree. The 0-th level, T0 = {r1 = 1/2} is the root of FT. Further levels are
T1 = {r2 = 2/3, r3 = 1/3}, T2 = {r4 = 3/4, r5 = 3/5, r6 = 2/5, r7 =
1/4}, etc (see Figure 1). Hierarchic construction of Farey tree is related to the
commutative semi-group binary operation, called Farey sum, defined on IQ[0, 1]
by (p/q)⊕ (r/s) = (p+ r)/(q + s), called mediant of p/q and r/s, due to double
inequality p/q < p ⊕ q < r/s. It is customary to identify FT with the infinite
binary graph whose vertices form the set of rationals isomorphic to IQ[0, 1].
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Fig. 1. Farey tree (first five levels)

Farey tree introduces order in the set [0, 1], i.e. embodies the mapping IN →
IQ, which is precisely given in the following lemma:
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Lemma 1 ([3]). Every rational ρ ∈ (0, 1) can be expressed uniquely as a me-
diant of two distinctive rationals ρ1, ρ2 ∈ (0, 1), i.e., ρ = ρ1 ⊕ ρ2. Every such
rational occurs uniquely as a vertex of the Farey tree.

There are several algorithms for Farey tree construction, see [1], [2], [4], [6].
Further, two rationals p/q and r/s are called adjacents (or Farey neighbors) if
|ps − qr| = 1. Note that the binary relation of adjacency is non-reflexive and
non-transitive, but symmetric.

Lemma 2. If ρ is the mediant of adjacent rationals ρ1, ρ2 ∈ IQ(0, 1), then ρ is
adjacent to ρ1 and ρ2.

Proof. Let ρ = p/q, ρ1 = p1/q1 and ρ2 = p2/q2. Since p1/q1 and p2/q2 are
adjacents, it is valid |p1q2−p2q1| = 1. By definition, p = p1 +p2 and q = q1 +q2,
and therefore |pq1 − p1q| = |(p1 + p2)q1 − p1(q1 + q2)| = |p2q1 − p1q2| = 1.
Similarly, |pq2 − p2q| = |(p1 + p2)q2 − p2(q1 + q2)| = |p1q2 − p2q1| = 1.

Let R = {ρ1, ρ2, ..., ρn} be an increasing sequence of rationals from (0, 1),
such that consecutive pairs (ρi, ρi+1) are adjacent. Consider the following ”Farey
power” operation:

R⊕ = {ρi ⊕ ρi+1 | ρi, ρi+1 ∈ R, i = 1, . . . , n− 1} ∪R, (1)

where the result is taken in the increasingly ordered form. By virtue of Lemma 2,
any consecutive pair from R⊕ is a pair of adjacents too. This means that Farey
power can be iterated

R(k+1)⊕ = (Rk⊕)⊕, k = 1, 2, . . . ,

assuming the convention R0⊕ = R, R1⊕R⊕.
The Farey power (1) alowes the following generic definition of Farey tree.

Definition 1. Farey tree is given by FT = {T−1,T0,T1, ...}, where

T−1 = {0/1, 1/1}, Tk = T
(k+1)⊕
−1 \ T k⊕

−1 , k0, 1, 2, . . . ,

( \ denotes the set-difference operation).

Definition 2. The sequence Rn−1T
n⊕
−1 = ∪n−1

j=−1Tj, will be called the n-th shadow
of Farey tree (n = 0, 1, 2, . . .).

The first few shadows are R−1 = {0/1, 1/1}, R0 = {0/1, 1/2, 1/1}, R1 =
{0/1, 1/3, 1/2, 2/3, 1/1}, . . ., Rn = {rn1 , rn2 , . . . , rn2n+1+1}.

2 Sum-Tree

Let the simple mapping σ : p/q 
→ p+q, be applied on Farey tree and let call the
result Farey sum tree or FST= {U−1, U0, U1, . . .} in the sense that σ(Tn) = Un.
The first five levels of the FST (Figure 2) are U−1 = {1, 2}, U0 = {3}, U1 =
{4, 5}, U2 = {5, 7, 8, 7}, U3 = {6, 9, 11, 10, 11, 13, 12, 9}, etc.
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. . . . . . . . . . .

6 9 11 10 11 13 12 9

5 7 8 7

4 5

3

1 2

Fig. 2. Farey sum tree (first five levels)

Definition 3. The set Sn = {sn1 , sn2 , . . . , sn2n+1+1} denotes the n-th shadow of
the Farey sum tree provided Sn = σ(Rn), n = −1, 0, 1, . . ..

Obviously, FST and FT are isomorphic structures, as well as their shadows.
It can be easily verified that the shadow of FST is defined by the following

recurrence (being implied by Definitions 2 and 3):

sn+1
2j−3 = snj−1, sn+1

2j−1 = snj , sn+1
2j+1 = snj+1, sn+1

2j−2 = snj−1 + snj ,

sn+1
2j = snj + snj+1, j = 2, 3, . . . , 2n+1, n = 0, 1, 2, . . . ; (2)

s0
1 = 1, s0

2 = 3, s0
3 = 2;

For instance, S0 = {1, 3, 2}, S1 = {1, 4, 3, 5, 2}, S2 = {1, 5, 4, 7, 3, 8, 5, 7, 2}, etc.
Note that Sn can be split into 2n triples ”with offset 1”, i.e, triples of the

form
. . . , (snj−1, s

n
j , s

n
j+1), (snj+1, s

n
j+2, s

n
j+3), . . . ,

where j = 2, 3, . . . , 2n+1 − 2, and n = 0, 1, 2, . . . , with the following property:

Lemma 3. Any triple tnj = (snj−1, s
n
j , s

n
j+1) ∈ Sn, j = 2, . . . , 2n+1, n = 0, 1, 2, . . .,

satisfies

snj = snj−1 + snj+1 (3)

snj+1 > snj−1 ≥ 1 or snj−1 > snj+1 ≥ 1 (4)

Proof. By induction. The ”root” triple t02 = (1, 3, 2) satisfies (3) and (4). Suppose
that tnj = (snj−1, s

n
j , s

n
j+1) satisfies (3-4), or, using abbreviations a = snj−1 and

b = snj+1, the conditions become snj = a + b and a > b ≥ 1 or b > a ≥ 1.
Now, by the generic recurrence (2), tnj produces two ”children”, the ”left” one
tn+1
2j−2 and the ”right” one tn+1

2j with the values tn+1
2j−2 = (a, 2a + b, a + b) and

tn+1
2j = (a+ b, a+2b, b). So, it is evident that both descendant triples satisfy the

condition (3).
Further, if tnj satisfies a > b ≥ 1, then, a+b > a ≥ 1, which is sn+1

2j−1 > sn+1
2j−3 ≥

1 and tn+1
2j−2 satisfies (4) as well. Similarly, for tn+1

2j , where sn+1
2j−1 > sn+1

2j+1 ≥ 1.
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It follows from Lemma 3 that the middle term of any triple is maximal. The
triple tnk = (snk−1, s

n
k , s

n
k+1) ∈ Sn will be called dominant of the level Sn if

snk > snj for all 1 ≤ j ≤ 2n+1 + 1, j �= k.

Lemma 4. There is one and only one dominant triple in Sn, n = 0, 1, 2, . . ..

Proof. Also by induction. The ”root” level S0 has one dominant triple. Suppose
that tnk = (snk−1, s

n
k , s

n
k+1) = (a, a + b, b) is a dominant triple in Sn. Then,

a + b is strictly bigger than any other middle term of other triples of the level.
So, the only candidates for the Sn+1 level dominant are ”children” of tnk , i.e.,
tn+1
2j−2 = (a, 2a + b, a + b) and tn+1

2j = (a + b, a + 2b, b). By Lemma 3, only two
possibilities exist: a > b ≥ 1 or b > a ≥ 1. In the first case, a > b implies
2a + b ≥ a + 2b, so the triple tn+1

2j−2 is dominant. In the second case, a < b, and
therefore a + 2b > 2a + b which makes tn+1

2j the dominant triple.
Let L(t) and R(t) ∈ Sn+1 be the left and right ”child” of a triple t ∈ Sn.

The left and right ”child” of L(t) will be LL(t) = L(L(t)) and LR(t) = R(L(t)).
Similarly, RL(t) and RR(t) will be ”children” of R(t). So, t will have four de-
scendants in Sn+2, the (n+ 2)-level of the FST shadow. Continuing this process
produces a sub-tree in triples of FST (and also in the corresponding FST and
FT).

Lemma 5. If the triple t = (a, a+b, b) ∈ Sn satisfies a > b, then the sequence of
descendants L(t), LR(t), LRL(t),... is the sequence of dominants in the sub-tree
of the FST shadow triples rooted in t. If b > a, then the dominant sequence is
R(t), RL(t), RLR(t),...

Proof. It follows by proof of Lemma 4 that if a > b then the left ”child” L(t) =
(a, 2a + b, a + b) = (aL1 , a

L
1 + bL1 , b

L
1 ) dominates its right ”child” R(t) = (a +

b, a + 2b, b). At the same time, bL1 > aL1 and now the right ”child” LR(t) =
(a2, a2 + b2, b2) dominates LL(t). But, since aL2 = aL1 + bL1 and bL2 = bL1 , now
aL2 > bL2 , so the left ”child” is dominant, etc. Of course, the reversal inequality,
a < b yields dual sequence as dominant within the subtree.

Lemma 6. If a > b in t = (a, a + b, b) ∈ Sn, then the sequence of descendants
R(t), RR(t), RRR(t),... is the sequence of triples with minimal middle element
within the sub-tree rooted at t. If b > a, then the minimal middle element se-
quence is L(t), LL(t), LLL(t),...

Proof. With notations used in the proof of the previous Lemma, a > b implies
that the right ”child” (aR1 , a

R
1 + bR1 , b

R
1 ) has smaller middle element than the left

one, and moreover aR1 > bR1 , so that it again produces smaller right ”child” etc.
Under the inverse condition, a < b, the sequence of left descendants is smaller.

Let φ = (1 +
√

5)/2 be the golden ratio. Then, fn = (φn − (−φ)−n)/
√

5,
n = 0, 1, 2, . . . denotes the n-th Fibonacci number. The following theorem unifies
results of the preceding lemmas.

Theorem 1. Minimal and maximal elements of the n-th shadow of the Farey
sum tree are snmin = n + 3 and snmax = fn+4, n = 0, 1, 2, . . ..
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Proof. Applying Lemma 6 to the root triple t02 = (1, 3, 2) (a < b), gives L(t02) =
(1, 4, 3) ∈ S1, LL(t02) = (1, 5, 4) ∈ S2, LLL(t02) = (1, 6, 5) ∈ S3,...,Ln(t02) =
(1, n + 3, n + 2) ∈ Sn.

Also, by Lemma 5, the sequence R(t02), RL(t02), RLR(t02),..., gives (3, 5, 2),
(3, 8, 5), (8, 13, 5),..., the sequence of dominants in S1, S2, S3, etc. Note that
t02 = (1, 3, 2) = (f2, f4, f3), where fi is i-th Fibonacci number. By Lemma 3,
R(t02) = (f4, f5, f3), RL(t02) = (f4, f6, f5), LRL(t02) = (f6, f7, f5), etc.

The minimal sequence {snmin} of the n-th shadow of the Farey sum tree
corresponds to the harmonic sequence {1/n}+∞

i=2 of the Farey tree, while the
maximal one snmax = fn+4 corresponds to the golden sequence {fi+1/fi+2}+∞

i=1
converging to 1/φ = (

√
5−1)/2 ≈ 0.6180339887498948482. This golden sequence

is important in Chaos theory, providing the quickest quasi-periodic route to chaos
([1], [4], [6]).

3 Applications and Examples

Farey tree is an important construction in both theoretical (Number theory,
Topology, Graph theory) and applied topics (Dynamics theory, Chaos, Fractal
analysis). The common issue that connects all these areas is the coupled oscilla-
tors phenomena first noticed by Huygens in 17-th century. If a coupled system
oscillates in two different frequencies ω1 and ω2 (ω1 < ω2), then their ratio
Ω = ω1/ω2 has tendency to be a rational number, i.e. the node of Farey tree
and to belong to the lowest level possible. The nature of oscillation regime is
indicated by the sequence {θn}+∞

n=0 generated by the recurrence θn+1 = φ(θn),
where φ(θ) = θ + Ω − (K/2π) sin 2πθ, K ∈ IR, is so called circle map. Even if
Ω is irrational, the ”long term” behavior of the system, embodied in the quan-
tity ω = limn→∞(θn−θ0)/n (known as winding number) ”locks” into ratios with
small denominators. This is known as mode locking regime of coupled oscillators.
Parameter K that is usually a real number from [0, 1] represents the coupling
strength in the system. It is known that the graph ω = ω(Ω) is fractal function
having ”devil staircase” structure with plateaus of finite length. This length is
bigger if the ratio Ω is closer to the simple rationals. So, the widest plateau
corresponds to Ω = 1/2, then there are two equally wide for Ω = 1/3 and 2/3
(T1 level). Then, there are four plateaus for the ratios from level T2, and so on.
The diagram representing width of these plateaux as K increases from 0 to 1
is known as Arnold tongues diagram. Knowing the extremal property of Farey
tree, given in Theorem 1, enables understanding scaling properties of the set of
rationals from the specific level of the FT or its shadow.

Another application, concerning density of plane covering by Lissajous para-
metric curves t 
→ (sin t, sin((p/q)t)), 0 ≤ t ≤ 2π, p/q ∈ FT is given in [5].
There, it is conjectured that the Lissajous figures provide the densest cover of
the unit square provided p/q has maximal sum p + q.

Example 1. In the following table, we compare the CPU time needed for calcu-
lating certain levels (7 to 20) of Farey tree (an average Pentium PC is used). The
left column presents CPU times consumed by the ”classic” algorithm ([6], [2])
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based on binary conversion to continuous fraction. The right column gives times
needed for the algorithm based on Farey power operation (1) (see Example 3).
The last ones are considerably shorter. For levels below seven CPU time is too
small to be measured.

Table 1. CPU time comparison

level Classic alg. Farey power
7 0.078125 0.
8 0.23437 0.03125
9 0.25 0.046875

10 0.53125 0.07812
11 1.171875 0.1875
12 2.390625 0.359375
13 5.03125 0.71875
14 10.625 1.609375
15 22.265625 3.203125
16 46.9375 6.171875
17 97.828125 11.578125
18 206.125 22.765625
19 424.734375 47.453125
20 879.890625 93.5375

Example 2. Another example gives accumulation points for the (LR)∞ or
(RL)∞ chains of the Golden sequence {fi/fi+1}+∞

i=2 , different from 1/φ. Clearly,
for even i, (RL)∞(fi/fi+1) = 1/φ and for odd i, (LR)∞(fi/fi+1) = 1/φ. But,
what are limits in the opposite cases? Computation gives:

l1 = (LR)∞(
1
2
) =

3−
√

5
2

, l2 = (RL)∞(
2
3
) =

5 +
√

5
10

,

l3 = (LR)∞(
3
5
) =

15−
√

5
22

, l4 = (RL)∞(
5
8
) =

37 +
√

5
62

,

l5 = (LR)∞(
8
13

) =
99−

√
5

158
, l6 = (RL)∞(

13
21

) =
257 +

√
5

418
,

l7 = (LR)∞(
21
34

) =
675−

√
5

1090
, l8 = (RL)∞(

34
55

) =
1765 +

√
5

2858
. . .

The sequence of limits {lk} converges to 1/φ. For our example, the difference
1/φ − lk, for k = 1, . . . , 8 yields 0.236068, −0.105573, 0.0378553, −0.0148058,
0.00560404, −0.00214799, 0.000819372 and −0.000313131.

Example 3. Finally, here is the code in MATHEMATICA programming lan-
guage for Farey tree construction by using Farey power operation (1). The com-
mand fareyTree[n], n ∈ IN causes displaying the tree, rooted at {1/2} up to
the n-th level.
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fareySum=Numerator[First[#]]+Numerator[Last[#]])
/(Denominator[First[#]]+ Denominator[Last[#]])&;

ins=Insert[#,fareySum[#],2]&;
ffs=Union@@ins/@Partition[#,2,1]&;
fareyPow=Nest[ffs,{0, 1},#]&;
ftLevel=Complement[fareyPow[#+1],fareyPow[#]]&;
fareyTree=ColumnForm[ftLevel/@ Range[0,#],Center]&;

This code almost literally follows Definition 1. The CPU times elapsed in
calculating certain levels are diplayed in Table 1.

4 Conclusion

This note gives some properties of the Farey sum tree (Fig. 2) by using the
concept of Farey power and Farey tree shadow. It is shown that the sum p + q
of Farey tree elements p/q reaches its maximum along the ”golden sequence” 1

2 ,
2
3 , 3

5 , 5
8 , 8

13 , 13
21 , ... that paves the famous ”golden route to chaos”.
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Abstract. A technique combined the Rothe method with two-grid
(coarse and fine) algorithm of Xu [18] for computation of numerical solu-
tions of nonlinear parabolic problems with various boundary conditions
is presented. For blow-up solutions we use a decreasing variable step in
time, according to the growth of the solution. We give theoretical results,
concerning convergence of the numerical solutions to the analytical ones.
Numerical experiments for comparison the accuracy of the algorithm
with other known numerical schemes are discussed.

1 Introduction and Statement of the Differential
Problems

A flexible approach in the numerical solution of parabolic differential equations
(PDEs) is obtained by combining the Rothe method with the two-grid method
of Xu [18]. The numerical solution process may be considered as to consist of
two parts, viz. time semi-discretization and space integration. In the time dis-
cretization the PDEs are converted on each time level into an elliptic boundary
semilinear problem. Then the technique of Xu [18], based on finite element spaces
defined on two grids of different sizes (coarse and fine), is applied.

In this paper we consider one-dimensional problems:

ut − uxx = f0(x, t, u) in QT = D × I, D = (0, 1), I = (0, T ), T <∞, (1)
c0 ut(0, t)− d0ux(0, t) = f1(u(0, t)), 0 < t < T, (2)
c1 ut(1, t) + d1ux(1, t) = f2(u(1, t)), 0 < t < T, (3)

u(x, 0) = u0(x), x ∈ D̄ = [0, 1], (4)

where c0, c1, d0 and d1 are equal to 0 or 1. Each combination of these parameters
leads to the corresponding boundary value problem (b.v.p.). For example

• Homogeneous Dirichlet b.v.p.: c0 = c1 = d0 = d1 = 0, f1(s) = f2(s) = s;
• Neumann b.v.p.: c0 = c1 = 0, d0 = d1 = 1, f1 = f2 = 0;
• Robin b.v.p.: c0 = c1 = 0;
• Dynamical boundary conditions: c0 = c1 = 1.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 352–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Semilinear parabolic equations with classical boundary conditions(Dirichlet’s,
Neumann’s and Robin’s) are well studied for global existence and blow-up of the
solutions, cf. the monographs [12, 15] and review papers [1, 7, 16].

Problems of type (1)-(4), c0 + c1 �= 0 arise in the theory of heat-diffusion
conduction, cf. [3, 4], in chemical reactor theory [13], in colloid chemistry [17],
in modelling of semiconductor devices [8], as well as in heat transfer in a solid in
contact with a fluid, see the reference of the paper [7, 10] for more information.
In [11] finite difference blow-up solutions was studied.

Under appropriate assumption on f0, f1, f2 the solution blows up in finite
time for some initial data or exist globally, see [7].

Definition 1. A function u is called a weak solution to the problem (1)-(4) if :

i) u ∈ L2(I,H1(D))
⋂

L∞(I ×D);
ii) u satisfies the integral identity

T∫
0

∫
D

ux(t, x)vx(t, x)dxdt−
T∫

0

∫
D

u(t, x)vt(t, x)dxdt =
∫
D

u0(x)v(0, x)dx +

c0
d0

T∫
0

u(0, t)vt(0, t)dt +
c1
d1

T∫
0

u(1, t)vt(1, t)dt +

T∫
0

f1(u(0, t))v(0, t)dt +

T∫
0

f2(u(1, t))v(1, t)dt +
c0
d0

u(0, 0)v(0, 0) +
c1
d1

u(1, 0)v(1, 0)

for all v ∈ L2(I ×H1(D)) such that vt ∈ L∞(I ×D) and v(., T ) = 0.

It worth to note that the problem has unique local weak solution (see [5]).
In [9] for the proof of the solution existence a Rothe method is used.

The rest of the paper is organized as follows. In Section 2 we present time
discretization, using Rothe method for problem (1)-(4). Section 3 is devoted to
the method of Xu, applied for generated semilinear elliptic problem. This section
also contain convergence results. Section 4 gives numerical examples.

In principle, the proposed method works for two and three dimensional prob-
lems. However, in order to simplify the presentation, we have discussed only the
one-dimensional case.

2 Time Discretization

We divide the interval I = [0, T ] into n subintervals Ij , j = 1, 2, ..., n of the
length τj , with points of division tj . For every t = tj we approximate the



354 M.N. Koleva

unknown function u(x, tj) by function zj(x) and the derivative ∂u
∂t by the differ-

ence quotient

Zj(x) =
zj(x)− zj−1(x)

τj
,

the function zj−1 is the solution, obtained in the previous time level.
Starting by the function z0(x) = u0(x), the functions z1(x), z2(x), ..., zn(x) are
determined subsequently as solutions of ordinary boundary value problems :

z1 − z0

τ1
− z′′

1 = f0(x, t1, z1), c0
z1 − z0

τ1
(0)− d0z

′
1(0) = f1(z1(0)),

c1
z1 − z0

τ1
(1) + d1z

′
1(1) = f2(z1(1)),

z2 − z1

τ2
− z′′

2 = f0(x, t2, z2), c0
z2 − z1

τ2
(0)− d0z

′
2(0) = f1(z2(0)),

c1
z2 − z1

τ2
(1) + d1z

′
2(1) = f2(z2(1)),

. . .

Having obtained the function z1(x), z2(x), ..., zn(x) the so-called Rothe function
un(t) is defined in the whole region (0, 1)× (0, T ) by

un(t) = zj−1 +
zj + zj−1

τj
(t− tj), for tj−1 < t < tj , j = 1, ..., n,

assuming the values zj to every t = tj . By refining the original division (τk,
k = 1, 2, ..., τk → 0, k → ∞), we obtain the sequence unk

(t) for corresponding
Rothe functions, which can be expected to converge (in an appropriate space)
to the solution u (in an appropriate sense) of the given problem.

Theorem 1. Let u0 ∈ H1(D) and fi, i = 0, 1, 2 are smooth functions. Then
there exists exactly one weak solution of the problem (1)-(4) and un → u (
n→∞ ) in L2(I,H1(D)) with rate of convergence O(τ).

3 Space Discretization

For each time level t = tj , j = 1, ..., n, the following semilinear elliptic problem
is generated by using Rothe method.

− zxx + gj0(x, z(x)) = 0, x ∈ D, gj0(x, z) = −f j0 (x, z) + Zj(x), (5)

−d0zx(0) + gj1(z(0)) = 0, gj1(z(0)) = −f j1 (z(0)) + c0Zj(0), (6)

d1zx(1) + gj2(z(1)) = 0, gj2(z(1)) = −f j2 (z(1)) + c1Zj(1), (7)

and f j0 (x, z) = f0(x, tj , zj), f
j
i (z) = fi(zj), i = 1, 2.

Now we use the algorithm proposed in [18]. We assume that the above prob-
lem has solution z ∈ H2(D). Let Vh is a piecewise linear finite element space,
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defined on an uniform mesh with size h in D̄. The standard finite element dis-
cretization of (5)-(7) for d0 = d1 = 1, is to find zh ∈ Vh so that

χ(0)g1(zh(0)) + χ(1)g2(zh(1)) + ((zh,(χ) + (g0(zh), χ) = 0, ∀ χ ∈ Vh,

where (u, v) =
∫
D

uvdx. We have dropped the dependence of variable x in g0(x, z).

We introduce another finite element space VH (VH ⊂ Vh) defined on a coarser
uniform mesh (with mesh size H > h) of D̄. The three-step algorithm of Xu,
based on two (coarse and fine) grids for problem (5)-(7) is:

Find z�h = zH + eh + eH such that

1. zH ∈ VH ,

ϕ(0)g1(zH(0)) + ϕ(1)g2(zH(1)) + (∇zH ,∇ϕ) + (g0(zH), ϕ) = 0, ∀ϕ ∈ VH ;
2. eh ∈ Vh,

χ(0)g′
1(zH(0))eh(0) + χ(1)g′

2(zH(1))eh(1) + (∇eh,∇χ) + (g′
0(zH)eh, χ) =

−(∇zH ,∇χ)− (g0(zH), χ)− χ(0)g1(zH(0))− χ(1)g2(zH(1)), ∀χ ∈ Vh;
3. eH ∈ VH ,

(∇eH ,∇ϕ) + (g′
0(zH)eH , ϕ) + ϕ(0)g′

1(zH(0))eH(0) + ϕ(1)g′
2(zH(1))eH(1) =

−1
2
(g′′

0 (zH)e2
h, ϕ)− 1

2
g′′
1 (zH(0))e2

h(0)− 1
2
g′′
2 (zH(1))e2

h(1), ∀ϕ ∈ VH .

Theorem 2. If u ∈ H2(D) then

i) ‖z − (zH + eh)‖∞ ≤ C(τ + h2 + H4),
ii) ‖z − z�h‖∞ ≤ C(τ + h + H5), ‖z − z�h‖L2 ≤ C(τ + h2 + H6),

where C is independent of τ , h, H.

4 Numerical Experiments

In this section we present some numerical results. We show the efficiency of
the proposed algorithm for bounded and unbounded solution of the semilinear
parabolic problem with dynamical boundary conditions.

4.1 Bounded Solutions

The test problem is (1)-(4), where c0 = c1 = d0 = d1 = 1 and

f0(x, t, u) = u2 + f(x, t), f1(u) = f2(u) = λu, u0(x) = cos(πx),

f(x, t) is chosen such that u(x, t) = eλt cos(πx) is the exact solution.

Example 1. To avoid the influence of time step τ and two different mesh sizes
over the error results, we chose h = H3, τ ≤ h2, VH = 5, Vh = 65, τ = 0.0002,
λ = −1. We compare the results, computed by applying Rothe-two-grid method
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Table 1. Absolute error of bounded solution, τ = 0.0002

T Rothe-two-grid method Semi-implicit scheme
max norm L2 norm max norm L2 norm

0.001 6.024656e-6 2.387063e-6 2.114412e-3 1.039873e-3
0.01 3.803958e-5 1.720149e-5 1.330760e-2 6.647705e-3
0.1 1.266726e-4 8.034069e-5 4.567016e-2 2.715512e-2
1 2.245534e-4 1.775041e-4 6.141114e-2 5.026921e-2
1.5 1.782726e-4 1.468143e-4 4.551890e-2 3.730650e-2

Table 2. Absolute error and convergence rate on second step of algorithm

VH = 5 VH = 9 VH = 17 VH = 33
(Vh = 17) (Vh = 65) (Vh = 256) (Vh = 1025)

Max norm 2.52109025e-4 1.49044011e-5 9.11314558e-7 5.70021684e-8
ratio in VH 4.0798 4.0316 3.9989
ratio in Vh 2.0199 2.0079 1.9997
L2 norm 1.64754271e-4 9.36265703e-6 2.47604815e-7 1.51749375e-8

ratio in VH 4.1369 5.2479 4.0283
ratio in Vh 2.0339 2.2908 2.0071

and Semi-implicit scheme (65 grid points, uα ) (uα−1)nun+1). In Table 1 we
give absolute error in corresponding discrete norms.
The bounded solution of problem (1)-(4), computed with Rothe method together
with two-grid technique of Xu, is more precisely.

Example 2. Now we check the convergence rate of the second step of algorithm.
We chose h = H2 and fix the ratio τ

h2 = τ
H4 , (τ < h2). In Table 2 we give the

results after second step on one and the same time level. Decreasing the coarse
step size twice (fine step size decrease four times) yields to decreasing the error
approximately 24 = 42 times. The convergence rate is O(H4) = O(h2).
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Fig. 1. Semi-discrete error

Table 3. Semi-discrete error and conver-
gence rate

τ |u− z�h|τ ratio
0.10000 0.00475
0.05000 0.00242 0.9769
0.02500 0.00115 1.0733
0.02000 9.19507e-4
0.01000 4.57323e-4 1.0094
0.00500 2.27857e-4 1.0051
0.00250 1.13553e-4 1.0048
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Example 3. For comparing the exact u(x, t) and numerical solution z�h we use

the semi-discrete norm |u− z�h|
τ = 1

Nτ

Nτ∑
i=0

(
1∫
0
(u(ti) − z�(ti))2)

1
2 , (see [2]), where

Nτ is the number of time steps in the interval [0, T ]. The evolution of this error
is depicted in Figure 1 and Table 3 .
VH = 11, Vh = 1001.

4.2 Blow- p Solutions

We consider the problem (1)-(4), where c0 = c1 = d0 = d1 = 1 and

f0(x, t, u) = |u|u + f(x, t), f1(u) = f2(u) = − |u|u, u0(x) = − 1
Tb

cos(πx),

f(x, t) is chosen that u(x, t) = 1
t−Tb

cos(πx) is the exact solution. Tb is the blow-
up time.
For successive computation of the blow-up solution in each example below, we
use a decreasing variable time step τj = τ0 ×min(1, 1

‖u‖∞ or L2
), j = 1, ..., n as

in [14], τ0 is the initial time step. Depending on numerical method the solution
grows with different speed and the time step τ became different. In order to
compare the results in one and the same time level, we use a linear interpolation
in time.

Example 4. In Table 4 we show the relative error of the solution, in correspond-
ing discrete norms, computed for h = H2, τ ≤ h2, VH = 9, Vh = 65, τ0 = 0.0006,
Tb = 0.3, with Rothe two-grid method, Semi-implicit scheme (65 grid points, i.e.
VH = 65) and Fully implicit scheme(VH = 65, VH = 9), using Rothe discretiza-
tion in time and then Newton method for solving the generated nonlinear system.

Semi-implicit scheme and Rothe two-grid method have similar efficiency for
computation of the blow-up solution of problem (1)-(4). It seems that the Rothe
two-grid method maintains an optimal approximation of the solution even for
large H.

4.3 Two-Dimensional Example

Now we apply Rothe two-grid method in two-dimensional case. It’s worth to note
that Theorems 1 and 2 are still hold. We show the efficiency of the algorithm
for the following problem

ut −�u = u2 + f(x, y, t), (x, y) ∈ (0, 1)× (0, 1), 0 < t < T,

u(0, y, t) = u(x, 0, t) = u(1, y, t) = u(x, 1, t) = 0, 0 < t < T,

u(x, y, 0) = u0(x, y), (x, y) ∈ [0, 1],×[0, 1].

We chose f(x, y, t), such that u(x, y, t) = eλt sin(πx) cos(πx) is the exact solution.

Example 5. Let VH (Vh) is a finite element space defined on a coarse (fine)
uniform triangulation (with mesh step size H > h) of (0, 1) × (0, 1). We chose

U
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Table 4. Relative error of unbounded solution, τ0 = 0.0006

method norm T=0.1002 T=0.2497 T=0.2797 T=0.2971
Rothe

two-grid max
method norm 4.676127e-5 2.114390e-4 4.267488e-4 2.210406e-3
VH = 9 L2

Vh = 65 norm 2.942311e-5 9.616564e-5 1.739034e-4 8.312089e-4
Semi- max

implicit norm 1.519233e-4 5.145033e-4 1.082693e-3 5.747927e-3
scheme L2

VH = 65 norm 9.157006e-5 2.502561e-4 4.183389e-4 1.171946e-3
Fully max

implicit norm 3.681883e-5 1.848127e-4 4.382562e-4 2.938198e-3
scheme L2

VH = 65 norm 1.428532e-5 6.929959e-5 1.614487e-4 9.581974e-4
Fully max

implicit norm 1.408391e-2 5.253866e-2 1.179672e-1 4.715143e-1
scheme L2

VH = 9 norm 1.024675e-2 3.522179e-2 7.066371e-2 2.5999441e-1

Table 5. Absolute error in max norm

T=0.1 T=0.5 T=0.8 T=1 T=1.5
k=1/(4H) 2.836656e-3 3.050820e-3 2.231112e-3 1.812540e-3 1.084325e-3
k=1/(2H) 1.531089e-3 1.422669e-3 1.038991e-3 8.434673e-4 5.039424e-4
k=1/H 1.096637e-3 1.016676e-3 7.416862e-4 6.017683e-4 3.591656e-4
k=1/(4H2) 5.354021e-4 4.902133e-4 1.305285e-4 8.773251e-5 5.122130e-5

VH = 9× 9, H = kh, τ = 0.05, λ = −1. In Table 5 we give the absolute error in
maximal norm of the numerical solution for different k and T .

We can attain the necessary accuracy of the numerical solution even for large
τ , by solving only a few fixed number nonlinear equations and increasing the
linear equations, which we solve (i. e. decreasing the fine mesh step size).

5 Conclusions

• For bounded solutions of problem (1)-(4) the Rothe two-grid method gives
more precisely results than Semi-implicit scheme.
• For blow-up solutions of problem (1)-(4) the Rothe two-grid method and
Semi-implicit scheme have similar efficiency. The computational efforts of Semi-
implicit scheme are less.
• Nevertheless the Newton method is very effective for solving the nonlinear
systems (Fully implicit scheme), the approach of Xu is more attractive, because
the procedure involves a nonlinear solve (based on Newton method) on the coarse
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space and a linear solve on the fine space. The coarse mesh can be quite coarse
and still maintains an optimal approximation [18].
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An Economic Method for Evaluation of Volume
Integrals
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Abstract. Approximations to the volume integrals with logarithmic
kernels are obtained as solutions to finite difference schemes on the reg-
ular grid in a rectangular domain, which contains the domain of integra-
tion. Two types of right-hand sides in the finite difference equations are
constructed - the first one includes some double and line integrals and
the second one is fully discrete. The error estimates (optimal with respect
to the smoothness of the volume integral) for both types of right-hand
sides are obtained for volume integrals in appropriate Besov spaces.

Keywords: volume integrals, integral equations, particular solution,
Poisson equation.

1 Description of the Method

Let D be a bounded simply connected domain in R2 and let Γ denotes its
boundary. We shall consider the Poisson equation

�u(r) = f(r), r ∈ D

with Dirichlet or Neumann boundary conditions on Γ .
Integral equation method, applied for solving this problem, requires a partic-

ular solution of the non-homogeneous equation �u(r) = f(r), r ∈ D. It is well
known, that the volume integral

u(r) = − 1
2π

∫
D

f (s) ln |r − s| ds, r ∈ R2 (1)

is such a particular solution. Once this particular solution has been evaluated,
the initial problem is reduced to the homogeneous equation in D with Dirichlet or
Neumann boundary conditions on Γ . Then standard boundary element methods
can be applied to solve the homogeneous elliptic problem.

As shown in [4] and [10], the direct evaluation of the volume integral with
good accuracy can be very expensive and time-consuming procedure. The prob-
lem arises from the unboundness of the kernel near the point of evaluation r,
whenever r ∈ D. Thus one needs special quadrature formulae for evaluation

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 360–367, 2005.
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of singular integrals. In [2] high order quadratures based on Chebishev polyno-
mial approximation to f and fast multipole method are applied to evaluation of
volume integral.

Alternative method for evaluation of volume and surface potentials in R2 and
R3 is proposed independently by Lazarov and Mokin in [7] and by Mayo, in a
series of papers [4], [8], [9], [10].

For the method, the domain D is imbedded into a rectangle Ω with sides
parallel to the axes of a Cartesian coordinate system so that dist (Γ, ∂Ω) >
0. Then the volume integral is considered as a C1 solution to the differential
equation

� u(r) = f(r), r ∈ D,

�u(r) = 0, r ∈ Ω\D. (2)

If one only needs some particular solution to the Poisson equation, then the
boundary condition

u(r) = 0, r ∈ ∂Ω (3)

is applied. If the volume integral (1) has to be evaluated, then its values on
∂Ω are considered as a boundary condition instead of (3). These two cases can
be treated in similar ways. Therefore we shall consider only (3) as a boundary
condition.

Problem (2), (3) is discretized using an uniform mesh Ωh in Ω with mesh
sizes h = (h1, h2) and the standard five-point discrete Laplacian Λh:

Λhuh (r) = ϕ (r) , r ∈ Ωh,

uh (r) = 0, r ∈ ∂Ωh. (4)

If the right-hand side ϕ is defined, then the solution uh to (4) can be effectively
found at N1N2 points on the rectangular grid Ωh (Ni = O(h−1

i ), i = 1, 2),
applying fast solvers with O(N1N2 ln(N1 + N2)) operations.

Therefore, the direct computation on a regular grid of the volume integral u
given by (1) is replaced with finding the solution uh to a standard finite difference
scheme (4).

The main difficulty is the proper construction (in order to ensure good ap-
proximation of uh to u) of a discrete function ϕ at grid points near the boundary
Γ . For example, a combination of Steklov averaging operators with the direct
evaluation of u is applied in [7]. On the other hand, in [8] and [9] Mayo includes
explicitly known jumps of different derivatives of u across Γ in the right-hand
side of (4).

In this paper we follow the method proposed by Mayo. We suppose that the
boundary Γ is sufficiently smooth and that the restrictions on D and on Ω\D of
the volume integral (1) belong to some Besov spaces Bθ+2

p,p , 1/p < θ < 1 + 1/p,
1 < p < ∞. (Some sufficient conditions are given in Lemma 1.) We utilize new
right-hand sides ϕ in (4). The first right-hand side includes one double integral
and two line integrals over Γ . If the parameter of smoothness θ is greater than
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2/p, then the integrands are continuous functions on D and on Γ resp. and, using
simple quadratures, we define the second, fully discrete right-hand side ϕ1. The
right-hand side, proposed by Mayo in [8], [9], can be obtained as a special case
of the function ϕ1.

In Theorem 1 and Theorem 2 we prove that the solution uh to (4) with any
of the above right-hand sides has O(|h|θ) rate of convergence to the function u in
the discrete Sobolev norm W 2

p , provided u|D ∈ Bθ+2
p,p (D), u|Ω\D ∈ Bθ+2

p,p (Ω\D)
and 1/p < θ < 1 + 1/p. This rate of convergence is the best one can generally
expect under condition imposed on the smoothness of u in D.

An important consequence of the the investigations in Lp norm is that one
can easily get error estimates (optimal up to logarithmic factor) in the max-norm
– see remarks at the end of paper.

The paper is organized as follows. In Section 2 we give preliminary notations
and assertions. The jumps in the second and third derivatives of the volume
integral across Γ , which are essential part of the right-hand side, are explicitly
given in Lemma 1. In Section 3 we construct a right-hand side ϕ and investigate
the error of the method. In Section 4 new, fully discrete right-hand sides are
constructed. It is proved, that the error of the method is unaffected. In Section
5 the case of higher smoothness of the volume integral is briefly studied.

2 Preliminaries

We define function γ by γ(r) = 1, if r ∈ D, and γ(r) = −1, if r /∈ D. We use (x)n+
for the truncated power notation: (x)n+ = xn, if x > 0 and (x)n+ = 0 otherwise.
At a point r ∈ Γ we denote the jump of u by [u(r)] = ue(r)−ui(r), where ue(r)
and ui(r) are the limit values of u from the exterior Ω\D and from the interior
D resp.

Let R(λ) = (X(λ), Y (λ)), λ ∈ [0, 2π) be a parametric representation of the
curve Γ .

For 1 ≤ p ≤ ∞ we use the Sobolev spaces W k
p (k – integer) and the Besov

spaces Bθp,p(D), θ > 0 of functions, where p′ is the conjugate index of p, i.e.
1/p + 1/p′ = 1. For general results on Sobolev and Besov spaces see e.g. [1].

For mesh functions we follow notations from [11]. For r = (x, y) we define
the second finite difference Λ1 in x direction by

Λ1u(r) = (u(x + h1, y)− 2u(x, y) + u(x− h1, y)) /h2
1

and by analogy - the second finite difference Λ2 in y direction. Then Λh = Λ1+Λ2
is the five-point discrete Laplacian. We define the discrete Sobolev space W 2

p (Ωh)
of mesh functions u, which vanish on ∂Ωh, with the norm

‖u‖W 2
p (Ωh) = ‖Λ1u‖Lp(Ωh) + ‖Λ2u‖Lp(Ωh) + ‖u‖Lp(Ωh).

Let E be the basic rectangle {(s, t) : |s| ≤ h1, |t| ≤ h2}. For r = (x, y) ∈ Ωh
define Er to be the union of the four cells with the common vertex r: Er =
{(s, t) : |s− x| ≤ h1, |t− y| ≤ h2}. Set Γr = Γ ∩ Er.
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We define the set Ω1
h of ”regular” grid points r as those grid points, for which

all points from Er are on the same side of Γ : Ω1
h = {r ∈ Ωh : Er ∩ Γ = *}. We

denote the set of the remaining grid points in Ωh by Ω2
h and call the points in

Ω2
h ”irregular”. All points from Ω2

h lie in a strip of width O(|h|) around Γ .
If Γr∩{(x, y+t) : |t| ≤ h2} �= *, then denote this intersection point by (x, y),

thus (x, y) = Γr ∩ {(x, y + t) : |t| ≤ h2}. In a similar way, if Γr ∩ {(x + s, y) :
|s| ≤ h1} �= *, then we denote this point by (x, y), thus (x, y) = Γr∩{(x+s, y) :
|s| ≤ h1}. If some of the points x or y does not exist, in the next formulae we
take x = x + 2h1 or y = y + 2h2 resp.

In the sequel by B we denote arbitrary function B ∈ W 1
∞,∞(R2), supported

on the set E, which is non-negative, even (with respect to s and t) and such that∫ ∞

−∞
B(s, t)dt = h2

(
1− |s|

h1

)
+
, s ∈ R1;

∫ ∞

−∞
B(s, t)ds = h1

(
1− |t|

h2

)
+
, t ∈ R1.

A simple example of such function is B(s, t) =
(
1− |s|

h1

)
+

(
1− |t|

h2

)
+
.

Throughout this paper C will denote positive constants independent of the
functions like u, f , ϕ, of the mesh size h and of the norm index p. The values of
C are not necessarily the same at different occurrences.

In the next lemma we summarize some properties of the volume integrals:

Lemma 1. Assume f ∈ Bθp,p (D), Γ ∈ B
θ+1/p′
p,p [0, 2π), θ > 2/p. Then:

(a) (see [12], [13]) The volume integral u given by (1) and its first derivatives
in x and y directions are continuous functions in R2. The restiction of u on
D is in Bθ+2

p,p (D) and the restriction of u on Ω\D is in Bθ+2
p,p (Ω\D).

(b) Using the density f and the parametrization r = R(λ) ∈ Γ of Γ , we have the
following representations for the jumps of the second and third derivatives
of u: [

∂2u

∂x2

]
= − Y ′2

X ′2 + Y ′2 f,

[
∂2u

∂y2

]
= − X ′2

X ′2 + Y ′2 f.

If θ > 1 + 2/p, then the jumps in the third derivatives are:[
∂3u

∂x3

]
= kf

Y ′(Y ′2 − 3X ′2)
(X ′2 + Y ′2)3/2

− ∂f

∂y

2X ′Y ′3

(X ′2 + Y ′2)2
− ∂f

∂x

Y ′2(Y ′2 + 3X ′2)
(X ′2 + Y ′2)2

,

[
∂3u

∂y3

]
= kf

X ′(X ′2 − 3Y ′2)
(X ′2 + Y ′2)3/2

− ∂f

∂y

X ′2(X ′2 + 3Y ′2)
(X ′2 + Y ′2)2

− ∂f

∂x

2Y ′X ′3

(X ′2 + Y ′2)2
,

where k is the curvature of Γ .

The formulae for the second derivatives jumps are obtained in [3], [9]. The proof
of the formulae for the third derivatives jumps are lengthily but straightforward.



364 N.T. Kolkovska

3 Finite Difference Method

We use exact integral representations of the discrete Laplacian, valid for any
function u with restrictions in Bθ+2

p,p (D) and in Bθ+2
p,p (Ω\D), 1/p < θ < 1+1/p.

At regular grid points r ∈ Ω1
h the representation is:

h1h2Λhu(r) =
∫∫
E

�u(x + s, y + t)B(s, t)dsdt

+
∫∫
E

B(s, t)
(
∂2u

∂x2 (x + s, y) +
∂2u

∂y2 (x, y + t)−�u(x + s, y + t)
)
dsdt.

At irregular points r ∈ Ω2
h the Laplacian is spread over Er as a sum of double

integrals over the domains Er ∩D and Er ∩ (Ω\D) and some line integrals over
Γr – see [5].

Including the leading terms of these representations into the right-hand side
ϕ, we define function ϕ at the point r = (x, y) by:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ (r) = 0, r ∈ Ω1
h ∩ (Ω\D),

h1h2ϕ (r) =
∫∫
E

f(x + s, y + t)B(s, t)dsdt, r ∈ Ω1
h ∩D,

h1h2ϕ (r) =
∫∫

Er∩D

f(α, β)B(α− x, β − y)dαdβ

−
∫
Γr

G1(λ)
[
∂2u

∂x2 (R(λ))
]
dλ−

∫
Γr

G2(λ)
[
∂2u

∂y2 (R(λ))
]
dλ, r ∈ Ω2

h,

(5)

where

G1(λ) = γ(X(λ), y)X
′
(λ)

∫ h2

|Y (λ)−y|
B (X(λ)− x, t) dt,

G2(λ) = γ(x, Y (λ))Y
′
(λ)

∫ h1

|X(λ)−x|
B (s, Y (λ)− y) ds.

The accuracy of the finite difference method (4) with the above defined right-
hand side ϕ is given by

Theorem 1. Let u be the solution to (2) and (3). Suppose u|D ∈ Bθ+2
p,p (D)

and u|Ω\D ∈ Bθ+2
p,p (Ω\D), 1/p < θ < 1 + 1/p. If θ = 1 and p > 2, suppose

additionally u ∈W 3
p (D) and u ∈W 3

p (Ω\D).
Let uh be the solution to (4) with the right-hand side ϕ given by (5). Then

the following error estimate holds

‖u− uh‖W 2
p (Ωh) ≤ C p8

(p−1)4 |h|
θ {‖u‖Bθ+2

p,p (D) + ‖u‖Bθ+2
p,p (Ω\D)}.

For the proof of this theorem, the error z = u − uh is considered as the
solution to the problem

Λhz (r) = ψ (r) , r ∈ Ωh; z (r) = 0, r ∈ ∂Ωh,
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where ψ = Λhu− ϕ. We apply the a-priori inequality

‖z‖W 2
p (Ωh) ≤ C p8

(p−1)4 ‖ψ‖Lp(Ωh) ,

and evaluate the discrete Lp norm of ψ separately in Ω1
h and in Ω2

h.

4 Fully Discrete Right-Hand Side

Assume f ∈ Bθp,p (D), 2/p < θ < 1 + 1/p. Then f ∈ C(D) and the second
derivatives jumps of u in (5) are also continuous functions. Therefore one can
apply simple one-point quadrature formulae to all integrals in the definition of
ϕ and to obtain a fully discrete right-hand side ϕ1:∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 (r) = 0, r ∈ Ω1
h ∩ (Ω\D),

ϕ1 (r) = f(r), r ∈ Ω1
h ∩D,

h1h2ϕ1 (r) = f(r∗)
∫∫

Er∩D

B(α− x, β − y)dαdβ

−
[
∂2u

∂x2

(
R(λ)

)]∫
Γr

G1(λ)dλ−
[
∂2u

∂y2

(
R(λ)

)] ∫
Γr

G2(λ)dλ, r ∈ Ω2
h.

(6)

The only restrictions on the parameters r∗, λ and λ in (6) are r∗ ∈ Er ∩D,
R(λ) ∈ Γr and R(λ) ∈ Γr. The integrals in (6) are independent of f and u. They
depend on the relative position of r and Γ and can be simply computed with
high order of accuracy.

The error estimate from Theorem 1 remains true:

Theorem 2. Let u be the solution to (2) and (3). Assume u|D ∈ Bθ+2
p,p (D),

u|Ω\D ∈ Bθ+2
p,p (Ω\D) and 2/p < θ < 1 + 1/p. If θ = 1 and p > 2, assume

additionally u ∈W 3
p (D) and u ∈W 3

p (Ω\D).
Let u1

h be the solution to (4) with right-hand side ϕ1 given by (6). Then the
following error estimate holds∥∥u− u1

h

∥∥
W 2

p (Ωh) ≤ C p8

(p−1)4 |h|
θ {‖u‖Bθ+2

p,p (D) + ‖u‖Bθ+2
p,p (Ω\D)}.

Note that the discretization of the integrals in (5) by the simplest one-point
quadrature provides sufficient accuracy for our purposes.

If we make some special choices of parameters r∗, λ and λ in the third equa-
tion in (6), we can obtain the well-known right-hand side of A. Mayo [9]:

ϕM1 (r) = f(x, y) + γ(r)
[
∂2u

∂x2

(
x, y

)] (
h1 −

∣∣x− x
∣∣)2

+

2h2
1

+γ(r)
[
∂2u

∂y2 (x, y)
]

(h2 − |y − y|)2+
2h2

2
, r ∈ Ω2

h. (7)
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5 Higher Smoothness Case

The same scheme is applied when we treat the higher smoothness case f ∈
Bθp,p(D), Γ ∈ B

θ+1/p′
p,p [0, 2π), 1 + 2/p < θ ≤ 2: first, we use integral representa-

tions of the discrete Laplacian from [6] valid for this parameters of smoothness.
Then we include the leading terms into the right hand side of (4). At the end
we simplify the right hand side by using one-point quadratures. In each case we
prove O(|h|θ) rate of convergence of the approximate function uh to the volume
integral u in W 2

p (Ωh) norm. The full treatment of this case will be given in an-
other paper. Here we consider the special, but important for the practice case,
where the right-hand side ϕ2 is defined by:∣∣∣∣∣∣∣∣∣∣

ϕ2 (r) = 0, r ∈ Ω1
h ∩ (Ω\D),

ϕ2 (r) = f(x, y), r ∈ Ω1
h ∩D,

ϕ2 (r) = ϕM1 (r) + γ(r)sign(x− x)
[
∂3u
∂x3

(
x, y

)] (h1−|x−x|)3

+

6h2
1

+γ(r)sign(y − y)
[
∂3u
∂y3 (x, y)

]
(h2−|y−y|)3+

6h2
2

, r ∈ Ω2
h.

(8)

The above right-hand side was proposed by Mayo in [9]. For the accuracy of
this finite difference scheme we prove the following estimate.

Theorem 3. Let u be the solution to (2) and (3). Suppose u|D ∈ Bθ+2
p,p (D),

u|Ω\D ∈ Bθ+2
p,p (Ω\D) and 1 + 2/p < θ ≤ 2. If θ = 2 and p > 2, suppose

additionally u ∈W 4
p (D) and u ∈W 4

p (Ω\D).
Let u2

h be the solution to (4) with the right hand side ϕ2 given by (8). Then
the following error estimate holds∥∥u− u2

h

∥∥
W 2

p (Ωh) ≤ C p8

(p−1)4 |h|
θ {‖u‖Bθ+2

p,p (D) + ‖u‖Bθ+2
p,p (Ω\D)}.

6 Remarks

1. An attractive feature of the error estimates proved in Theorems 1, 2 and 3 is
their rate of convergence in the W 2

p (Ωh) mesh norm. The rate is optimal with
respect to the smoothness in D of the exact solution u although the second
derivatives of u have jumps across the curve Γ .

2. The presence of the factor p8

(p−1)4 in the inequalities in Theorems 1, 2 and
3 allows the proof of max-norm estimate with additional logarithmic factor. For
example, under the conditions of Theorem 1, the following error estimate in the
max-norm holds:

max
r∈Ωh

(|Λ1 (u− uh) (r)|+ |Λ2 (u− uh) (r)|) ≤

C |h|θ
(

ln
1
h

)4

{‖u‖Bθ+2
∞,∞(D) + ‖u‖Bθ+2

∞,∞(Ω\D)}.

3. The extra condition in Theorems 1, 2 and 3 in the case of integer parameter
of smoothness θ in the Besov space and p > 2 is needed because B3

p,p(D) �↪→
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W 3
p (D), i.e. in this case functions from the Besov space B3

p,p(D) may not have
third derivatives in Lp(D) (see [1], Theorem 18.9).

4. A variety of right-hand sides ϕ are discussed in this article. From practical
point of view the appropriate scheme is chosen as follows. Fix p. Given Γ and
f , we determine their smoothness parameter θ in therms of Besov spaces. Then
Lemma 1 implies that u|D ∈ Bθ+2

p,p (D) and u|Ω\D ∈ Bθ+2
p,p (Ω\D). The inequality

2/p < θ ≤ 1 + 1/p gives the right-hand sides (6) and (7) and 1 + 2/p < θ ≤ 2
– the right-hand side (8). In the case 1/p < θ ≤ 2/p the right-hand side is
(5), but there are functions u, for which the line integrals in (5) exist, but they
cannot be approximated by quadratures, because the integrands are essentially
unbounded.
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Abstract. The sensitivity of generalized matrix Lyapunov equations
relative to perturbations in the coefficient matrices is studied. New local
and non-local perturbation bounds are obtained.

1 Introduction

In this paper we study the sensitivity of the generalized Lyapunov equations
(GLE) arising in the theory of linear descriptor systems. First a new, non-linear
local bound is obtained for the perturbation in the solution of GLE, which is
less conservative than the existing condition number based local perturbation
bounds [1].

The local perturbation bounds, however, are valid only asymptotically and
their application for possibly small but nevertheless finite perturbations in the
data requires additional justification. The disadvantage of the local bounds is
overcome using the techniques of non-local perturbation analysis [2] which is
aimed at two things simultaneously: first to show that a solution of the perturbed
equation exists, and second to find a non-local perturbation bound for GLE.

The following notations are used later on: Rm×n – the space of real m × n
matrices; Rn = Rn×1; In – the unit n × n matrix; A� – the transpose of A;
‖A‖2 = σmax(A) – the spectral norm of A, where σmax(A) is the maximum
singular value of A; ‖A‖F =

√
tr(A�A) – the Frobenius norm of A; ‖.‖ is any

of the above norms; vec(A) ∈ Rmn – the column-wise vector representation of
A ∈ Rm×n; Π ∈ Rn2×n2

– the (vec)permutation matrix, i.e. vec(A�) = Πvec(A)
for A ∈ Rn×n. The notation “:=” stands for “equal by definition”.

2 Statement of the Problem

Consider the GLE

L(X,S,Q) := A�XE + E�XA + Q = 0 (1)

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 368–374, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Sensitivity Analysis of Generalized Lyapunov Equations 369

where A,E,Q ∈ Rn.n are given matrix coefficients such that rankE = n, Q =
Q� ≥ 0, and X ∈ Rn.n is the unknown matrix. We assume that E−1A is a
stable matrix, which guarantees the existence of an unique nonnegative solution
X = X0 of (1). Further on we denote the pair (E,A) by S. Let Σ be the set of
all S which satisfy the above conditions.

Let ΔE, ΔA and ΔQ = ΔQ� be perturbations in E, A and Q, respectively.
Denote ΔS = (ΔE,ΔA) and suppose that S + ΔS ∈ Σ. Then the perturbed
GLE

L(X,S + ΔS,Q + ΔQ) = 0 (2)

has an unique solution X = X0 + ΔX.
The above restrictions on the perturbation ΔS are too weak and in particular

it is possible that for perturbations ΔS1 with smaller norms, the perturbed pair
S +ΔS1 will not belong to Σ. For this reason we restrict the class of admissible
perturbations in the following way.

Denote by Γ ⊂ R2
+ the set of all pairs (α, ε) such that ΔE < ε, ΔA < α

implies invertibility of E + ΔE and stability of (E + ΔE)−1(A + ΔA). Further
on we suppose that (ΔE , ΔA) ∈ Γ .

The aim of the sensitivity analysis of GLE is to find local and non-local
perturbation bounds for ΔX := ‖ΔX‖F as functions of Δ := [ΔE , ΔA, ΔQ]� ∈
R3

+, where ΔM := ‖ΔM‖F.
Note that it is natural to work with the Frobenius norms of the perturbations

in the data and the solution. Indeed, often it is not clear how to determine the
spectral norm in the perturbation of a coefficient matrix which is due to uncer-
tainties in the data and/or rounding errors during the computational process.
At the same time when we have uncertainties in the data it is reasonable to
identify a matrix A with its vector representation vec(A) and to work with the
Euclidean norm ‖vec(ΔA)‖2 of the vector perturbation vec(ΔA), which is equal
to the Frobenius norm ‖ΔA‖F of the matrix perturbation ΔA.

The perturbation problem is to find a bound

ΔX ≤ f(Δ), Δ ∈ Ω ⊂ R3
+ (3)

where Ω is a given set and f is a continuous function, non-decreasing in each of
its arguments and satisfying f(0) = 0.

A first order local bound

ΔX ≤ f1(Δ) + O(‖Δ‖2), Δ→ 0,

shall be first derived, which will then be incorporated in the non-local bound
(3). The inclusion Δ ∈ Ω also guarantees that the perturbed equation (2) has
an unique solution X = X0 + ΔX.

3 Local Perturbation Analysis

Consider first the conditioning of the GLE (1). Since L(X,S,Q) = 0, the per-
turbed equation (2) may be written as

LX(ΔX) = −LA(ΔA)− LE(ΔE)−ΔQ−G(ΔX,ΔS) (4)
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where LX(Z) = A�ZE + E�ZA

LA(Z) = E�X0Z + Z�X0E

LE(Z) = A�X0Z + Z�X0A

are the Fréchet derivatives of L(X,S,Q) in X,A and E, respectively, and G(ΔX,
ΔS) contains second and higher order terms in ΔX, ΔS.

Under the assumptions made, the linear operator LX(.) is invertible and (4)
yields

ΔX = Ψ(ΔX,ΔS,ΔQ) (5)
where

Ψ(Z,ΔS,ΔQ) := −L−1
X ◦ LA(ΔA)− L−1

X ◦ LE(ΔE)− L−1
X (ΔQ)

−L−1
X (G(ΔX,ΔS)).

The relation (5) gives

ΔX ≤ KAΔA + KEΔE + KQΔQ + O(‖Δ‖2), Δ→ 0 (6)
where

KA = ‖L−1
X ◦ LA ‖, KE = ‖L−1

X ◦ LE ‖, KQ = ‖L−1
X ‖

are the absolute condition numbers of the GLE (1). Here ‖L‖ is the norm of the
operator L, induced by the F-norm.

The calculation of the condition numbers KA,KE ,KQ is straightforward.
Denote by LX , LA, LE the matrix representations of the operators LX(·), LA(·),
LE(·) :

LX = E� ⊗A� + A� ⊗ E�

LA = (E�X0 ⊗ In)Π + In ⊗ E�X0

LE = In ⊗A�X0 + (A�X0 ⊗ In)Π.

Then
KA = ‖L−1

X LA ‖2, KE = ‖L−1
X LE ‖2, KQ = ‖L−1

X ‖2.

Local estimates, based on the condition numbers, may eventually produce
pessimistic results. At the same time it is possible to derive local, first order
homogeneous estimates, which are better in general.

The operator equation (5) may be written in a vector form as

vec(ΔX) = NAvec(ΔA) + NEvec(ΔE) + NQvec(ΔQ)− L−1
X vec(G(ΔX,ΔS))

(7)
where

NA := −L−1
X LA, NE := −L−1

X LE , NQ := −L−1
X .
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It is easy to show that the condition number based estimate (6) is a corollary
of (7). Indeed, since ‖vec(ΔZ)‖2 ≤ ΔZ , one has

ΔX = ‖vec(ΔX)‖2 ≤ est1(Δ,N) + O(‖Δ‖2)

:= ‖NA‖2ΔA + ‖NE‖2ΔE + ‖NQ‖2ΔQ + O(‖Δ‖2)

= KAΔA + KEΔE + KQΔQ + O(‖Δ‖2), Δ→ 0

where N := [N1, N2, N3] := [NA, NE , NQ].
Relation (7) also gives

ΔX ≤ est2(Δ,N) + O(‖Δ‖2) := ‖N‖2‖Δ‖2 + O(‖Δ‖2), Δ→ 0.

The bounds est1(Δ,N) and est2(Δ,N) are alternative, i.e. which one is less
depends on the particular value of Δ.

There is also a third bound, which is always less than or equal to est1(Δ,N).
We have

ΔX ≤ est3(Δ,N) :=
√

Δ�S(N)Δ + O(‖Δ‖2), Δ→ 0

where S(N) is the 3× 3 matrix with elements sij(N) = ‖N�
i Nj‖2. Since

‖N�
i Nj‖2 ≤ ‖Ni‖2‖Nj‖2

we get est3(Δ,N) ≤ est1(Δ,N).
Hence we have the overall estimate

ΔX ≤ est(Δ,N) + O(‖Δ‖2), Δ→ 0 (8)

where
est(Δ,N) := min{est2(Δ,N), est3(Δ,N)}. (9)

The local bound est(Δ,N) in (8), (9) is a non-linear, first order homogeneous
and piece-wise real analytic function in Δ.

4 Non-local Perturbation Analysis

The local perturbation bounds are usually used neglecting the terms of order
O(‖Δ‖2). Unfortunately, it is usually impossible to say, having a small but a
finite perturbation Δ, whether the neglected terms are indeed negligible. We
can not even claim that the magnitude of the neglected terms is less, or of the
order of magnitude of the local bound. Even for simple linear equations the
local bound may always underestimate the actual perturbation in the solution
for a class perturbations in the data. Moreover, for some critical values of the
perturbations in the coefficient matrices the solution may not exist (or may go
to infinity when these critical values are approached). Nevertheless, even in such
cases the local estimates will still produce a ‘bound’ for a very large or even for
a non-existing solution, which is a serious drawback.
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The disadvantages of the local estimates may be overcome using the tech-
niques of non-linear perturbation analysis. As a result we get a domain Ω ⊂ R3

+
and a non-linear function f : Ω → R+ such that ΔX ≤ f(Δ) for all Δ ∈ Ω. In
connection with this we would like to emphasis two important issues. First, the
inclusion Δ ∈ Ω guarantees that the perturbed equation has a solution (this is
an independent and essential point). And second, the estimate ΔX ≤ f(Δ) is
rigorous, i.e. it is true for perturbations with Δ ∈ Ω, unlike the local bounds.
However, in some cases the non-local bounds may not exist or may be pessimistic.

The operator equation (5) may be rewritten as

ΔX = Ψ0(ΔS,ΔQ) + Ψ1(ΔX,ΔS) (10)

where

Ψ0(ΔS,ΔQ) := −L−1
X (G0(ΔS,ΔQ)), Ψ1(ΔX,ΔS) := −L−1

X (G1(ΔX,ΔS))

and

G0(ΔS,ΔQ) = ΔQ + R1(X,ΔS) + R2(X,ΔS)

G1(ΔX,ΔS) = R1(ΔX,ΔS) + R2(ΔX,ΔS).

Here Rk(·, ΔS) are linear operators of asymptotic order k relative to ΔS,
ΔS → 0, determined from

R1(Z,ΔS) := ΔA�ZE� + A�ZΔE� + ΔE�ZA + E�ZΔA

and
R2(Z,ΔS) := ΔA�ZΔE + ΔE�ZΔA.

Suppose that ‖Z‖F ≤ ρ. Then we have

‖Ψ0(ΔS,ΔQ)‖F ≤ a0(Δ), ‖Ψ1(Z, δS)‖F ≤ a1(Δ)ρ

where
a0(Δ) := a01(Δ) + a02(Δ), a1(Δ) := a11(Δ) + a12(Δ). (11)

The quantities aik(Δ) are of asymptotic order O(‖Δ‖k) for Δ → 0 and are
determined as

a01(Δ) := est(Δ,N), a02(Δ) := 2KQ‖X0‖2ΔAΔE (12)

a11(Δ) := ‖L−1
X (In2 + Πn2)(E� ⊗ In)‖2ΔA + ‖L−1

X (In2 + Πn2)(A� ⊗ In)‖2ΔE

a12(Δ) := 2KQΔAΔE .

Let ‖Z‖F, ‖Z̃‖F ≤ ρ. The Lyapunov majorant for equation (10) is a function
(ρ,Δ) 
→ h(ρ,Δ), defined on a subset of R+ ×R3

+ and satisfying the conditions

‖Ψ(Z,ΔS,ΔQ)‖F ≤ h(ρ,Δ)

and
‖Ψ(Z,ΔS,ΔQ)− Ψ(Z̃,ΔS,ΔQ)‖F ≤ h′

ρ(ρ,Δ)‖Z − Z̃‖F.
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According to the above considerations, the Lyapunov majorant is linear and
is determined from

h(ρ,Δ) = a0(Δ) + a1(Δ)ρ.

In this case the fundamental equation h(ρ,Δ) = ρ for determining the non-local
bound ρ = ρ(Δ) for ΔX gives

ΔX ≤ f(Δ) :=
a0(Δ)

1− a1(Δ)
, Δ ∈ Ω (13)

where
Ω := {Δ % 0 : a1(Δ) < 1} ⊂ R3

+. (14)

Inequality (13) in view of (11), (12) and (14) gives the nonlinear nonlocal
perturbation bound for the solution of the generalized matrix Lyapunov equa-
tion (1).

5 Numerical Example

Consider the GLE with matrices

A =

⎡⎢⎢⎣
5 8 −8 18

−3 −6 6 −7
2 2 −5 8

−1 −2 −1 −4

⎤⎥⎥⎦ , E =

⎡⎢⎢⎣
−5 1 −1 −3

3 0 0 1
−2 1 0 −1

1 0 1 1

⎤⎥⎥⎦ , Q = I4.

The solution of this equation is (to four digits)

X =

⎡⎢⎢⎣
0.5000 −0.3333 0.3333 −0.1667

−0.3333 0.5833 −0.3833 0.2417
0.3333 −0.3833 0.5167 −0.1655

−0.1667 0.2417 −0.1655 0.2461

⎤⎥⎥⎦ .

The perturbations in the matrices A,E,Q are taken in the form

ΔA = ΔA0 × 10−14+k, ΔE = ΔE0 × 10−14+k, ΔQ = ΔQ0 × 10−14+k

where

ΔA0 =

⎡⎢⎢⎣
4.56 −1.75 0.74 −0.35
2.54 −0.96 0.40 −0.19

−5.40 2.08 −0.88 0.42
5.32 −2.05 0.87 −0.42

⎤⎥⎥⎦ ,

ΔE0 =

⎡⎢⎢⎣
2.58 1.77 −3.23 2.04
1.35 0.97 −1.73 1.09

−3.10 −2.11 3.87 −2.43
3.04 2.07 −3.80 2.39

⎤⎥⎥⎦ ,



374 M.M. Konstantinov, P.Hr. Petkov, and N.D. Christov

ΔQ0 =

⎡⎢⎢⎣
9.02 −2.67 0.92 −0.42

−2.67 1.21 −0.56 0.27
0.92 −0.56 0.33 −0.16

−0.42 0.27 −0.16 0.08

⎤⎥⎥⎦
and k is an integer.

The actual changes in the solution along with the local and non-local esti-
mates (8) and (13) for different values of k are shown in Table 1. The case when
the non-local estimate is not valid is shown by asterisk.

Table 1.

k ΔA, ΔE , ΔQ ΔX Est. (8) Est. (13)

1 1.0 × 10−12 1.1 × 10−11 3.0 × 10−11 5.8 × 10−8

2 1.0 × 10−11 1.1 × 10−10 3.0 × 10−10 5.8 × 10−7

3 1.0 × 10−10 1.1 × 10−9 3.0 × 10−9 5.8 × 10−6

4 1.0 × 10−9 1.1 × 10−8 3.0 × 10−8 5.8 × 10−5

5 1.0 × 10−8 1.1 × 10−7 3.0 × 10−7 5.8 × 10−4

6 1.0 × 10−7 1.1 × 10−6 3.0 × 10−6 5.8 × 10−3

7 1.0 × 10−6 1.1 × 10−5 3.0 × 10−5 5.8 × 10−2

8 1.0 × 10−5 1.1 × 10−4 3.0 × 10−4 6.0 × 10−1

9 1.0 × 10−4 1.1 × 10−3 3.0 × 10−3 8.7 × 100

10 1.0 × 10−3 1.1 × 10−2 3.0 × 10−2 ∗
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Abstract. We give an algorithm to obtain formulae and values for mi-
nors of skew Hadamard and conference matrices. One step in our al-
gorithm allows the (n − j) × (n − j) minors of skew Hadamard and
conference matrices to be given in terms of the minors of a 2j−1 × 2j−1

matrix. In particular we illustrate our algorithm by finding explicitly all
the (n − 3) × (n − 3) minors of such matrices.

1 Introduction

An Hadamard matrix H of order n is an n × n matrix with elements ±1 and
HHT = nI. For more details and construction methods of Hadamard matrices
we refer the interested reader to the books [1] and [4]. If an Hadamard matrix,
H, of order n can be written as H = I + S where ST = −S then H is called
skew–Hadamard.

A (0, 1,−1) matrix W = W (n, k) of order n satisfying WWT = kIn is called a
weighing matrix of order n and weight k or simply a weighing matrix. A W (n, n),
n ≡ 0 (mod 4), is a Hadamard matrix of order n. A W = W (n, k) for which WT =
−W is called a skew–weighing matrix. A W = W (n, n− 1) satisfying WT = W ,
n ≡ 2 (mod 4), is called a symmetric conference matrix. Conference matrices
cannot exist unless n − 1 is the sum of two squares: thus they cannot exist
for orders 22, 34, 58, 70, 78, 94. For more details and construction of weighing
matrices the reader can consult the book of Geramita and Seberry [1].

For the conference matrix W (n, n − 1) since WWT = (n − 1)I we have
that det(W ) = (n − 1)

n
2 . It also holds that the maximum (n − 1) × (n − 1)

minors denoted by W (n − 1) are: W (n − 1) = (n − 1)
n
2 −1 and the maximum

(n−2)×(n−2) minors are W (n−2) = 2(n−1)
n
2 −2. [3]. In [3] it was also proved

that for a matrix A which is skew-Hadamard or conference matrix of order n,
the (n− 3)× (n− 3) minors are W (n− 3) = 0, 2(n− 1)

n
2 −3, or 4(n− 1)

n
2 −3 for

n ≡ 0(mod 4) and 2(n− 1)
n
2 −3, or 4(n− 1)

n
2 −3 for n ≡ 2(mod 4).
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In the present paper we give a useful method for finding the (n− 3)× (n− 3)
minors of skew Hadamard and conference matrices. This method points the way
to finding other minors such as the (n− j)× (n− j) minors.

Notation 1. We use − for −1 in matrices in this paper. Also, when we say the
determinants of a matrix we mean the absolute values of the determinants.

Notation 2. We write
Jb1,b2,···,bz

for the all ones matrix with diagonal blocks of sizes b1× b1, b2× b2 · · · bz × bz.
Write

aijJb1,b2,···,bz

for the matrix for which the elements of the block with corners (i + b1 + b2 +
· · ·+ bj−1, i + b1 + b2 + · · ·+ bi−1), (i + b1 + b2 + · · ·+ bj−1, b1 + b2 + · · ·+ bi),
(b1 + b2 + · · ·+ bj , i + b1 + b2 + · · ·+ bi−1), (b1 + b2 + · · ·+ bj , b1 + b2 + · · ·+ bi)
are aij an integer.

Write
(k − aii)Ib1,b2,···,bz

for the direct sum (k − a11)Ib1 + (k − a22)Ib2 + · · ·+ (k − azz)Ibz
.

2 Preliminary Results

We first note a very useful lemma as it allows us to obtain bounds on the column
structure of submatrices of a weighing matrix.

Lemma 1. (The Distribution Lemma for W (n, n − 1)). Let W be any
W (n, n−1) of order n > 2. Then, writing ε = (−1)

n+2
2 and with a, b, c ∈ {1,−1}

for every triple of rows containing

0 a b
εa 0 c
εb εc 0

the number of columns which are

(a) (1, 1, 1)T or (−,−,−)T is 1
4 (n− 3− bc− εac− ab)

(b) (1, 1,−)T or (−,−, 1)T is 1
4 (n− 3− bc + εac + ab)

(c) (1,−, 1)T or (−, 1,−)T is 1
4 (n− 3 + bc− εac + ab)

(d) (1,−,−)T or (−, 1, 1)T is 1
4 (n− 3 + bc + εac− ab)

Proof. Let the following rows represent three rows of an weighing matrix W =
W (n, n− 1) of order n.

u1 u2 u3 u4 u5 u6 u7 u8
0 a b 1...1 1...1 1...1 1...1 −...− −...− −...− −...−
εa 0 c 1...1 1...1 −...− −...− 1...1 1...1 −...− −...−
εb εc 0 1...1 −...− 1...1 −...− 1...1 −...− 1...1 −...−
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where u1, u2, . . . , u8 are the numbers of columns of each type. Then from the
order and the inner product of rows we have

u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 = n− 3
u1 + u2 − u3 − u4 − u5 − u6 + u7 + u8 = −bc (1)
u1 − u2 + u3 − u4 − u5 + u6 − u7 + u8 = −εac

u1 − u2 − u3 + u4 + u5 − u6 − u7 + u8 = −ab

Solving we have

u1 + u8 =
1
4
(n− 3− bc− εac− ab)

u2 + u7 =
1
4
(n− 3− bc + εac + ab)

u3 + u6 =
1
4
(n− 3 + bc− εac + ab)

u4 + u5 =
1
4
(n− 3 + bc + εac− ab)

�
Theorem 1. (Determinant Simplification Theorem) Let

CCT = (k − aii)Ib1,b2,···,bz
+ aijJb1,b2,···,bz

then

det CCT = Πz
i=1(k − aii)bi−1det D (2)

where

D =

⎡⎢⎢⎢⎣
k + (b1 − 1)a11 b2a12 b3a13 · · · bza1z

b1a21 k + (b2 − 1)a22 b3a23 · · · bza2z

...
...

...
...

b1az1 b2az2 b3az2 · · · k + (bz − 1)azz

⎤⎥⎥⎥⎦
Proof. We note the matrix CCT has k down the diagonal and elsewhere the
elements are defined by the block of elements aij .

We start with the first row and subtract it from the 2nd to the b1th row.
Then take the first row of the 2nd block (the b1 + 1st row) and subtract it from
the b1 + 2th to b1 + b2th rows. We continue this way with each new block.

Now the first column has: a11 − k b1 − 1 times, then a21 followed by b2 − 1
rows of zero, then a31 followed by b3−1 rows of zero, and so on until we have az1
followed by bz − 1 rows of zero. We now add columns 2 to b1 to the first column:
each of the columns b1 + 2nd to b1 + . . .+ b2th to the b1 +1st column; and so on
until finally add each of the columns b1 + · · ·+ bz−1 + 2nd to b1 + · · ·+ bz−1th
to the b1 + · · ·+ bz−1 + 1st column.
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The rows which contain zero in the first column will have k − aii on the
diagonal and all other elements zero. They can then be used to zero every element
in their respective columns.

We now expand the determinant, taking into the coefficient those rows and
columns which contain k−aii as required. The remaining matrix to be evaluated
is D given in the enunciation.

�

3 The Algorithm

3.1 The Matrix Uj

Let xT
β+1 the vectors containing the binary representation of each integer β+2j−1

for β = 0, . . . , 2j−1 − 1. Replace all zero entries of xT
β+1 by −1 and define the

j × 1 vectors
uk = x2j−1−k+1, k = 1, . . . , 2j−1

We write Uj for all the j × (n− j) matrix in which uk occurs uk times. So

Uj =

u1︷︸︸︷
1...1

u2︷︸︸︷
1...1 . . .

u2j−1−1︷︸︸︷
1...1

u2j−1︷︸︸︷
1...1

1...1 1...1 . . . −...− −...−
. . . . . . .
. . . . . . .

1...1 1...1 . . . 1...1 −...−
1...1 −...− . . . 1...1 −...−

=

u1 u2 . . . u2j−1−1 u2j−1

1 1 . . . 1 1
1 1 . . . − −
...

...
...

...
1 1 . . . − −
1 − . . . 1 −

(3)

Example 1.

U3 =

u1 u2 u3 u4
1 1 1 1
1 1 − −
1 − 1 −

Example 2.

U4 =

u1 u2 u3 u4 u5 u6 u7 u8
1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 − − 1 1 − −
1 − 1 − 1 − 1 −

3.2 The Matrix D

Any W = W (n, n− 1) matrix can be written:

W =
[

M Uj

εUT
j C

]
, (4)
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where M,C are j × j and (n− j)× (n− j) matrices respectively, with diagonal
entries all 0, such that M = εMT and C = εCT . The elements in the (n− j)×
(n − j) matrix CCT obtained by removing the first j rows and columns of the
weighing matrix W can be permuted to appear in the form

CCT = (n− 1)Iu1,u2,···,u2j−1 + aikJu1,u2,···,u2j−1

where (aik) = (−ui · uk), with · the inner product. By the determinant simplifi-
cation theorem

det CCT = (n− 1)n−2j−1−jdet D

where D, of order 2j−1 is given by

D =

⎡⎢⎢⎢⎣
n− 1− ju1 u2a12 u3a13 · · · uza1z

u1a21 n− 1− ju2 u3a23 · · · uza2z

...
...

...
...

u1az1 u2az2 u3az2 · · · n− 1− juz

⎤⎥⎥⎥⎦
The (n− j)× (n− j) minor of the W (n, n−1) is the determinant of C for which
we have

detC = ((n− 1)n−2j−1−jdet D)1/2

Remark 1. The algorithm described above works on weighing matrices W (n, n−
1) only when all the zeros are on the diagonal, or equivalently the matrix M has j
zeros and the C matrix has (n-j) zeros. Consequently it might loose some expected
values for some minors.

4 Application of the Algorithm on the (n-3)×(n-3)
Minors of Weighing Matrices

The matrix (aik) = (−ui · uk) is

(aik) =

⎡⎢⎢⎣
−3 −1 −1 1
−1 −3 1 −1
−1 1 −3 −1

1 −1 −1 −3

⎤⎥⎥⎦
4.1 Case 1, ε=1

Without loss of generality we can assume that the matrix M is

M =

⎡⎣0 1 1
1 0 1
1 1 0

⎤⎦
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then by the Distribution Lemma u1 = n−6
4 , u2 = n−2

4 , u3 = n−2
4 , u4 = n−2

4 .
The matrix D is:

D =
1
44

⎡⎢⎢⎣
n + 14 −n + 2 −n + 2 n− 2
−n + 6 n + 2 n− 2 −n + 2
−n + 6 n− 2 n + 2 −n + 2

n− 6 −n + 2 −n + 2 n + 2

⎤⎥⎥⎦
and its determinant is detD = 1024n− 1024. Finally

detCCT = (n− 1)n−7 1024n− 1024
256

4.2 Case 2, ε=-1

Without loss of generality we can assume that the matrix M is

M =

⎡⎣ 0 1 1
−1 0 1
−1 −1 0

⎤⎦
then by the Distribution Lemma u1 = n−4

4 , u2 = n−4
4 , u3 = n

4 , u4 = n−4
4 . The

matrix D is:

D =
1
44

⎡⎢⎢⎣
n + 8 −n + 4 −n n− 4

−n + 4 n + 8 n −n + 4
−n + 4 n− 4 n− 4 −n + 4

n− 4 −n + 4 −n n + 8

⎤⎥⎥⎦
and its determinant is detD = 0. Finally

detCCT = 0

5 Application to Numerical Analysis

Let A = [aij ] ∈ Rn×n. We reduce A to upper triangular form by using Gaussian
Elimination (GE) operations. Let A(k) = [a(k)

ij ] denote the matrix obtained after
the first k pivoting operations, so A(n−1) is the final upper triangular matrix. A
diagonal entry of that final matrix will be called a pivot. Matrices with the prop-
erty that no exchanges are actually needed during GE with complete pivoting are
called completely pivoted (CP) or feasible. Let g(n,A) = max

i,j,k
|a(k)

ij |/|a
(0)
11 | denote

the growth associated with GE on a CP A and g(n) = sup{ g(n,A)/A ∈ Rn×n }.
The problem of determining g(n) for various values of n is called the growth
problem.

The determination of g(n) remains a mystery. Wilkinson in [6] proved that

g(n) ≤ [n 2 31/2 . . .n1/n−1]1/2 = f(n)
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Wilkinson’s initial conjecture seems to be connected with Hadamard ma-
trices. Interesting results in the size of pivots appears when GE is applied to
CP skew-Hadamard and conference matrices of order n. In these matrices, the
growth is also large, and experimentally, we have been led to believe it equals
n − 1 and special structure appears for the first few and last few pivots. These
results give rise to new conjectures that can be posed for this category of matri-
ces.

The Growth Conjecture for Skew Hadamard and Conference Matrices
Let W be a CP skew-Hadamrad or conference matrix. Reduce W by GE. Then

(i) g(n,W ) = n− 1.
(ii) The two last pivots are equal to n−1

2 , n− 1.
(iii) Every pivot before the last has magnitude at most n− 1.
(iv) The first four pivots are equal to 1, 2, 2, 3 or 4, for n > 14.

The magnitude of the pivots appearing after GE operations on a CP matrix W
is

pj =
W (j)

W (j − 1)
, j = 1, . . . , n, W (0) = 1 (5)

This relationship gives the connection between pivots and minors, so it is ob-
vious that the calculation of minors is very important. Theoretically it can be
proved [3] the following results:

– The first 4 pivots for every W (n, n− 1) are

1, 2, 2, 3 or 4

– The 3 last pivots for every W (n, n− 1) are

n− 1 or
n− 1

2
,
n− 1

2
, n− 1

An experimental study of all the possible pivot patterns of W (8, 7) and W (10, 9)
gave the following results:

– Pivot patterns of W (8, 7):

{1, 2, 2, 4, 7/4, 7/2, 7/2, 7}

or
{1, 2, 2, 3, 7/3, 7/2, 7/2, 7}.

– Pivot patterns of W (10, 9):

{1, 2, 2, 3, 3, 4, 9/4, 9/2, 9/2, 9}

or
{1, 2, 2, 4, 3, 3, 9/4, 9/2, 9/2, 9}

or
{1, 2, 2, 3, 10/4, 18/5, 9/3, 9/2, 9/2, 9}.
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An interesting numerical analysis problem concerns the theoretical specifica-
tion of the pivot patterns of various W (n, n− 1) and the study of their growth
factor. We hope that the algorithm developed in this paper, computing the
(n − j) × (n − j) minors of skew-Hadamard and conference matrices, can be
applied for the study of this problem. In our future research we will also study
the extension of the algorithm for larger values of j. This will allow us to specify
more values of pivots.
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Abstract. It was recently shown that block-circulant preconditioners
applied to a conjugate gradient method used to solve structured sparse
linear systems arising from 2D or 3D elliptic problems have good numeri-
cal properties and a potential for high parallel efficiency. The asymptotic
estimate for their convergence rate is as for the incomplete factorization
methods but the efficiency of the parallel algorithms based on circulant
preconditioners are asymptotically optimal. In this paper parallel perfor-
mance of a circulant block-factorization based preconditioner applied to
a 3D model problem is investigated. The aim of this presentation is to an-
alyze the performance and to report on the experimental results obtained
on shared and distributed memory parallel architectures. A portable par-
allel code is developed based on Message Passing Interface (MPI) and
OpenMP (Open Multi Processing) standards. The performed numerical
tests on a wide range of parallel computer systems clearly demonstrate
the high level of parallel efficiency of the developed parallel code.

1 Introduction

In this article we are concerned with the numerical solution of 3D linear boundary
value problems of elliptic type. After discretization, such problems lead to find
the solution of linear systems of the form Ax = b. We shall only consider the
case where A is symmetric and positive definite. In practice, large problems of
this class are often solved by iterative methods, such as the conjugate gradient
method. At each step of these iterative methods only the product of A with a
given vector v is needed. Such methods are therefore ideally suited to exploit
the sparsity of A.

Typically, the rate of convergence of these methods depends on the condi-
tion number κ(A) of the coefficient matrix A: the smaller κ(A) leads to the
faster convergence. Unfortunately, for elliptic problems of second order, usually
κ(A) = O(n2), where n is the number of mesh points in each coordinate direc-
tion, and hence grows rapidly with n. To somewhat facilitate this problem, these
methods are almost always used with a preconditioner M . The preconditioner
is chosen with two criteria in mind: to minimize κ(M−1A) and to allow efficient
computation of the product M−1v for a given vector v. These two goals are often
conflicting ones and much research has been done into devising preconditioners

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 383–390, 2005.
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that strike a delicate balance between both. Recently, a third aspect has been
added to the above two, namely, the possibility to easily implement the action
of the preconditioner on a parallel computer system.

One of the most popular and the most successful class of preconditioners is
the class of incomplete LU (ILU) factorizations. One potential problem with
the ILU preconditioners is that they have limited degree of parallelism. Some
attempts to modify the method and to devise more parallel variants often result
in a deterioration of the convergence rate.

R. Chan and T. F. Chan [1] proposed another class of preconditioners which
is based on averaging coefficients of A to form a block-circulant approximation.
The block-circulant preconditioners are highly parallelizable but they are sub-
stantially sensitive with respect to a possible high variation of the coefficients of
the elliptic operator.

The sensitivity of the block-circulant approximations with respect to a high
variation of the problem coefficients was relaxed in the circulant block factoriza-
tion (CBF) preconditioners [4].

The main goal of this study is analysis of the parallel complexity of the PCG
method with considered circulant block-factorization preconditioners obtained
on Cray T3E-900, SUNfire 6800, and NEC server Azusa Express5800/1160Xa
computers, Linux Athlon, Macintosh, and Cray Opteron clusters.

2 Circulant Block Factorization

Let us recall that an m×m circulant matrix C has the form (Ck,j)=
(
c(j−k) mod m

)
.

Any circulant matrix can be factorized as C = FΛF ∗ where Λ is a diago-
nal matrix containing the eigenvalues of C, and F is the Fourier matrix F =

1√
m

{
e2π jk

m i
}

0≤j,k≤m−1
. Here i stands for the imaginary unit. F ∗ = F

T
denotes

adjoint matrix of F .
The CBF preconditioning technique incorporates the circulant approxima-

tions into the framework of the LU block factorization. The computational effi-
ciency and parallelization of the resulting algorithm are as high as of the block
circulant one (see [1, 3]).

The following 3D elliptic problem is considered in [2]:

−(a(x1, x2, x3)ux1)x1 − (b(x1, x2, x3)ux2)x2 − (c(x1, x2, x3)ux3)x3 =f(x1, x2, x3)

on the unit cube [0, 1] × [0, 1] × [0, 1] with Dirichlet boundary condition. If the
domain is discretized by uniform grid with n1, n2 and n3 grid points along
the coordinate directions, and if a standard (for such a problem) seven-point
FDM (FEM) approximation is used, then the stiffness matrix A admits a block-
tridiagonal structure. The matrix A can be written in the block-form

A = tridiag(Ai,i−1, Ai,i, Ai,i+1) i = 1, 2, . . . , n1,

where Ai,i are block-tridiagonal matrices which correspond to one x1-plane and
off-diagonal blocks are diagonal matrices.
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In this case the general CBF preconditioning approach (see [4]) is applied to
construct the preconditioner MCBF in the form:

MCBF = tridiag(Ci,i−1, Ci,i, Ci,i+1) i = 1, 2, . . . n1, (1)

where Ci,j = Block − Circulant(Ai,j) is a block-circulant approximation of the
corresponding block Ai,j . The relative condition number of the CBF precondi-
tioner for the model (Laplace) 3D problem is analyzed using the technique from
[5] and the following estimate is derived:

κ(M−1
0 A0) ≤ 2 max(n2, n3) + 2

√
2. (2)

An algorithm to construct a preconditioner M for a given block-tridiagonal ma-
trix was described above. The main advantage of the circulant preconditioners
is that they possess much more parallelism compared to the ILU precondition-
ers. It is described in [3] how to implement an action of the inverse of this
preconditioner on a given vector. For our preconditioner, limn→∞ Sp = p and
limn→∞ Ep = 1, (see [3]) i.e., the algorithm is asymptotically optimal.

3 Experimental Results

In this section we report the results of the experiments executed on a NEC server
Azusa Express5800/1160Xa consisting of 16 x intel Itanum 800Mhz processors,
with 32 GB main memory (see http://www.hlrs.de/hw-access/platforms/azusa/);
a Cray T3E-900 consisting of 336 Digital Alpha 450 MHz processors, with 64 or
128 MB memory on processor; a SUNfire 6800 consisting of 24 UltraSPARC-III
750 MHz processors and 48 GB main memory; and Linux clusters consisting of:
256 AMD Opteron 2 GHz processors, 516 GB memory (see http://www.hlrs.de/
hw-access/platforms/strider/);17 PC with AMDAthlon 650 MHz processors, 128
MB memory per computer, and 4 dual processor PowerPC with G4 450 MHz
processors, 512 MB memory per node. The developed parallel code has been im-
plemented in C and the parallelization has been facilitated using the MPI [8, 9]
and OpenMP [10] libraries. In all cases, the optimization options of the compiler
have been tuned to achieve the best performance. Times have been collected us-
ing the MPI provided timer. In all cases we report the best results from multiple
runs.

The obtained parallel time Tp on p processors, relative parallel speed-up Sp
and relative efficiency Ep are presented in the tables, where Sp = T1

Tp
≤ p and

Ep = Sp

p ≤ 1. One can see the increase of the influence of the communication
time with the number of processors on the speed-up and on the parallel efficiency.
The general behavior is in a good agreement with the theoretical estimates.

In Table 1 we present results of experiments executed on Athlon and Macin-
tosh clusters, on Cray T3E, and on NEC server Azusa Express5800/1160Xa. One
can see that the parallel efficiency on Macintosh cluster is higher on 2 processors
and it is lower on 6 and 8 processors. The main reason is the faster communi-
cation between processors in one node on the cluster of dual processor computers.
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Table 1. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on
Athlon and Macintosh clusters, Cray T3E, and NEC server Azusa Express5800/1160Xa

Athlon Macintosh Cray T3E NEC
n p Tp Sp Ep Tp Sp Ep Tp Sp Ep Tp Sp Ep

32 1 0.111 0.109 0.133 0.077
2 0.082 1.35 0.673 0.061 1.78 0.891 0.068 1.96 0.982 0.040 1.95 0.975
4 0.057 1.95 0.487 0.050 2.18 0.544 0.034 3.88 0.969 0.020 3.86 0.965
8 0.031 3.61 0.452 0.036 3.05 0.382 0.020 6.64 0.830 0.011 7.23 0.904
16 0.014 9.61 0.601
32 0.011 12.58 0.393

48 1 0.758 0.761 0.898 0.470
2 0.469 1.62 0.809 0.405 1.88 0.939 0.452 1.99 0.993 0.234 2.01 1.004
3 0.340 2.23 0.744 0.318 2.39 0.798 0.304 2.95 0.984 0.156 3.01 1.004
4 0.261 2.91 0.726 0.265 2.87 0.718 0.227 3.95 0.988 0.117 4.01 1.002
6 0.189 4.01 0.669 0.200 3.81 0.634 0.154 5.82 0.971 0.079 5.94 0.989
8 0.203 3.74 0.468 0.164 4.63 0.579 0.116 7.71 0.964 0.060 7.78 0.973
12 0.080 11.29 0.941 0.042 11.30 0.942
16 0.062 14.58 0.911
24 0.044 20.27 0.845
48 0.027 33.84 0.705

64 1 1.095 1.191 0.744
2 0.753 1.45 0.727 0.705 1.69 0.845 0.583 0.364 2.05 1.023
4 0.429 2.55 0.638 0.495 2.41 0.602 0.297 0.981 0.177 4.20 1.051
8 0.268 4.08 0.511 0.327 3.64 0.456 0.153 0.953 0.092 8.06 1.007
16 0.079 0.922
32 0.045 0.810
64 0.028 0.651

96 1 6.787 6.701 4.332
2 4.107 1.65 0.826 3.748 1.79 0.894 2.185 1.98 0.991
3 2.975 2.28 0.760 2.871 2.33 0.778 1.467 2.95 0.984
4 2.202 3.08 0.770 2.398 2.79 0.699 1.083 4.00 1.000
6 1.530 4.44 0.739 1.743 3.84 0.641 1.256 0.733 5.91 0.985
8 1.160 5.85 0.731 1.374 4.88 0.610 0.944 0.998 0.561 7.73 0.966
12 0.639 0.983 0.397 10.91 0.909
16 0.484 0.973
24 0.322 0.975
32 0.243 0.969
48 0.170 0.924
96 0.095 0.826

128 1 7.240
2 3.576 2.02 1.012
4 1.897 3.82 0.954
8 1.045 6.93 0.866

192 1 37.901
2 18.096 2.09 1.047
3 12.280 3.09 1.029
4 9.345 4.06 1.014
6 6.627 5.72 0.953
8 5.348 7.09 0.886
12 4.082 9.28 0.774

256 1 64.039
2 30.626 2.09 1.045
4 15.636 4.10 1.024
8 9.437 6.79 0.848
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Table 2. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on
SUNfire 6800 and on Cray Opteron cluster using MPI

SUNfire Cray Opteron
p n Tp Sp Ep n Tp Sp Ep n Tp Sp Ep n Tp Sp Ep

1320.050 128 8.445 320.034 128 2.768
2 0.034 1.48 0.741 4.386 1.93 0.963 0.017 2.06 1.030 1.428 1.94 0.969
4 0.015 3.27 0.818 2.105 4.01 1.003 0.009 3.94 0.985 0.750 3.69 0.923
8 0.009 5.84 0.729 0.898 9.40 1.175 0.005 7.16 0.895 0.402 6.88 0.861

16 0.00411.280.705 0.38621.881.367 0.00312.070.754 0.222 12.47 0.779
32 0.00313.170.412 0.127 21.80 0.681
64 0.068 40.67 0.635

128 0.045 61.22 0.478
1480.404 19241.063 480.232 19216.576
2 0.242 1.67 0.834 20.448 2.01 1.004 0.116 2.00 0.998 8.591 1.93 0.965
3 0.146 2.77 0.924 14.141 2.90 0.968 0.079 2.95 0.984 5.715 2.90 0.967
4 0.111 3.65 0.912 10.279 3.99 0.999 0.059 3.96 0.989 4.391 3.78 0.944
6 0.068 5.97 0.995 7.004 5.86 0.977 0.040 5.74 0.957 3.023 5.48 0.914
8 0.053 7.62 0.953 5.155 7.96 0.996 0.031 7.44 0.930 2.258 7.34 0.918

12 0.02111.260.938 1.533 10.81 0.901
16 0.02416.731.045 2.34617.501.094 0.01614.670.917 1.188 13.95 0.872
24 0.01921.650.902 1.73723.630.985 0.01120.660.861 0.816 20.31 0.846
32 0.633 26.17 0.818
48 0.00731.800.662 0.445 37.27 0.776
64 0.344 48.14 0.752
96 0.246 67.38 0.702

192 0.139118.990.620
1640.672 256 640.307 25624.442
2 0.388 1.73 0.866 38.417 0.162 1.90 0.950 13.104 1.87 0.933
4 0.160 4.20 1.050 18.642 1.030 0.084 3.66 0.914 6.896 3.54 0.886
8 0.075 8.97 1.122 9.826 0.977 0.044 7.00 0.875 3.510 6.96 0.870

16 0.03122.011.375 4.624 1.039 0.02611.910.744 1.915 12.76 0.798
32 0.01323.680.740 1.078 22.68 0.709
64 0.00935.570.556 0.587 41.62 0.650

128 0.356 68.65 0.536
1964.695 961.973
2 2.302 2.04 1.020 1.010 1.95 0.977
3 1.499 3.13 1.044 0.688 2.87 0.956
4 1.091 4.30 1.076 0.516 3.82 0.956
6 0.682 6.88 1.147 0.361 5.47 0.912
8 0.494 9.49 1.187 0.272 7.26 0.907

12 0.18410.730.894
16 0.24219.431.214 0.14513.630.852
24 0.19124.631.026 0.10019.790.825
32 0.07625.870.808
48 0.05336.970.770
96 0.03164.580.673
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Table 3. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on
SUNfire 6800 using OpenMP

p n Tp Sp Ep n Tp Sp Ep

1 32 0.056 128 8.313
2 0.028 1.97 0.983 4.233 1.96 0.982
3 0.020 2.75 0.918 2.757 3.01 1.005
4 0.015 3.69 0.922 2.029 4.10 1.024
5 0.014 4.10 0.820 1.633 5.09 1.018
6 0.012 4.65 0.775 1.387 5.99 0.999
7 0.011 5.11 0.730 1.196 6.95 0.993
8 0.009 6.43 0.803 1.039 8.00 1.000

16 0.006 9.71 0.607 0.538 15.44 0.965
24 0.006 9.70 0.404 0.398 20.89 0.870
1 48 0.386 192 40.471
2 0.196 1.97 0.984 20.181 2.01 1.003
3 0.130 2.96 0.988 13.437 3.01 1.004
4 0.099 3.91 0.977 10.048 4.03 1.007
5 0.082 4.70 0.941 8.044 5.03 1.006
6 0.067 5.79 0.964 6.751 6.00 0.999
7 0.060 6.48 0.926 5.808 6.97 0.996
8 0.052 7.40 0.925 5.086 7.96 0.995

16 0.029 13.42 0.838 2.514 16.10 1.006
24 0.020 19.38 0.807 1.885 21.47 0.894
1 64 0.650 256
2 0.339 1.92 0.958 51.349
3 0.230 2.82 0.940 33.793 1.013
4 0.170 3.82 0.954 25.664 1.000
5 0.140 4.65 0.930 20.521 1.001
6 0.119 5.46 0.910 17.093 1.001
7 0.104 6.27 0.896 14.707 0.998
8 0.087 7.46 0.933 13.242 0.969

16 0.049 13.23 0.827 6.918 0.928
24 0.040 16.40 0.683 5.116 0.836
1 96 3.973
2 1.880 2.11 1.057
3 1.224 3.25 1.082
4 0.930 4.27 1.068
5 0.759 5.24 1.048
6 0.622 6.39 1.065
7 0.542 7.33 1.047
8 0.471 8.44 1.055

16 0.245 16.23 1.015
24 0.168 23.67 0.986

The memory on one processor of Cray computer is sufficient only for the dis-
cretization with coarse grid. For larger problems we report the parallel efficiency
related to the results on 2 and 6 processors respectively.
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SUNfire 6800 OpenMP n=32
SUNfire 6800 OpenMP n=96

Sunfire 6800 n=32
Sunfire 6800 n=96

Macintosh cluster n=32
Macintosh cluster n=96

Cray T3E-900 n=32
Beowulf cluster n=32
Beowulf cluster n=96

Fig. 1. Speed-up for one iteration on three parallel computer systems

Tables 2 and 3 shows results obtained on SUNfire 6800 and on Cray Opteron
cluster. As expected, the parallel efficiency increases with the size of the dis-
crete problems. The parallel efficiency for relatively large problems is above 80%
which confirms our general expectations. There exist at least two reasons for the
reported high efficiency: (a) the network parameters start-up time and time for
transferring of single word are relatively small for the multiprocessor machines;
(b) there is also some overlapping between the computations and the commu-
nications in the algorithm. Moreover, the super-linear speed-up can be seen in
some of the runs. This effect has a relatively simple explanation. When the num-
ber of processors increases, the size of data per processor decreases. Thus the
stronger memory locality increases the role of the cache memories. (The level 2
cache on the SUNfire 6800 is 8 MB.) The obtained speed-up on 16 processors on
SUNfire 6800 in some cases is close to 22. In these cases the whole program is
fitted in the cache memory and there is no communication between processors
and main memory but only between processors.

Finally, we compare results on Cray, SUN, NEC, and Linux clusters. Fig. 1
shows parallel speed-up for execution of one iteration on different parallel sys-
tems.

4 Summary

We are concerned with the numerical solution of 3D elliptic problems. After
discretization, such problems reduce to the solution of linear systems. We use
a preconditioner based on a block-circulant approximation of the blocks of the
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stiffness matrix. We exploit the fast inversion of block-circulant matrices. The
computation and the inversion of these circulant block-factorization precondi-
tioners are highly parallelizable on a wide variety of architectures. The developed
code provide new effective tool for solving of large-scale problems in realistic time
on a coarse-grain parallel computer systems.
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Abstract. QR algorithm for eigenproblems is often applied with sin-
gle or double shift strategies. To save computation effort, double implicit
shift technique is employed. In Watkins and Elsner[1], a higher-order shift
strategy, generalized Rayleigh quotient shift strategy, is introduced. In
this paper, we give a generalization of the double implicit shift tech-
nique for the higher-order strategy, and compare the computation cost
for different orders with numerical experiments.

1 Introduction to the Generic GR Algorithm and
Generalized Rayleigh Quotient Strategy

Let A be an n × n matrix whose eigenvalues we would like to know. The GR
algorithm generates a sequence {Ai} of similar matrices as follows:

– A0 is taken to be A or some convenient matrix similar to A, say A0 =
G−1

0 AG0.
– Given Ai−1, let pi be some polynomial,

1. take the GR decomposition, pi(Ai−1) = GiRi
2. Ai = G−1

i Ai−1Gi

Here GR decomposition stands for any well-defined rule for certain class of
matrices. In this paper, we concentrate on QR decomposition, while there’re
some other cases, such as LR, SR,HR etc..

As to pi, we must make a clever choice if we need rapid convergence. The
generalized Rayleigh quotient shift strategy chooses pi as the characteristic poly-
nomial of Ai−1

22 , the trailing m×m submatrix of Ai−1.
If m = 1, then we recover the Rayleigh quotient strategy pi(Ai−1) = Ai−1 −

σiI, where σi is the (n, n) entry of Ai−1. If m = 2, pi(Ai−1) = (Ai−1−σiI)(Ai−1−
τiI), where σi, τi are the eigenvalues of the lower-right 2× 2 submatrix of Ai−1.
This is often used for the unsymmetric case to avoid complex computation.

In this paper, we discuss the choice of m for faster convergence.

2 Upper-Hessenberg Structure

It is well-known that, before applying the QR algorithm, we need to reduce the
matrix to upper-Hessenberg, so that the computation of QR in each iteration
can be reduced from O(n3) to O(n2) .

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 391–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this section, we show that the generalized Rayleigh quotient shift strategy
in QR algorithm preserves the upper-Hessenberg structure, just as the single or
double shift strategy does.

Theorem 1. Suppose A is an upper-Hessenberg matrix, p is an m-order poly-
nomial, then there exists a QR factorization of p(A), p(A) = QR, such that
Q−1AQ is still an upper-Hessenberg matrix.

Proof. Suppose the m roots of p are a1, ..., am. Without loss of generality, we
assume the coefficient of the highest-order term is 1, i.e.,

p(A) = (A− a1I)(A− a2I) · · · (A− amI).

Take the following steps:
H0 = A
for i = 1 : m

Hi−1 − aiI = UiRi (QR factorization by Givens rotations)
Hi = RiUi + aiI

end
let Ã = Hm

It is easy to see that Ã = (U1, ..., Um)HA(U1, ..., Um), since H0 is upper-
Hessenberg, so is H0 − a1I, we can use (n − 1) Givens rotations to get U1R1,
and obviously U1 is upper-Hessenberg, thus H1 = R1U1 + a1I is also upper-
Hessenberg. For the same reason, H1, H2, ..., Hm = Ã are all upper-Hessenberg.
Thus, the only thing left is to show that (U1U2, ..., Um)Hp(A) is an upper trian-
gular R, then we take Q = U1, ..., Um, and the theorem can be proved.

Actually

p(A) = (A− a1I)(A− a2I)...(A− amI) = U1...UmRm...R1.

We show this by induction, A − a1I = U1R1 is obvious according to the
procedure above. Suppose we have (A−a1I)...(A−ai−1I) = U1...Ui−1Ri−1...R1,
then

(A− a1I)...(A− ai−1I)(A− aiI)
= U1...Ui−1Ri−1...R1(A− aiI)
= U1...Ui−1Ri−1...R1(A− a1I) + (a1 − ai)U1...Ui−1Ri−1...R1
= U1...Ui−1Ri−1...R1(U1R1) + (a1 − ai)U1...Ui−1Ri−1...R1
= U1...Ui−1Ri−1...R2(H1 − a1I)R1 + (a1 − ai)U1...Ui−1Ri−1...R1
= U1...Ui−1Ri−1...R2(H1 − a2I)R1 + (a2 − ai)U1...Ui−1Ri−1...R1
= U1...Ui−1Ri−1...R2U2R2R1 + (a2 − ai)U1...Ui−1Ri−1...R1
= ...
= U1...Ui−1Ri−1Ui−1Ri−1...R1 + (ai−1 − ai)U1...Ui−1Ri−1...R1
= U1...Ui−1(Hi−1 − ai−1I)Ri−1...R1 + (ai−1 − ai)U1...Ui−1Ri−1...R1
= U1...Ui−1(Hi−1 − aiI)Ri−1...R1
= U1...UiRi...R1.
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3 Implicit Shifts

Since the cost for p(A) is O(mn3), it is not a practical approach to explicitly com-
pute p(A). Thus we follow the implicit skills as follows, which is a generalization
of the double implicit shift method in Golub and van Loan [2].

For simplicity, we assume p(A) is non-singular. In this case, the QR factor-
ization of p(A) is unique up to a diagonal and orthogonal matrix. That is,

Lemma 1. Suppose matrix A is n× n non-singular, and it has two QR factor-
izations

A = Q1R1 = Q2R2,

then there exists a dianognal matrix D = diag(d1, ..., dn), which satisfies that
|di| = 1 for i = 1, ..., n, and Q2 = Q1D

Proof. Use induction to prove that Q2(:, j) = djQ1(:, j).

The implicit shift algorithm is based on the following theorem.

Theorem 2. Suppose A is an upper-Hessenberg matrix, p is an m-order poly-
nomial, p(A) is non-singular. Q is an orthogonal matrix, such that QHAQ is
unreduced upper-Hessenberg matrix, and the first column of Q equals that of an-
other orthogonal matrix P , which satisfies p(A) = PR is QR factorization. Then
QHp(A) is upper-triangular.

Proof. According to Theorem 1, there exists an orthogonal Q̃, such that, p(A) =
Q̃R̃ is a QR factorization of p(A), and Q̃HAQ̃ is upper-Hessenberg. Now that
p(A) = PR is another QR factorization, then, from lemma 2, there exists a
diagonal and orthogonal D, s.t. P = Q̃D. Thus

PHAP = DHQ̃HAQ̃D

is still upper-Hessenberg. Since the first columns of P and Q are the same, and
they both reduce A to an upper-Hessenberg matrix, and QHAQ is unreduced,
by Implicit Q Theorem, there exists another diagonal and orthogonal D̃, s.t.
Q = PD̃, thus QHp(A) is also upper-triangular.

According to Theorem 3, given the upper-Hessenberg Aj , we can proceed
one step QR algorithm in the following way. First, compute the first column of
p(Aj). Second, use Householder or Givens transformation to find orthogonal P1,
s.t. PH1 p(Aj)e1 is a multiple of e1. According to the procedure of Householder
or Givens, there exists another orthogonal P2, which we are not interested, s.t.
PH2 PH1 p(Aj) is upper-triangular, and P2e1 = e1, i.e., if we let P = P1P2, then
Pe1 = P1e1. Third, compute the matrix PH1 AjP1. Fourth, use Givens rotation
to find Q1 s.t. Q1e1 = e1 and QHAjQ is upper-Hessenberg, where Q = P1Q1.
Thus, Q satisfies p(Aj) = QR, and QHAjQ is just the Aj+1 we need. This gives
the following algorithm:

Algorithm 1. one-step QR with implicit generalized Rayleigh quotient shift
(Compute the first column of p(A) =

∑m
i=0 aiA

i, suppose A is upper-Hessenberg)
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p(A)e1 = a0e1, v = e1
for i = 1 : m

v(1 : i + 1) = H(1 : i + 1, 1 : i)v(1 : i)
p(A)e1(1 : i + 1) = p(A)e1(1 : i + 1) + aiv(1 : i + 1)

end
(compute PH1 AP1 via Givens rotations)
for i = 2 : m + 1

compute Givens matrix G(1, i) to eliminate p(A)e1(i)
A = G(1, i)AG(1, i)H

end
(Restore A to upper-Hessenberg)
for j = 1 : n− 2

for i = j + 2 : min(j + m + 1, n)
compute Givens matrix G(i− 1, i) to eliminate A(i, j)
A = G(i− 1, i)AG(i− 1, i)H

end
end

The complexity of Algorithm 1 is O(m2) for computing the first column of
p(A), O(mn) for computing PH1 AP1, and O(mn2) for restoring A to upper-
Hessenberg. Thus, the total cost is O(mn2).

4 Choice of m

The overall process of QR method is a deflation process. That is, After some
iterations, we hope a certain subdiagonal entry A(i+ 1, i) will converge to zero,
and then the large matrix A can be deflated into two smaller submatrices A(1 :
i, 1 : i) and A(i+1 : n, i+1 : n). Then we repeat the iterations recursively for the
submatrices, until each submatrix is small enough for us to get the eigenvalues
easily.

According to the complexity of Algorithm 1, the cost per iteration is propor-
tional to the order of the polynomial m, i.e., the larger m is, the more compu-
tation it takes per iteration. However, there are two factors which can offset the
disadvantage of larger m in the generalized Rayleigh quotient shift strategy.

The first is the speed of convergence. Our experiments show that, sometimes,
it may take much less iterations with a larger m than a smaller one to reach the
convergence.

The second is the speed of deflation. Our experiments show that, if m is not
too large, say m = 3, 4, 5, 6..., then in most cases, though not always, m equals
the size deflated. That is, if we apply an m-order shift on an n × n matrix,
chances are that it will deflate into an (n−m)× (n−m) matrix and an m×m
one. Thus, the speed of deflation is almost proportional to m.

From these two factors, we see that the second one has already offset the
disadvantage of larger m in a lot of cases. So what counts more is the speed of
convergence.

The following theorem in [1] gives the heuristic idea of choosing m.
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Theorem 3. Let A0 ∈ Cn×n, and let p be a polynomial. Let λ1, ..., λn de-
note the eigenvalues of A0, ordered so that |p(λ1)| ≥ |p(λ2)| ≥ · · · ≥ |p(λn)|.
Suppose k is a positive integer less than n such that |p(λk)| > |p(λk+1)|, let
ρ = |p(λk+1)|/|p(λk)|, and let (pi) be a sequence of polynomials such that pi −→ p
and pi(λj) �= 0 for j = 1, ..., k and all i. Let T and Ube the invariant sub-
spaces of A0 associated with λ1, ..., λk and λk+1, ..., λn, respectively, and suppose
< e1, ..., ek > ∩U = {0}. Let (Ai) be the sequence of iterates of the GR algo-
rithm using these pi, starting from A0. If there exists a constant κ̂ such that the
cumulative transformation matrices Ĝi all satisfy κ2(Ĝi) ≤ κ̂, then (Ai) tends
to block triangular form, in the following sense. Write

Ai =

[
A

(i)
11 A

(i)
12

A
(i)
21 A

(i)
22

]
,

where A
(i)
11 ∈ k × k. Then for every ˆrho satisfying ρ < ρ̂ < 1 there exists a

constant C such that ‖ A(i)
21 ‖≤ Cρ̂i for all i.

Proof. See Watkins and Elsner [1]

From this theorem, we know that if the m roots of p were eigenvalues of Ai,
then p(λn−m+1) = p(λn−m+2) = · · · = p(λn) = 0, so the subdianognal entry
Ai(m + 1,m) would become zero after one iteration with this shift.

However, the eigenvalues are unknown, so what we need to do is to find a
polynomial whose roots are close to eigenvalues. If

Ai =

[
A

(i)
11 A

(i)
12

A
(i)
21 A

(i)
22

]
,

where the upper-right entry of A(i)
21 (which is the only non-zero entry, because

of upper-Hessenberg) is small, then the characteristic polynomial of A(i)
21 would

have the roots close to the eigenvalues, and p(λn−m+1)/p(λn−m) would be near
zero, which makes A(n−m + 1, n−m) converge to zero rapidly.

Thus, we may search for the subdiagonal entry, whose absolute value is the
smallest among those near the lower-right corner of the matrix, say, A(k+ 1, k),
then probably m = n− k is a good choice.

Two other issues need to be concerned. First, m cannot be too large. Anyway,
the disadvantage of large m in each iteration is inevitable, while the advantage
is not always guaranteed. So the larger the m is, the higher risk we’re taking
slowing down the algorithm. That is why we only search near the lower-right
corner. For example, we may require m < M , where M may be chosen as
4, 5, 6,etc. The other way is to set a threshold constant c, and find the m, s.t.
|A(n −m + 1, n −m)|/cm is the smallest. Second, when an m is chosen in this
way, we are not yet ensured a fast convergence, so we need to set a limit for the
iteration times. If unfortunately, after a certain number of iterations, it hasn’t
converged, then we’d better re-choose m by testing m = 1, 2, 3... one by one.

Based on these ideas, we may use the following algorithm:

Algorithm 2. Overall process of QR algorithm with implicit generalized Rayleigh
quotient shift
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set c, tol,M and ITER;
while n is not small enough, do

find m < M ,s.t. |A(n−m + 1, n−m)|/cm is the smallest among the last M
subdiagonals ;

A0 = A
i = 1;
while (i < ITER and |Ai−1(n−m + 1, n−m)| > tol), do

compute p, the characteristic polynomial of A(n−m+1 : n, n−m+1 : n);
use algorithm 1 to compute Ai;
i = i + 1;

endwhile
if |Ai(n−m + 1, n−m)| > tol), do

m = 1
do

A0 = A;
i = 1;
while (i < ITER and |Ai−1(n−m + 1, n−m)| > tol), do

compute p, the characteristic polynomial of A(n −m + 1 : n, n −
m + 1 : n);

use algorithm 1 to compute Ai
i = i + 1;

endwhile
m = m + 1

until |Ai−1(n−m + 2, n−m + 1)| < tol) do
endif
A = A(n−m + 2 : n, n−m + 2 : n)
n = n−m;

endwhile

5 Numerical Experiments

Example 1. Let A be a 100×100 tridiagnoal matrix. All its diagonal entries are
2, and all its sub-diagonal and super-diagonal entries are −1. This is a typical
matrix obtained by finite difference method in solving BVP.

If we set tol = 10−7, threshold c = 0.9, ITER = 10 and m = 4, we get

initial m modified m iterations matrix order after deflation
1 2 4 98
2 3 96
4 2 92
4 2 88
4 2 84
2 2 82
4 2 78
2 2 76
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Here, initial m means the m chosen according to algorithm 2. If it does
not give convergence within ITER, then a modified m is chosen by test from
m = 1, 2.... From this table, we can see that the initial choice of m can almost
always give a good rate of convergence.

If we skip the initial choice of m, then the process gets stuck at order = 88.
If we lift ITER up to 20, the result is as follows

modified m iterations matrix order after deflation
2 4 98
1 14 96
3 5 94
1 3 93
3 2 90
1 3 89
1 2 88
1 2 87
1 3 86
1 5 85
1 5 84
1 2 83
1 3 82
1 3 81
1 2 80
1 3 79
1 3 78
1 4 77
1 3 76

Since the cost is proportional to the sum of the product of m and iterations
in each row, it is observed that the choice of higher-order m in algorithm2 has
some advantage.

Example 2. We replace the (1, 1) in Example 1 entry with 1, then with algo-
rithm 2, we get

initial m modified m iterations matrix order after deflation
1 4 99
2 2 97
2 2 95
2 2 93
2 2 91
2 2 89
2 2 87
2 2 85
2 2 83
2 2 81
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If we skip the initial choice, then,

modified m iterations matrix order after deflation
2 1 99
2 5 97
2 3 95
1 1 94
1 2 93
1 2 92
1 4 91
1 3 90
1 4 89
1 3 88
1 5 86
1 3 85
1 7 84
1 4 83
1 4 82
1 3 81

Again, algorithm 2 has some advantage.
There seems to be some similar results as to the situation when a subdiagonal

in a leading (rather than trailing) submatrix has small modulus, and we’ll have
a better choice of m in these cases.
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Abstract. In this paper a general model is developed for the simulation
of one dimensional diffusion annealing. Our main interest is the deter-
mination of the diffusion coefficient from measured values at discrete
space-time points within the sample. The method is based on a suitable
reduction of the pde to a system of odes by a second order finite differ-
ence space discretization. The inverse problem is solved by implementa-
tion of the Levenberg-Marquardt method. This allows the estimation of
the parameters and the determination of Cramér-Rao lower bounds.

1 Introduction

Iron silicon alloys are extensively used as soft magnetic materials in electrical
devices. A higher silicon content increases the electrical resistance and improves
the magnetic properties. Several methods have been developed to obtain high Si
steel, see [3] and references therein.

In [3] the authors propose a hot dipping process followed by diffusion an-
nealing. During the hot dipping a normal steel substrate (low Si) is dipped into
a hypereutectic Al-Si-bath. This produces a thin sheet with Al and Si at the
surface. To obtain the required Si amount over the entire thickness of the steel
sheet, the sample is placed into a furnace to allow diffusion annealing in order to
enrich the Fe-matrix with Si. At the micro level this process is difficult to model:
the thin sheet consists of different compounds (eg. Fe3Al3Si2), holes can develop,
etc. On the macro level, the picture is much clearer as Fick’s law of diffusion can
be used. Therefore, we use the following phenomenological equation for the Si
concentration C, expressed in atomic percentage (At%),

∂tC −∇ · (D(C) ∇C) = 0,

where the diffusion coefficient D depends on the Si concentration. This diffusion
coefficient must be determined experimentally for each type of Fe-matrix.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 399–407, 2005.
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An outline of the paper is in order. In Section 2 we present the mathematical
model for diffusion annealing of a thin steel sheet. In Section 3 the numerical
approximation in terms of a system of odes is developed, and in Section 4 some
numerical examples are given.

2 Mathematical Model

2.1 Setup

We describe diffusion annealing in a thin sheet by a 1D-model. Let the sheet be
a rectangular beam with thickness 2L, width W and heigth H. Typically, we
have 2L = 800μm, W = 5cm and H = 10cm. During hot dipping a surface layer
is formed over the entire sample. We need only consider the diffusion annealing
over the thickness of the sample, away from the edges. By symmetry reasons
this diffusion is uniform over the beam, thus we get a 1D model. By symmetry
reasons we may reduce the diffusion phenomenon to half of the thickness of the
sheet, i.e. over the interval (0, L), when imposing a homogeneous Neumann BC
at the middle of the sheet (x = L). Thus, we arrive at the following 1D-model,
consisting of the diffusion equation

∂tu− ∂x (D(u) ∂xu) = 0 in (0, L)× (0, T ), (1)

with D(u) ∈ L∞, D(u) ≥ 0, along with boundary conditions

u(0, t) = c0 or −D(u(0, t))∂xu = 0, (2)

−D(u(L, t))∂xu = 0, 0 < t < T, (3)

and an initial condition

u(x, 0) = u0(x), x ∈ (0, L). (4)

Here, u is the concentration of silicon (Si) in steel (Fe). Here, (0, T ) is a given
time interval, u0 represents the given initial concentration profile and c0 is a
constant.

2.2 The Substrate Problem

The initial concentration profile u0(x) entering (4) results from the hot dipping
process. We call this setup the substrate problem.

Definition 1. The substrate problem is defined by Equations (1)-(4) where the
initial condition u0(x) is given by

u0(x) > δ x ∈ [0, s0[, u0(x) = δ x ∈ [s0, L], (5)

with 0 < s0 < L, δ > 0. We assume further that u0(x) is smooth up to s0.
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It follows immediately that u0(x) is not analytic in s0. The value δ is the amount
of Si in Fe before the hot dipping. It is typically between 0 and 3 At%. As a special
case we have the zero substrate problem when δ = 0. A characteristic property
of the substrate problem is the movement of the contact point x = s(t).

Definition 2. The contact point is the point x = s(t) where u(s(t), t) = δ, with
s(0) = s0.

The speed of the contact point is denoted as ṡ(t). We have the following property

Proposition 1. Assume that the speed of the contact point is finite in the sub-
strate problem. Let (1) be satisfied in x = s(t) in the limit sense. Then the
following holds

ṡ(t) = − lim
x→s(t)−

(
D′(u)∂xu + D(u)

∂2
xu

∂xu

)
(6)

= − lim
x→s(t)−

(
∂x

∫ u

0

D(z)
z − δ

dz
)

(7)

Proof. From the definition of the contact point we have that u(s(t), t) is inde-
pendent on t. Therefore, if ṡ(t) is finite,

0 =
d
dt

u(s(t), t) = ∂tu + ṡ(t)∂xu.

Therefore,

ṡ(t) = − lim
x→s(t)−

∂tu

∂xu
= − lim

x→s(t)−

(
D′(u)∂xu + D(u)

∂2
xu

∂xu

)
= − lim

x→s(t)−

D(u)∂xu
u− δ

= − lim
x→s(t)−

(
∂x

∫ u

0

D(z)
z − δ

dz
)
.

Here, for the second line we noted that the flux D(u)∂xu and u − δ both tend
to zero at the interface allowing the use of de l’Hospital’s rule in reverse (this
implies D(δ) = 0) which is indeed a requirement for finite propagation speed,
practically we will have this only for δ = 0). � 

To ensure that (1) holds in x = s(t) in the limit sense, we have that u0(x) is not
C∞ apart from being not analytic in s0.

Remark 1. From (7) it follows that the function D(u)
u−δ must be integrable.

Remark 2. From (6) some deductions can be made on the form of the concen-
tration profile u(x, t) in the contact point in order that for a given diffusion
coefficient the speed ṡ(t) is indeed finite. If for example D(u) = up, p > 0, then
we have limx→s(t)− D(u) = 0 in the zero substrate problem. The propation speed
(6) is finite in following cases.

– If limx→s(t)−
∂2

xu
∂xu

is finite or behaves as 1
up−k , where 0 ≤ k < p, the second

term of (6) cancels.
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– If p = 1, then D′(u) = c, a constant. Therefore limx→s(t)− ∂xu = f(t), with
f(t) > 0.

– If p > 1, then limx→s(t)− D′(u) = 0. In order to have a finite speed, it is
necessary that ∂xu ∼ u1−p. Like this, limx→s(t)− D′(u)∂xu is still a finite
function of t. This means however that limx→s(t)− ∂xu = ∞.

– If p < 1, the same deduction can be made, now limx→s(t)− ∂xu = 0.

Remark 3. From Remark 2 it follows that ∂xu should be avoided in numerical
computations. Therefore the form (7) should be used. If the speed of the contact
point is finite, the function F (x) defined by

F (x) ≡ F̃ (u(x)) =
∫ u(x)

0

D(z)
z

,

will have a finite derivative in x = s(t).

In general, the initial concentration profile will only be a given set of data-
points. Therefore, u0(x) will be constructed by suitable polynomial interpolation,
so that ∂xu and ∂2

xu are two constants, not zero. From (6) we obtain that ṡ(t) = 0
for p > 1, and ṡ(t) = ∞ for 0 < p < 1. This does not allow us to recover s(t),
but indicates what will happen numerically: the initial function will transform
to a profile with the desired derivative in the contact point.

2.3 The Inverse Problem Setup

Assume that we have the measured concentrations

C∗(xi, ti) for xi ∈ (0, L), ti ∈ (0, T ), i = 1, . . . , n. (8)

From (8) the function D(C), C ∈ (0, 1), has to be restored. Our aim is to
determine the unknown function D(s), s ∈ (0, 1), so that the measured values
(8) are well-approximated by the numerical results from the corresponding direct
problem.

To this end we look for a function D in a class of explicit functions parametrized
by a vector p = (p1, . . . , pm). More explicitely, we take D = D(s, p), where
s ∈ (0, 1) and p ∈ Uad ⊂ Rm, with Uad an admissible compact subset of Rm.
Possible choices for D(s,p) are

D(s,p) = p1s
p2(1 + p3s + p4s

2), (9)

with p2 > 0, or

D(s,p) = pj+
pj+1 − pj

h
(s−jh) for s ∈ (jh, (j+1)h), j = 0, . . . ,m−1, (10)

with h = 1
m . Note that for (9) and (10) we indeed have that D(u)

u−δ is integrable,
as required from Remark 1.
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We look for an optimal vector-parameter p̂ = (p̂1, . . . , p̂m) such that the cost
functional

F(p) ≡ F(C,p)
∑
i

[C(xi, ti,p)− C∗(xi, ti)]2 dx dt, (11)

attains its minimum on Uad at p = p̂. Here, C(x, t,p) is the solution of (1)-
(4). The vector p̂ is obtained as the limit of a sequence {pk}∞

k=1 such that
F(pk+1, Ck+1) < F(pk, Ck) and F(pk, Ck) → F(p̂, Ĉ), where Ck = C(x, t,pk)).
We will construct this sequence by a Levenberg-Marquardt method.

Remark 4. In the special case D(C, p) = (p+1)Cp, p > 0, a closed-form solution
of (1)-(4) exists in case the initial profile is C(x, 0) = Eδ(x) (the Dirac measure).
It is the Barenblatt-Pattle solution, [5] p.31, taking the form

C(x, t)

{
t−1/(p+2)(1− (x/s(t))2)1/p, for |x| < s(t);
0, for |x| ≥ s(t),

(12)

with the interface given by x = s(t), s(t) =
√

2(p+1)(p+2)
p t1/(p+2). The solution

(12) has a singularity at x = s(t). We see that this solution shows the properties
mentioned above. Thus, we have that at x = s(t) ∂xC is 0 or ∞ depending on
p, and that ∂xC ∼ C1−p.

3 Numerical Realization for a 1D Problem

3.1 The Direct Problem

Let p be given. We construct the solution C(x, t,p) of (1)-(4) in an approxima-
tive way as follows. The problem (1)-(4) is reduced to an initial value problem
for a nonlinear system of ODEs by means of a nonequidistant finite difference
discretization with respect to the space variable. Next, a stiff ODE solver is used
to solve the system of ODEs.

We consider two possibilities. In the first we assume there is a contact point
x = s(t) of which the speed is determined by (7). The second possibility is that
there is no contact point. In that case we set s(t) = L and ṡ(t) = 0.

Our procedure is as follows. We split (0, L) into two domains Ω1 ≡ (0, s(t))
and Ω2 ≡ (s(t), L). We transform the PDE (1) on Ω1(t) to the fixed domain (0, 1)
using Landau’s transformation y = x

s(t) . Denoting the corresponding solution by

C1(y, t), we have that

∂tC
1 = ∂tC1 − y

ṡ(t)
s(t)

∂yC1, ∂xC
1 =

1
s(t)

∂yC1, ∂2
xC

1 =
1

s2(t)
∂2
yC

1. (13)

Consequently the PDE we need to solve becomes

∂tC1 − 1
s2(t)

∂y

(
D(C1)∂yC1

)
− y

ṡ(t)
s(t)

∂yC1 = 0. (14)
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The interval (0, 1) is partitioned by the set of grid points {yi}Ni=0, with yi =∑i
l=0 αl, i = 0, . . . , N , where α0 = 0 and

∑N
l=0 αl = 1. We can choose these

gridpoints so as to obtain a more dense discritization around the point y = 1.
We denote C1

i (t) ≈ C1(yi, t) and let l2(y, i) stand for the Lagrange polynomial of
the second order interpolating the points (yi−1, C

1
i−1), (yi, C1

i ) and (yi+1, C
1
i+1).

Then, we approximate ∂yC1 by dl2(yi, i)/dy ≡ (dl2(y, i)/dy)y=yi
and ∂2

yC
1 by

d2l2(yi, i)/dy2 ≡ (d2l2(y, i)/dy2)y=yi
. In the case of a Dirichlet BC, the nodal

point y0 need not be considered. In the case of a Neumann BC, we extend the
governing PDE to the boundary point and discretize it similarly as for the inner
points by the introduction of a fictive point y−1. Equation (14) leads to the
system of ODE’s

d

dt
C1
i (t)−

1
s2(t)

D(C1
i )

d2

dy2 l2(yi, i)−
1

s2(t)
D′(C1

i )
[
d

dy
l2(yi, i)

]2

− yi
ṡ(t)
s(t)

d

dy
l2(yi, i) = 0, (15)

for i = 1, . . . , N − 1, and, in the case of a Neumann BC, also for i = 0. In the
second domain Ω2(t) the concentration remains constant, C(x, t) = δ.

In the interface point x = s(t) the following ODE needs to be satisfied

ṡ(t) = − lim
y→1−

d
dyFl

s(t)
(16)

where Fl is the second degree Lagrange polynomial interpolating the points
(yN−2, F̃ (C1

N−2)), (yN−1, F̃ (C1
N−1)) and (1, F̃ (s(t)) ≡ 0). This equation only

applies as long as s(t) < L. When s(t) ≥ L, Equation (16) is replaced by a
homogeneous Neumann condition in y = 1, so that in (15) i = 1, . . . , N . Next,
we solve (15)-(16) by means of a standard package for stiff ODEs, e.g. lsoda
based on a backward finite difference formula.

Remark 5. In the case of a power type diffusion coefficient (9) an additional
transformation is performed, see also [2]. This transformation is suggested by
Remark 2 where we noted that ∂xu ∼ u1−p. Under the transformation u =
v1/p, this leads to the expression p ∼ ∂xv. Therefore, all power degeneracies
are removed, making v(x) more suitable to apply Lagrange interpolation. For
example, (12) is transformed into an expression for v that is quadratic in x.
Using Lagrange polynomials of the second order for the space discretization, the
space interpolation will be exact. Hence, the differences between the exact and
the numerical solution of the Barenblatt-Pattle problem will be solely due to
time integration errors. Generally, under the transformation C = v1/p, instead
of (15) we obtain the ODE system

d

dt
v1
i (t)−

1
s2(t)

D((v1
i )

1/p)
d2

dy2 l̃2(yi, i)−

[
d
dy l̃2(yi, i)

]2

s2(t)pv1
i(

D′((v1
i )

1/p)(v1
i )

1/p + (1− p)D((v1
i )

1/p)
)
− yi

ṡ(t)
s(t)

d

dy
l̃2(yi, i) = 0, (17)
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and likewise for (16), where l̃2(yi, i) is now the Lagrange polynomial of the second
order interpolating the points (yi−1, v

1
i−1), (yi, v1

i ) and (yi+1, v
1
i+1).

3.2 The Inverse Problem

We use a Levenberg-Marquardt method for the inverse problem. This method
only requires the implementation of the direct problem. The gradient ∇pF(p)
is approximated numerically. The algorithm reads as follows. Starting from an
initial parameter set pk we obtain a new set by

pk+1 = pk +
[

1
JTk Jk + λI

(JTk Dk)
]

(18)

with (Jk)ij = ∂pjC(xi, ti,pk), the Jacobian which is determined numerically,
and (Dk)i = C(xi, ti,p) − C∗(xi, ti). If the new parameter set has a smaller
cost functional than the old one, the set is retained, and λ is divided by an ever
increasing integer so as to get quadratic convergence. If not, the parameter set
is discarded, and another set is sought with a bigger λ value. The algorithm
stops when λ becomes larger than a preset value, or when sufficient precision is
reached. We denote the obtained set of parameters as p̂.

The advantage of the Levenberg-Marquardt method is the possibility to ob-
tain the Cramér-Rao lower error bound (CRB) on p̂. Indeed we have, [1],

Cov(p̂) ≥ CRB =
[
J(p̂)TJ(p̂)

]−1
, (19)

where J(p̂) is the Jacobian at the minimum p̂. The determination of the CRB
in inverse problems is important, as it allows to determine the deviation and the
correlation between the different parameters, as well as confidence regions. The
correlation ρ is given by

ρpipj
=

CRBij√
CRBiiCRBjj

. (20)

Here ρ = 0 indicates the situation without correlation; a value close to 1 reflects
a strong correlation.

4 Numerical Experiments

Direct Problem Example. In this example, we consider the data from an
experiment of hot dipping and diffusion annealing in a steel sample with no Si
present at the beginning. In Fig. 1 the Si concentration profile after hot dipping
is given. This is the initial condition for the zero substrate problem.

The other smooth curves are the concentration profiles obtained for D(C) =
0.4C1.59 (p = (0.4, 1.59, 0, 0) in (9)) after 1, 7 and 30 minutes. An experimental
Si profile measured after 30 minutes of diffusion annealing is also plotted. This
curve matches very well the modeled curve.
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Fig. 1. Diffusion profiles of Si (At%) into steel (μm). A typical Si profile after hot
dipping is the initial condition. Other curves are simulations after 1, 7 and 30 minutes,
and an experimental Si profile after 30 min

Inverse Problem Example. For the inverse problem we construct the follow-
ing setup. The direct problem is solved for p = (0.5, 1.5, 0.2, 0.2) in (9), and data
is stored after 1 and 2 minutes. With these measurements, the inverse problem is
run starting from p0 = (1, 1, 0, 0). We stop the iterations of the algorithm when
the root-mean square error (RMS) is smaller than 0.015. After 143 iteration
steps we obtained p̂ = (0.547, 1.549, 0.0445, 0.189), with CRB given by

CRB =

⎡⎢⎢⎣
0.14 −0.0074 −0.19 −0.022

−0.0074 0.0034 0.0075 0.0009
−0.19 0.0075 0.27 0.031
−0.022 0.0009 0.031 0.0039

⎤⎥⎥⎦ .

This yields σp̂ = (0.37, 0.06, 0.5, 0.06) for the deviation . This is in correspon-
dance with the real value of p, and, in particular, indicates that p3 is not well
determined yet. Further, note that there is a big correlation between p1 and
p3 (ρp1p3 = 0.97), between p1 and p4 (ρp1p4 = −0.94), and between p3 and p4
(ρp3p4 = 0.96). It follows that the power type of diffusion coefficient, (9), is per-
haps not the best candidate. A diffusion coefficient dependent on parameters
that are less correlated would be favorable. The high correlation is also reflected
in a RMS in parameter space that exhibits a broad valley. Therefore, all inverse
methods based on minimisation of (11) will loose efficiency. In this example,
we had for p0 an RMS=4.6, and p20 = (0.19, 1.9, 0.32, 0.30) with RMS=0.17,
p50 = (0.61, 1.83,−0.28, 0.16) with RMS=0.08. Only from here on, p3 starts to
converge slowly to its correct value.
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Abstract. This paper presents a dynamical model of an active control
system for seismic-resistant building structures. Three optimal perfor-
mance indexes: LQR, discrete time-dependent non-integral and general-
ized LQR, based on linear quadratic optimization are considered. The
maximum structural response and maximum active control force versus
control design parameters are studied. The influence of the time incre-
ment used in response analysis on the algorithm is investigated. Numer-
ical examples illustrate the effectiveness of the proposed algorithms in
reducing the structural response.

1 Introduction

The vibrations of flexible structures, like tall buildings, during earthquakes or
gust winds may influence the comfort of the users or even lead to damages and
destruction of the structural system. Hence, the reducing of the vibrations of
civil engineering structures during impact force has considerable attention. The
dynamical response of a linear elastic structure depends on the mass and elastic-
ity properties. Passive design is based on appropriate choice of the materials and
on the dimensions of the structure. It produces energy dissipating mechanisms
activated by the motion of the structure itself. A new trend is applying of a
control system which can modify the internal stresses, the mass or the damping
of the dynamical system and can keep the response of the resulting ”intelligent”
structure within required limits. The active control system requires external en-
ergy for its operation [1].

Several control techniques have been recently developed as a possible way of
reducing the vibrations of civil engineering structures during seismic excitations
or strong wind gusts. Based on system control theory active control systems
have been promoted. One effective approach is the optimal control theory. Each
structural control system should have appropriate optimal control algorithm
suitable to the system’s characteristics and its external loads. The optimal con-
trol law can be chosen using different ways. Linear quadratic control refers to the
body of the powerful machinery of optimal control and is widely used in struc-
tural control [2]. The linearity of this controller and phase margin theoretically
provided by this technique are the main reasons for its choice. Other control

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 408–415, 2005.
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algorithms as robust H2 and Hinf based on the minimizing the H2 and Hinf

norms of the corresponding transfer matrices have been considered for building
structures [3-5].

This paper presents two dimensional dynamical model of active controlled
seismic-resistant building structures. A linear quadratic optimization problem is
considered. Three optimal performance indexes are considered. The first criterion
is connected with Linear Quadratic Regulator (LQR) problem that uses an in-
tegral performance index representing the balance between structural response
and control energy and leads to control forces proportional to the structural
response. The second criterion is a discrete time-dependent non-integral perfor-
mance index in which the optimality is achieved at each instant time and leads to
optimal control forces that are proportional to the time step and the structural
response. The third criterion represents an integral generalized LQR perfor-
mance index that generalizes the ideas of the first and second proposed criteria.
For the proposed algorithms the maximum structural response and maximum
active control force versus control design parameters are studied. The influence
of the time increment on the feedback control gain matrix produced by every
of the three algorithms is investigated. Numerical examples illustrate the effec-
tiveness of the proposed algorithms in reducing structural response for an active
control building under instantaneous external excitation.

2 Equation of Motion

We consider a linear building structure with n degree of freedom subjected to
instantaneous external load. The equation of motion of the seismic resistant
building structure with active controller can be expressed as [6]

Ẍ(t) + CẊ(t) + KX(t) = Hu(t) + F (t) (1)

where X(t) of (n, l) is the state vector of the displacements, u(t) of (m, l) is the
control vector, M of (n, n) is the mass matrix, K of (n, n) is the stiffness matrix.
The damping matrix C of (n, n) is supposed to be proportional to a linear
combination of mass and stiffness matrices. H of (n,m) is a matrix defining
the locations of the control inputs. F (t) is the external load. For control design
the equation (1) can be transformed in state-space form of a set of first order
differential equations

ẋ = Ax + Bu + DF (2)

where x(t) =
[
X(t) Ẋ(t)

]T
of (2n, 1) is the state vector, A =

[
0 I
−M−1K −M−1C

]
of (2n, 2n) is square matrix determining the system dynamics, B =

[
0 M−1H

]T
of (2n,m) is the control input matrix, D =

[
0 M−1

]T is a matrix determining
the external load distribution. The corresponding initial conditions for the equa-
tion (2) are

x(0) = 0, u(0) = 0, F (0) = 0 (3)
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The equation (2) cannot be solved directly because there are only 2n equa-
tions but (2n + m) unknown variables, i.e. x(t) of (2n, 1) and u(t) of (m, 1).
In order to solve the active control problem shown in equation (2), m more
equations are needed.

Consider the solution of the equation (2) assuming that the optimal control
force u�(t) is obtained and the external excitation F (t) has been measured. The
structural response x(t) can be found analytically using the modal approach.
Let the state vector be expressed as

x(t) = Tz(t) (4)

where T of (2n, 2n) is a matrix constructed from the eigenvectors of the matrix
A. The corresponding modal state equation is

ż(t) = πz(t) + ψ(t) (5)

π = T−1AT, ψ(t) = T−1Bu�(t) + T−1DF (t) (6)

The modal plant matrix is a decoupled matrix. The initial conditions are

z(0) = 0, u(t) = 0, F (0) = 0 (7)

The solution of equation (5) can be obtained by the integral

z(t) =
∫ t

0
exp(π(t− τ))ψ(τ)dτ (8)

Using the initial conditions (7), the integration of the equation (8) can be solved
numerically. In order to evaluate z(t) at time t, only one measurement of the
force F (t) is needed. We shall determine the vector of control forces u�(t) such
that it will satisfy the dynamic equations (5) and it will be subjected to optimal
performance criterion. The control force is regulated by the feedback state vector
x(t). Therefore, we need to measure only the response of the system at time
instant t that can be obtained by placing displacement and velocity sensors at
each floor of the building structure. Three different algorithms of linear quadratic
optimal control law will be considered.

3 LQR Control Law

The Linear Quadratic Regulator algorithm gives a control law proportional to
the structural states. The optimal control u�(t) is obtained by the minimizing
the standard quadratic performance index

J =
∫ tf

t0

[xT (t)Qx(t) + uT (t)Rx(t)]dt (9)

and satisfying the state equation (2). Here t0 is the initial and tf is the final
time instants. In equation (9) both of the two boundary values of the integrand
are specified by the following boundary conditions
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x(t0) = 0, x(tf ) = 0, u(t0) = 0, u(tf ) = 0 (10)

The matrix Q of (2n, 2n) is positive semi definite matrix and R of (m,m) is pos-
itive definite matrix. Performance index J represents a balance between struc-
tural response and control energy. The matrixes Q and R are the main design
parameters in this algorithm.

Let now assume that the system (2) is controllable and observable. Than the
solution to the optimization problem (2),(9) can be obtained by using the vari-
ational calculus approach that satisfy optimality and transversality conditions.
We consider the case, when the time interval [t0, tf ] is enough large. The optimal
control force can be expressed by the equation

u� = −R−1BTPx(t) (11)

where P can be derived from the following Algebraic Riccati Equation (ARE)

PA + ATP − PBR−1BTP + Q = 0 (12)

which in this case is time invariant. This formulation of the problem is known as
Linear Quadratic Regulator (LQR) optimal control algorithm. The control gain

K = R−1BTP (13)

in this formulation is time invariant and is a constant that depends only on the
system matrices A and B and on the choice of the performance index weight ma-
trices Q and R. The equation (11) shows that the optimal control force vector is
proportional to the structural response. Note, that an actual closed loop control
LQR system requires measurements of the full state vector, i.e. 2n sensors are
needed.

4 Generalized LQR Law

Let now suppose that the time interval [t0, tf ] is divided in several smaller in-
tervals [ti−1, ti] with size (i = l, 2, ..., n) and instead of minimizing the integral
performance (9) for the whole interval, an optimal control problem is solved
consequently for every subinterval [8-10]. It leads to the design of an optimal
controller per interval that means that optimality was achieved at each instant
of time.

The cost functional can be still chosen as quadratic function of the states
and the control forces, but not in an integral form. The optimal control force
u�(t) can be derived by minimizing the following instantaneous time-dependent
non-integral performance index Jp(t) defined as

Jp(t) = xT (t)Qx(t) + uT (t)Ru(t) (14)

and satisfies the state equation (2). Thus, the performance index Jp(t) is min-
imized at every time instant ti of the interval [t0, tf ]. The time increment δt
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between the time instants ti is adjusted to reach the specific requirements of the
concrete situation. The vector of the optimal control forces is obtained in the
form

u� = −δt

2
R−1BQx(t) (15)

and is proportional to both the time increment δt and measured structural re-
sponse x(t). This is the second algorithm considered in this work and it can be
named discrete time dependent LQR.

Let now extend this idea of the time interval discretization choosing the
integral form of the cost function for every subinterval [ti−1, ti] (i = l, 2, ..., n)
[11]. Here, at least one of the two boundary conditions for the integration in the
subinterval must be determine in the single-stage process. For this purpose, as a
performance index in every subinterval [ti−1, ti] the following performance index
can be chosen

Ji = xT (ti)Sx(ti) +
∫ ti

ti−1

[xT (t)Qx(t) + uT (t)Ru(t)]dt (16)

where S of (2n, 2n) is positive semi-definite matrix. Here the member xT (ti)Sx(ti)
is a functional for optimizing the end conditions at the time instant ti. If n = 1,
then the initial time ti−1 = t0 , the final time ti = tf and the performance index
in equation (16) is just the performance index in equation (9).

In order to obtain the optimal state vector x(t) and the optimal control force
vector u�(t) in the whole interval [ti−1, ti] a generalized performance index that
is to be minimized is defined as follows

J =
n∑
i=1

Ji =
n∑
i=1

{xT (t)Sx(t) +
∫ ti

ti−1

[xT (t)Qx(t) + uT (t)Ru(t)]dt} (17)

Assuming that the system (2) is controllable and observable the solution to
this optimal problem (2),(17) similarly to the optimal problem (2),(11) can be
obtained by using the variational approach and the optimal control force vector
can be expressed in the form

u�(t) = Gx(t) (18)

G = −R−1BTS (19)

G does not depend on the time instant ti, and on the time increment δt and is
a constant determined only by the system matrices A and B and by the control
weight matrices Q, R and S. Therefore, δt can be changed depending on the
desired precision during the computations. If the matrix S is chosen to be the
solution of the ARE (12), then the control gain (19) becomes identical to the
solution of the standard LQR problem in equation (11). Thus, the LQR control
algorithm can be represented as a partial solution of the presented generalized
LQR control algorithm. There are no rules hinting the designer how to choose
the weight matrices. Some simplified assumptions can be made. Often used as-
sumption is diagonal forms of the matrices R and S as well as all the diagonal
elements in a matrix can have the same value.
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5 Numerical Results

The multi-storey building structures have considerable resistance to the dynam-
ical loading in the vertical direction. In the horizontal direction the multi-storey
buildings are quite vulnerable to external excitations. Thus, it is reasonable to
investigate the response of the building in the horizontal direction [12].

A two dimensional model of eight storey building is considered to demon-
strate the properties of the proposed LQR and generalized LQR optimal con-
trol strategies. Two active controllers placed in the first and second floors are
employed. For dynamic time history analysis an instantaneous horizontal con-
stant force distributed at each mobile node of the building structure is used.
The resulting structure is the open loop system. Applying LQR or general-
ized LQR control algorithms it results in a closed loop system. The optimal
weight matrices Q and S are considered to be diagonal. The control weight
matrix R is presented as I where I is the identity (m,m) matrix, the state
weight matrix Q is presented as qI, where I is the identity (2n, 2n) matrix
and the multiplier q = 1, 5.l05, and the weight matrix S is presented as sI,
where s = 3.104.

Investigating the influence of the time increment δt on the displacement re-
duction when generalized LQR algorithm is applied, it is observed that both
displacements and optimal control force do not depend on the time step. There-
fore, this approach is insensitive to the variations of the increment δt. However,
if the cost functional (13) for the discrete time dependent LQR is used and the
control force vector is obtained by equation (14), then the optimal control force
vector as well as the response of the structure is changed significantly when the
time step is changed. For engineering practice the independence of the general-
ized LQR algorithm of the time increment is a good virtue.
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Fig. 1. Effect of LQR and generalized LQR

Further, the response of the closed loop system for LQR algorithm is com-
pared with the response of the closed loop system for generalized LQR algorithm
in reducing the maximum horizontal displacement of the top floor. Figure 1 shows
that the generalized LQR approach (solid line) gives better results with respect
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to reducing the maximum of the displacement’s picks and with respect to the
time of vibration suppression compared with the LQR approach (dot line).

Let consider the relationships between the maximum structural response and
maximum active control force versus control design parameters Q and R. It
can be observed that of the maximum structural response and maximum ac-
tive control force vary with the change of control design parameters. Figure 2
illustrates that the maximum horizontal displacement for the top floor of the
building (solid dot line) decreases with increasing the ratio of the weight param-
eters Q and R. In the same time the maximum control force (solid star line)
increases with the increase of the corresponding weight parameters. The shapes
of the curves are similar for both LQR and generalized LQR algorithms. The
numerical calculations show that the integral performance criterion in equation
(9) for LQR approach keeps growing when the ratio Q/R increases while the
integral performance criterion in equation (17) for generalized LQR approach
first decreases reaching a minimum value and after that increases. The amount
of the ratio Q/R where this minimum is achieved can be accepted as the best
for the considering building structure.
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Fig. 2. Relationships among maximum displacement and maximum control force

6 Conclusions

Optimal control design of smart building structures is considered in this work.
The aims are to determine the vector of active control forces subjected to some
performance criteria of optimality and satisfying the system’s dynamic equations
such that to reduce in an optimal way the earthquake and wind excitations.
Finite element model for eight storey two-dimensional building structures is
utilized for numerical experiments.

This paper is dedicated to LQR, instantaneous linear quadratic non-integral
and generalized LQR control algorithms for active structural control systems.
The three approaches lead to linear control laws that are easy to analyze and
implement. Numerical results demonstrate that the considered algorithms sup-
press the adverse vibrations of the building good but the generalized LQR control
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algorithms shows better results in the simulation. In the latter discrete time non-
integral algorithm the control gain matrix is sensitive to the time increment used
in the response analysis. The LQR and the generalized LQR control algorithms
do not depend on the time step. For the LQR approach an optimum amount
for the weight parameters ratio is not found. The generalized LQR approach
overcomes this shortcoming of the LQR algorithm and an optimal ratio for the
weight control parameters can be obtained. The generalized LQR approach sug-
gests an additional flexibility including the weight matrix S, that can be chosen
depending on the design requirements.
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Abstract. We consider the problem of computing transitive closure of
a given directed graph on the regular bidirectional systolic array. The
designed array has n PEs, where n is a number of nodes in the graph.
This is an optimal number for a given problem size.

1 Introduction

A directed graph G is a doublet G = (V,E), where V is a set of vertices and
E is the set of direct edges in the graph. The graph which has the same vertex
set V , but has a directed edge from vertex v to vertex w if there is a directed
path (of length zero or more) from vertex v to vertex w in G, is called the
(reflexive and) transitive closure of G. A graph G = (V,E) can be represented
as an adjacency matrix A, whose elements aij = 1 if there is an edge directed
from vertex i to vertex j, or i = j; otherwise aij = 0. The transitive closure
problem is to compute the adjacency matrix A∗ for G∗ = (V,E∗) from A. The
problem of computing transitive closure (TC) of a digraph was first considered
in 1959 by B. Roy [1]. Since then, the TC has been studied extensively in the
literature because it is an abstraction of many practical problems that are used in
wide variety of applications in mathematics, computer science, engineering and
business (see, for example, [2]). The computational complexity of TC problem
is 0(n3), where n corresponds to number of vertices in the graph . To speed-up
the computation of TC, various parallel architectures can be used. In this paper
we consider the computation of TC on linear bidirectional systolic array (BLSA)
with two-dimensional links.

The rest of the paper is organized as follows. In Section 2 describe some
important properties of the systolic arrays. In Section 3 we define a systolic
algorithm for computing TC which is suitable for the implementation on BLSA.
The BLSA synthesis and the example of TC computation on BLSA are described
in Section 4. Conclusion is given in Section 5.

2 Systolic Arrays

In the last decade, the rapid development of VLSI computing techniques has
had a significant impact on the development of novel computer architectures.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 416–423, 2005.
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One class of architectures, the so-called systolic arrays, first introduced by Kung
[3], has gained popularity because of its ability to exploit massive parallelism
and pipelining to achieve high performance. Informally, a systolic system can be
envisaged as an array of synchronized processors (or processing elements, ab-
breviated as PEs) which process data in parallel by passing them from PE to
PE in regular rhythmic fashion. Systolic arrays have balanced, uniform, grid-like
architectures of special PEs that process data like n-dimensional pipeline. The
fundamental concept behind a systolic architecture is that von Neumann bot-
tleneck is greatly alleviated by repeated use of fetched data item in a physically
distributed array of PEs. The regularity of these arrays leads to inexpensive and
dense VLSI implementations, which imply high performance at low cost.

Three factors have contributed to the evolution of systolic arrays into leading
approach for computationally intensive applications [4]:

– Technology Advances: The growth of VLSI/WSI technology. Smaller and
faster gates allow a higher rate of on-chip communication as data have to
travel a shorter distance. Higher data densities permit more complex PEs
with higher performance and granularity. Progress in design tools and sim-
ulation techniques ensure that a systolic PE can be fully simulated before
fabrication, reducing the chances it will fail to work as designed. The regular
modular arrays also decrease time to design and test , as fully tested unique
cells can be copied quickly and arranged into systolic array.

– Parallel processing: Efforts to add concurrency to conventional von Neu-
mann computers have yielded a variety of techniques such as coprocessors,
multiple functional units, data pipelining (and parallelism), and multiple
homogenous processors. Systolic arrays combine features from all of these
architectures in a massively parallel architecture that can be integrated into
existing platforms without a complete redesign.

– Demanding scientific applications: The technology growth in the past three
decades has produced the computers that make it feasible to attack scientific
applications on a larger scale. New applications requiring increased com-
putational performance have been developed that were not possible earlier.
Examples of these application include interactive language (or speech) recog-
nition, text recognition, virtual reality, database operations, and real-time
image and signal processing. These applications require massive, repetitive
parallel processing, and hence, systolic computing.

The most important aspect in the design of a systolic computer is the map-
ping of the algorithm to the processor array. In the systolic paradigm, every
algorithm requires a specialized systolic design in which communication data
streams, PE definitions, and input-output patterns are customized. Only highly
regular algorithms with the structure of nested loops are suitable for systolic
implementation.

This paper deals with systolic implementation of TC problem on bidirectional
linear systolic array (BLSA) since it has many desirable properties, like maximal
data-flow, possibilities for fault-tolerant calculations and applicability in many
scientific and technical problems.
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3 Systolic Algorithm

Let G = (V,E) be a given weighted directed or undirected graph, where V =
{1, 2, . . . , n}. Graph G = (V,E) can be described by the adjacency matrix A =
(aij) of order n× n, where

aij =
{

1, if (i, j) ∈ E
0, if (i, j) �∈ E

,

for each i = 1, 2, . . . , n and j = 1, 2, . . . , n. Similarly, the transitive closure,
G∗ = (V,E∗) of G, is uniquely defined by its adjacency matrix A∗ = (a∗

ij) of
order n×n. Therefore, transitive closure problem is to compute the A∗ from A.

A well-known method for finding TC is Wars hall’s algorithm. This algorithm
computes (n − 1) intermediate matrices A(k) = (a(k)

ij ), 1 ≤ k ≤ n − 1, starting

with A(0) = A and the last matrix A(n) = (a(n)
ij ) computed is A∗. At the k-th

iteration, matrix A(k−1) is used to compute A(k). A Pascal-like description of
the algorithm is given below
Algorithm(Warshall)
for k := 1 to n do
for j := 1 to n do
for i := 1 to n do
a
(k)
i,j := a

(k−1)
i,j ∨ (a(k−1)

i,k ∧ a
(k−1)
k,j );

where ∨ and ∧ are Boolean operators. Each algorithm can be represented by
the corresponding data dependency graph. The data dependency graph for TC
is not completely regular and therefore it is difficult to map on regularly con-
nected planar SAs. Accordingly, the obtained SAs are irregular in the sense
that interconnection pattern is not the same in all parts of the array (for 2D
arrays)(see [6]) or delay elements are inserted between the processing elements
(1D arrays) (see [7]).

Our goal is to design regular BLSA with two-dimensional links for comput-
ing the TC problem. Since the TC is a three-dimensional problem and its data
dependency graph is not completely regular, Warshall algorithm is not suitable
for direct synthesis of BLSA. To overcome this problem we partition the com-
putations in Warshall algorithm into appropriate number of two-dimensional
entities. These entities are equal with respect to operational complexity. Each
entity must be suitable for the implementation on BLSA. The final result is
obtained by repeating the computation of entities on the designed BLSA. We
require that designed BLSA be space-optimal with respect to a problem size and
the execution time should be as minimal as possible for a given size of BLSA.

In order to obtain two-dimensional entities suitable for the synthesis of BLSA
with desired properties, we set index variable k on some constant value 1 ≤ k ≤
n. Then we design BLSA that computes A(k), for some constant k. Starting from
A(0) = A, the final result is obtained by repeating the computation on the BLSA
n times, such that the result from the (k− 1)-st step is used as input in the k-th
step, for k = 2, 3, . . . , n.



Computing Transitive Closure Problem on Linear Systolic Array 419

4 BLSA Synthesis

To ease the presentation we use the following denotation

c(i, j, k) ≡ a
(k)
ij , d(i, 0, k) ≡ a

(k−1)
ik b(0, j, k) ≡ a

(k−1)
kj (1)

for each i = 1, 2, . . . , n and j = 1, 2, . . . , n. Then the corresponding Warshall
algorithm for some fixed k can be written as
Algorithm 1
for i := 1 to n do
for j := 1 to n do
c(i, j, k) := c(i, j, k − 1) ∨ (d(i, 0, k) ∧ b(0, j, k));

Yet, this is not a systolic algorithm that can be used for BLSA synthesis
because it has a global data dependencies as illustrated in Fig. 1a) for the case
n = 3. The corresponding systolic algorithm with localized dependencies has the
following form
Algorithm 2
for i := 1 to n do
for j := 1 to n do
d(i, j, k) := d(i, j − 1, k);
b(i, j, k) := b(i− 1, j, k);
c(i, j, k) := c(i, j, k − 1) ∨ (d(i, j, k) ∧ b(i, j, k));

The corresponding data dependency graph with localized dependencies is
illustrated in Fig.1 b).

Fig. 1. Data dependency graph for n = 3 a) Algorithm 1 b) Algorithm 2

The inner computation space of Algorithm 2, denoted as P̄int, is

P̄int = {(i, j, k)|1 ≤ i ≤ n, 1 ≤ j ≤ n} (2)
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and the corresponding data dependency matrix is

D =
[
e3
b e3

d e3
c

]
=

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ . (3)

The systolic algorithm Algorithm 2 is completely defined by a pair (P̄int, D),
i.e. by directed graph Γ̄ = (P̄int, D), where P̄int represents a set of nodes, while
matrix D, i.e. its column vectors, represent directions of arcs between adjacent
nodes. The systolic array is obtained by mapping (P̄int, D) along some possible
projection direction vector into the projection plane. The mapping is defined by
transformation matrix T that corresponds to a particular projection direction
vector. The possible projection direction vectors that can be used to obtain
1D SA are μ = [1 0 0]T , μ = [0 1 0]T , μ = [1 − 1 0]T and μ = [1 1 0]T . Since
μ = [1 0 0]T and μ = [0 1 0]T give orthogonal projections the corresponding SAs
are static, which means that one of the variables is resident in the array. By the
direction μ = [1−1 0] we would obtain unidirectional 1D SA which requires delay
elements to be inserted between the PEs since data elements have to propagate
with different speed through the array. Therefore, this array is irregular. Thus,
only direction μ = [1 1 0]T can be used to obtain BLSA.

If we had tried to design BLSA directly from Algorithm 2 and direction
μ = [1 1 0]T the obtained BLSA would not be optimal with respect to a number
of PEs. Namely, the obtained BLSA would have 2n− 1 PEs, instead of n which
is optimal number for a given problem size. The data dependency graph of
Algorithm 2 and its projection (i.e. the corresponding SA) are illustrated in
Fig.2 for n = 3.

Fig. 2. Data dependency graph of Algorithm 2 and its projection for the case n = 3
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In order to obtain BLSA with optimal number of PEs , i.e. n, we use the fact
that computations in Algorithm 2 can be performed over arbitrary permutation
{i1, i2, . . . , in} of index variable i, where {1, 2, . . . , n} is the basic permutation.
The same is valid for index variable j. This means that Algorithm 2 belongs to
a class of adaptable algorithms and that its index space P̄int can be adjusted to
a given projection direction vector (see [8]). An algorithm derived from Algo-
rithm 2 by adjusting P̄int to the direction μ = [1 1 0]T has the following form

Algorithm 3
for i := 1 to n do
for j := 1 to n do
d(i, i + j − 1, k) := d(i, i + j − 2, k);
b(i, i + j − 1, k) := b(i− 1, i + j − 1, k);
c(i, i+ j − 1, k) := c(i, i+ j − 1, k− 1)∨ (d(i, i+ j − 1, k)∧ b(i, i+ j − 1, k));

where d(i, j + n, k) ≡ d(i, j, k) ≡ d(i, 0, k), b(i, j + n, k) ≡ b(i, j, k) ≡ b(0, j, k),
c(i, j + n, k) ≡ c(i, j, k), for i = 1, 2, . . . , n and j = 1, 2, . . . , n.

The inner computation space of Algorithm 3 is given by

Pint = {(i, i + j − 1, k)|1 ≤ i ≤ n, 1 ≤ j ≤ n} (4)

while data dependency matrix is given by (3). The data dependency graph of
Algorithm 3 and its projection are illustrated in Fig.3 for n = 3. As one can see
the number of points (i.e. number of PEs) in the projection plane is 3, which is
optimal number for a given problem size n.

Fig. 3. Data dependency graph of Algorithm 3 and its projection for the case n = 3

To obtain BLSA with optimal number of PEs, from a set of valid transfor-
mations T that correspond to the direction μ = [1 1 0]T (see, for example [8]),
we chose
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Fig. 4. a) Data flow in the BLSA for the case n = 3; b) Functional property of the PE

Table 1. Step by step diagram for the computation of TC in the BLSA for the case n=3

PE1 PE2 PE3

clk din bin cin cout din bin cin cout din bin cin cout

0 - - - - - - - - - - - -
1 a

(0)
31 - - - - - - - - a

(0)
11 - -

2 a
(0)
21 a

(0)
31 a

(0)
11 a

(0)
13

3 a
(0)
11 a

(0)
11 a

(0)
11 a

(0)
21 a

(0)
13 a

(0)
23 a

(0)
31 a

(0)
12 a

(0)
32

4 a
(0)
31 a

(0)
13 a

(0)
33 a

(1)
11 a

(0)
11 a

(0)
12 a

(0)
12 a

(1)
23 a

(0)
21 a

(0)
11 a

(0)
21 a

(1)
32

5 a
(0)
21 a

(0)
12 a

(0)
22 a

(1)
33 a

(0)
31 a

(0)
11 a

(0)
31 a

(1)
12 a

(0)
11 a

(0)
13 a

(0)
13 a

(1)
21

6 a
(1)
32 a

(0)
11 a

(1)
22 a

(0)
21 a

(0)
13 a

(1)
31 a

(0)
31 a

(1)
21 a

(1)
13

7 a
(1)
22 a

(0)
13 a

(1)
32 a

(1)
21 a

(0)
21 a

(1)
23

8 a
(1)
12 a

(1)
21 a

(1)
11 a

(1)
22 a

(1)
23 a

(1)
23 a

(1)
32 a

(1)
22 a

(1)
32

9 a
(1)
32 a

(1)
23 a

(1)
33 a

(2)
11 a

(1)
12 a

(1)
22 a

(1)
12 a

(2)
23 a

(1)
22 a

(1)
21 a

(1)
21 a

(2)
32

10 a
(1)
22 a

(1)
22 a

(1)
22 a

(2)
33 a

(1)
32 a

(1)
21 a

(1)
31 a

(2)
12 a

(1)
12 a

(1)
23 a

(1)
13 a

(2)
21

11 a
(2)
33 a

(1)
21 a

(2)
22 a

(1)
22 a

(1)
23 a

(2)
31 a

(1)
32 a

(2)
31 a

(2)
13

12 a
(2)
23 a

(1)
23 a

(2)
33 a

(2)
31 a

(1)
22 a

(2)
33

13 a
(2)
13 a

(2)
31 a

(2)
11 a

(2)
23 a

(2)
33 a

(2)
23 a

(2)
33 a

(2)
32 a

(2)
32

14 a
(2)
33 a

(2)
33 a

(2)
33 a

(3)
11 a

(2)
13 a

(2)
32 a

(2)
12 a

(3)
23 a

(2)
23 a

(2)
31 a

(2)
21 a

(3)
32

15 a
(2)
23 a

(2)
32 a

(2)
22 a

(3)
33 a

(2)
33 a

(2)
31 a

(2)
31 a

(3)
12 a

(2)
13 a

(2)
33 a

(2)
13 a

(3)
21

16 a
(2)
31 a

(3)
22 a

(2)
23 a

(2)
33 a

(3)
31 a

(2)
33 a

(3)
13

17 a
(2)
33 a

(2)
23

18

T =
[

Π
S

]
=

⎡⎣ 1 1 1
−1 1 0

0 0 1

⎤⎦ .

The BLSA is obtained by mapping T : (Pint, D) 
→ (P̂int, Δ). The (x, y)
coordinates of the PEs in the projection plane are defined by the set P̂int =
{[x y]T }, where
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[
x
y

]
= S

⎡⎣ i
i + j − 1

k

⎤⎦ =
[
−1 1 0

0 0 1

]
·

⎡⎣ i
i + j − 1

k

⎤⎦ =
[
j − 1
k

]
, (5)

where k is some constant value and j = 1, 2, . . . , n.
The interconnections between the PEs in the BLSA are implemented along

the propagation vectors Δ =
[
e 2
b e 2

d e 2
c

]
= S ·D

According to (5) it is not difficult to conclude that the number of PEs in the
obtained BLSA is Ω = n, which is optimal number for a given problem size. The
execution time of the BLSA can be minimized by the procedure described in [9],
so we will omit the details here.

Data schedule in the BLSA at the beginning of the computation of Algo-
rithm 3, for the case n = 3, is depicted in Fig.4. Table 1. shows the complete,
step by step, diagram for computing transitive closure problem on the BLSA for
the case n = 3

5 Conclusion

We have discussed the problem of computing transitive closure of a given di-
rected graph on the regular bidirectional systolic array. Our array has n PEs,
where n is a number of nodes in the graph. This is an optimal number for a
given problem size.
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Abstract. A new method is proposed for finding all maxima and min-
ima of a multivariable function f in a box X

(0)
. In this method, the

maxima and the minima are calculated by dividing X
(0)

into subregions
recursively and bounding the ranges of f in the each subregion applying
affine arithmetic[1][2] and discarding the subregions which don’t pos-
sess the possibility of including the point that the maximum (minimum)
value occurs. Moreover, to discard more subregions in initial stage, i.e. to
speed the new method, two algorithms are introduced. And to show the
efficiency of the new method, some numerical examples are implemented.

1 Introduction

In this paper, we consider the method which finds maxima and minima of the
multivariable nonlinear function

y = f(x1, x2, · · · , xm) (1)

in the m dimensional region (the box)

X
(0)

= (X
(0)

1 , · · · , X(0)

m ) = ([X
(0)

1 , X
(0)

1 ], · · · , [X(0)

m , X(0)
m ]) . (2)

Here, let the range of the function (1) be able to be bounded applying inter-
val arithmetic (IA) (e.g. [3]) and affine arithmetic (AA) [1][2] described after.
Moreover let the multivariable function possess one or more extreme value in
X

(0)
.

Fujii et al. [4] proposed the method (Fujii’s method) which finds maxima
and minima of a multivariable function (1) in the box (2) applying IA. In this
method, the maxima and the minima are calculated with guaranteed accuracy
by means of dividing X into subregions recursively and bounding the ranges of
f in the each subregion applying IA and discarding the subregions which don’t
possess the possibility of including the point that the maximum (minimum) value
occurs.

However, this method possesses the serious problem that the large calculating
cost is needed. To overcome this problem, more subregions have to be discarded

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 424–431, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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in initial stage. One of the way which discard more subregions in initial stage is
to overcome the overestimation often observed in IA.

The purpose of this paper is to propose the new method which finds maxima
and minima of a multivariable function applying AA. AA is a variant of IA
and is able to overcome the overestimation. In this method, the ranges of f in
the subregions are bounded applying AA instead of standard IA. Moreover, two
algorithms are introduced into the new method to discard more subregions in
initial stage by utilizing the characteristic of AA. By applying the new method,
the maxima and the minima, which are not able to be found in practical time
when the Fujii’s method is applied, are able to be found efficiently. And this paper
includes some numerical examples to show the efficiency of the new method.

2 Affine Arithmetic

Affine arithmetic (AA) [1][2] is a variant of interval arithmetic (IA). AA keeps
correlation between quantities. So AA often produces much tighter bounds than
a bound standard IA yields. In AA, a quantity x is represented as the following
affine form:

x = x0 + x1ε1 + · · ·+ x
n
ε

n
. (3)

Here, coefficients x
i
(i = 0, 1, · · · , n) are known real numbers, and ε

i
(i = 1, · · · , n)

are symbolic real variables whose values are unknown but assumed to lie in the
interval [−1, 1]. Only coefficients xi are memorized in the computer. Remark
that n, the number of the noise symbol ε

k
, changes through the calculation.

In the case that a m variables function f(x1, · · · , xm) is evaluated in AA, first
given m variables are initialized in the following affine forms by introducing m
εs because they do not correlate each other:

x1 =
x1 + x1

2
+

x1 − x1

2
ε1

...

xm =
xm + xm

2
+

xm − xm
2

εm . (4)

Note that [xk, xk] is the domain of variables xk. An affine form (3) is always able
to be returned to a standard interval by the following formula:

[x0 −Δ,x0 + Δ], Δ =
n∑
i=1

|xi| . (5)

In this paper, let the conversion of an affine form x into a standard interval be
I(x). For affine forms x = x0 + x1ε1 + · · ·+ xnεn, y = y0 + y1ε1 + · · ·+ ynεn
and a real number α, rules of linear operations for AA is defined as follows:

x± y = (x0 ± y0) +
n∑
i=1

(xi ± yi) εi (6)
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x± α = (x0 ± α) +
n∑
i=1

x
i
ε

i
(7)

αx = (αx0) +
n∑
i=1

(αx
i
) . (8)

Let f be a nonlinear unary operation. Generally, f(x) for an affine form (3) is not
able to be represented directly as an affine form. Therefore, we consider linear
approximation of f and representation of the approximation error by introducing
a new noise symbol εn+1. First, X, range of x (domain of f), is calculated by
the formula (5). Next, ax + b, linear approximation of f(x) in X is calculated
(see the Fig. 1).

f(x)

ax + b

δ
δ

X

Fig. 1. Linear approximation of nonlinear function

And maximum approximation error δ is calculated as follows:

δ = max
x∈X

|f(x)− (ax + b)| . (9)

By introducing a new noise symbol εn+1, the result of nonlinear unary operations
is represented as follows:

f(x) = ax + b + δεn+1 = a(x0 + x1ε1 + · · ·+ xnεn) + b + δεn+1 . (10)

Nonlinear binomial operations are calculated similarly.

3 New Method

In this section, we propose the new method which finds the maxima and minima
of a multivariable function (1) applying AA. Here, without loss of generality, we
consider finding maxima of a two-dimensional function y = f(x1, x2) in the box
X

(0)
= (X

(0)

1 , X
(0)

2 ) = ([X
(0)

1 , X
(0)

1 ], [X
(0)

2 , X
(0)

2 ]). For a interval J , let the center
and the width of J be c(J) and w(J). And for a box X, let the range boundary of
f in X applying AA be FA(X) and let the upper bound of I(FA(X)) be FA(X).
The concrete step of the new method is as follows:

step1. Initialize the list S and T , which memorize boxes and range boundaries
of f in the each box applying AA, as S = T = φ. And set the stopping
criteria εr and εb.
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step2. If w(X
(0)

1 ) < w(X
(0)

2 ), divide X
(0)

into X
(1)

=([X
(0)

1 , X
(0)

1 ], [X
(0)

2 , c(X
(0)

2 )])

and X
(2)

= ([X
(0)

1 , X
(0)

1 ], [c(X
(0)

2 ), X(0)

2 ]). Otherwise divide X
(0)

into X
(1)

=

([X
(0)

1 , c(X
(0)

1 )], [X
(0)

2 , X
(0)

2 ]) and X
(2)

= ([c(X
(0)

1 ), X(0)

1 ], [X
(0)

2 , X
(0)

2 ]).

step3. Calculate FA(X
(1)

) and FA(X
(2)

). And calculate f
(1)

max, the candidate of

lower bound of maxima by utilizing X
(1)

and FA(X
(1)

) and by applying al-
gorithm 1 (details are described in the section 3.1). Calculate f

(2)

max similarly.

Let the lower bound of maxima fmax be fmax = max(f
(1)

max, f
(2)

max).

step4. If FA(X(1)) < fmax, insert X
(2)

and FA(X
(2)

) into S (here, X
(1)

is dis-

carded). If FA(X(2)) < fmax, insert X
(1)

and FA(X
(1)

) into S (here, X
(2)

is

discarded). Otherwise insert X
(1)
, FA(X

(1)
), X

(2)
and FA(X

(2)
) into S.

step5. Repeat the following steps:

step5-1. If S = φ, go to the step6. Otherwise, find the box X
(i)

in S for
which FA(X(i)) is largest. Select X

(i)
and FA(X

(i)
) as the box and the

range boundary to be processed and discard X
(i)

and FA(X
(i)

) from S.

step5-2. Calculate f
(i)

max, the candidates of fmax, by utilizing X
(i)

and FA(X
(i)

)

and by applying algorithm 1. If fmax < f
(i)

max, renew fmax as fmax = f
(i)

max.

step5-3. Discard any box X and range boundary FA(X) from S and T for
which FA(X) < fmax.

step5-4. Narrow X
(i)

down by utilizing X
(i)

, FA(X
(i)

) and fmax and by
applying the algorithm 2 (details are described in the section 3.2).

step5-5. If w(X
(i)

1 ) < w(X
(i)

2 ), divide X
(i)

into X
(j)

= ([X
(i)

1 , X
(i)

1 ],

[X
(i)

2 , c(X
(i)

2 )]) and X
(k)

= ([X
(i)

1 , X
(i)

1 ], [c(X
(i)

2 ), X(i)

2 ]). Otherwise divide

X
(i)

into X
(j)

= ([X
(i)

1 , c(X
(i)

1 )], [X
(i)

2 , X
(i)

2 ]) and X
(k)

= ([c(X
(i)

1 ), X(i)

1 ],

[X
(i)

2 , X
(i)

2 ]).

step5-6. Calculate FA(X
(j)

) and FA(X
(k)

). If max
1≤h≤m

w(X
(j)

h ) < εr ∧ w

(I(FA(X
(j)

))) < εb, insert X
(j)

and FA(X
(j)

) into T . Otherwise, insert
X

(j)
and FA(X

(j)
) into S. For X

(k)
and FA(X

(k)
), implement the similar

procedure.

step5-7. Go back to the step5-1.
step6. In the boxes remained in T , group the boxes which posses the common

point each other. Let the boxes which belong to a group be Y
(1)
, · · · , Y (l)

where l is the number of the box belonging in the group. The maximum

value in the group is calculated as
l⋃

h=1

I(FA(Y
(h)

)). And the point which the
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maximum value occurs in the group is calculated as
l⋃

h=1

Y
(h)

. For the other

groups, implement the similar procedure.

step7. Terminate.

By this step, we are able to calculate the all maxima and the all points which
the maxima occur with guaranteed accuracy. If 2 < m, the step is similar. And
if minima are calculated, let f be −f .

3.1 Algorithm 1

In this section, we proposed the algorithm 1 introduced in the step3 and step5-
2. In this algorithm, when we find maxima, larger candidate of fmax than that
of the Fujii’s method is calculated by utilizing a box X and the range boundary
FA(X). To simplify the explanation, we consider finding maxima of f where
m = 1. In this case, for example, the shape of FA(X) becomes as the slant line
part in the Fig. 2 because in AA, the image of function is bounded in the form
of “linear approximation + error term”(without loss of generality, suppose that
the slope of the linear approximation is positive). In Fujii’s method, candidates

f(x)

x
XX

X

f(X)

c(X)

f(c(X))

Fig. 2. An example of the algorithm 1

of fmax is always calculated as f(c(X)). As opposed to this, in this algorithm,
candidates of fmax are calculated as f(X) in the case of Fig.2. The reason is that
the possibility of f(c(X)) < f(X) is high because in the Fig. 2, approximation
of f ’s slope in X is positive. If the slope of the linear approximation is negative,
candidates of fmax are calculated as f(X).

Being based on the above description, we describe the concrete step of this
algorithm when we find maxima of f where 1 ≤ m.

step1. Suppose that FA(X) is calculated as follows:

FA(X) = a0 + a1ε1 + · · ·+ a
m

+ a
m+1 + · · ·+ a

n
ε

n
(m < n) . (11)
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f(x)

x
X X

X

X ′

X ′

fmax

Fig. 3. An example of the algorithm 2

step2. Let the point (vector) y = (y1 , · · · , ym
) be as follows:

yi
=

⎧⎨⎩ Xi (0 < ai)
Xi (ai < 0)

c(Xi) (otherwise)
(i = 1, · · · ,m) . (12)

step3. The candidate of fmax is calculated as f(y).
step4. Terminate.

By this algorithm, we are able to calculate the candidate of fmax larger than
that of the Fujii’s method. Therefore, we are able to discard more subregions
(boxes) in initial stage.

3.2 Algorithm 2

In this section, we proposed the algorithm 2 introduced in the step5-4. In this
algorithm, a box X is narrowed down by utilizing X and the range boundary
FA(X). Namely, the parts of X is able to be discarded while it is not able to
be discarded in the Fujii’s method. Similar to the section3.1, to simplify the
explanation, we consider finding maxima of f where m = 1. In this case, for
example, the shape of FA(X) becomes as the slant line part in the Fig. 3 (without
loss of generality, suppose that the slope of the linear approximation is positive).
In the Fig.3, maxima of f(x) in X exist obviously in X ′. Therefore, we are able
to narrow X down to X ′ i.e. we are able to discard [X,X ′). Being based on the
above description, we describe the concrete step of this algorithm when we find
maxima of f where 1 ≤ m.

step1. Suppose that FA(X) is calculated as the formula (11).

step2. Calculate α as α =
n∑

i=m+1

|ai|.

step3. Implement the following procedure for all i = 1, · · · ,m: If a
i
�= 0, calcu-

late the interval ε∗
i = [ε∗

i , ε
∗
i ] applying IA as follows:

ε∗
i =

1
a

i

(fmax − a0 − α−
m∑

j=1,j 
=i
(a

j
× [−1, 1])) . (13)
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Otherwise let the interval ε∗
i be as [−1, 1]. If ε∗

i ⊂ [−1, 1], narrow Xi down
as follows:{

[Xi + r(Xi)(ε∗
i + 1), Xi] (0 < a

i
)

[Xi, Xi − r(Xi)(1− ε∗
i )] (a

i
< 0)

where r(Xi) =
Xi −Xi

2
. (14)

If ε∗
i ≤ −1∧ε∗

i ∈ [−1, 1)∧a
i
< 0, narrow Xi down as [Xi, Xi−r(Xi)(1−ε∗

i )].
If ε∗

i ∈ (−1, 1]∧ 1 ≤ ε∗
i ∧ 0 < ai , narrow Xi down as [Xi+ r(Xi)(ε∗

i +1), Xi].
Otherwise, we are not able to narrow Xi down.

step4. Terminate.

4 Numerical Examples

In this section, to show the efficiency of the new method, some numerical ex-
amples are implemented. Here, our computer environment is CPU: PentiumIV
3.2GHz, memory: 2.0GB, OS: Free BSD 4.9 and compiler: g++ 2.7.2.1. We set
εr and εb as εr = εb = 10

−7
. In the Table 1 and the Table 2, the notation –

means that memory over occurred. At first, we found the maximum value of the
following Rosenbrock function:

f(x1, · · · , xm) =
m−1∑
i=1

(100(xi+1 − xi )2 + (1− xi)2) (15)

in the box Xi = [−1.4, 1.5] (i = 1, · · · ,m). The Table 1 shows the dividing time
and the calculating cost when we apply the Fujii’s method and the new method
for various m.

Next, we found the minimum value of the following Ridge function:

f(x1, · · · , xm) =
m∑
i=1

(
i∑
j=1

xj)2 (16)

Table 1. Comparison of the efficiency for the function(15)

m dividing time calculating cost (s)
Fujii’s method New method Fujii’s method New method

10 13546 20 0.4687500 0.0078125
12 90458 31 5.5781250 0.0234375
14 473666 57 201.5078125 0.0468750
16 – 101 – 0.1328125
18 – 168 – 0.2812500
20 – 291 – 0.5937500
30 – 4864 – 27.7109375
40 – 82294 – 3376.8515625

2
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Table 2. Comparison of the efficiency for the function(16)

m dividing time calculating cost (s)
Fujii’s method New method Fujii’s method New method

2 2479 62 0.0078125 0.0069531
3 269913 93 118.4296875 0.0234375
4 – 124 – 0.1093750
5 – 155 – 0.3515625
6 – 186 – 0.9140625
7 – 217 – 2.2578125
8 – 248 – 5.0859375
9 – 279 – 10.6015625
10 – 310 – 20.4609375
20 – 620 – 1961.2265625

in the box Xi = [−64, 64] (i = 1, · · · ,m). The Table 2 shows the dividing time
and the calculating cost when we apply these methods for various m.

By the Table1 and the Table2, we are able to confirm that the new method
is much faster than the Fujii’s method. And in the both example, even if m
increase, the new method was able to find the maximum and minimum value
although the Fujii’s method was not able to find them because of momery over.
This fact also shows the efficiency of the new method.

5 Conclusion

In this paper, a new method was proposed for finding all maxima and minima
of a multivariable function in a box applying AA. And to show the efficiency of
the new method, some numerical examples were implemented.
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Abstract. Let ϕ be analytic iterative vector function with fixed point α
and integer order p > 1. It is proved that for each approximation z0 of α
and enough close to α the corresponding iterative process zk+1 = ϕ(zk)
converges to α with order p. Using this result we give new shorter proofs
for convergence of some well known iterative methods and of iterative
methods proposed by authors for solving of nonlinear equations and sys-
tems of equations.

1 Introduction

In 1870 E. Schröder [6] gave the following definition for the order of an iterative
function ϕ(x) intended for the calculation of its fixed point α.

Definition 1. If K(α, r) = {x : x ∈ R, |x− α| ≤ r}, ϕ(x) ∈ Cp , α = ϕ(α) and

ϕ′(α) = ϕ′′(α) = . . . = ϕ(p−1)(α) = 0 , ϕ(p)(α) �= 0 ,

then p is said to be the order of the iterative function ϕ with respect to the fixed
point α.

Further the set of all iterative functions of order p is denoted by Ip,α. It is
well known the following result:

Theorem 1. If ϕ(x) ∈ Ip,α , p > 1, then there exists a sufficiently small ρ such
that the iterative process

xk+1 = ϕ(xk) , k = 0, 1, 2, . . . , (1)

is convergent to α for each initial approximation x0 ∈ K(α, ρ) and

|xk − α| ≤ cqp
k

, k = 1, 2, 3, . . . , (2)

where c > 0 and q ∈ (0, 1) are constants.

� This work was supported by Shumen University under contract N 13/2004.
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When an iterative process of the form (1) satisfies (2), then it said that it
has an order (of convergence) p. In such a way one could make the conclusion
that an iterative function of order p generates a convergent iterative process of
order p. It is well known that such a conclusion holds for smooth mappings

ϕ : X → Rn , X ⊂ Rn .

In this communication we show that such result holds in the case of an analytic
mapping

ϕ : Z → Cn , Z ⊂ Cn .

(We believe that such a case is not considered by other authors).
Besides, we apply this results to obtain simpler proofs for the convergence

of some known and comparatively new iterative methods for solving of non-
linear equations and systems of such equations. Numerical results of computer
experiments are supplied.

2 Iterative Functions of One Complex Variable

We start our consideration with the following

Theorem 2. Let C1 = C be the complex plane of complex numbers. Let ϕ(z)
be an analytic function in the disc K = K(α, r), defined by

K = {z : z ∈ C , |z − α| ≤ r} ,

where α is a fixed point of ϕ(z), i.e. α = ϕ(α). If

ϕ′(α) = ϕ
′′
(α) = . . . = ϕ(p−1)(α) = 0 and ϕ(p)(α) �= 0 (3)

then for an integer p > 1 and each initial approximation z0 sufficiently close to
α, the iterative process

zk+1 = ϕ(zk) , k = 0, 1, 2, . . . (4)

converges to α with an order of convergence p.

Proof. According to the Taylor formula [1, 2, 3], we have

ϕ(z) = ϕ(α) +
∞∑
s=p

as(z − α)s , z ∈ IntK(α, r) . (5)

As it is well known
|as| ≤

M

rs

where M = max
|z−α|=r

|ϕ(z)| > 0. From (5) we obtain

|ϕ(z)− α| ≤
∞∑
s=p

Mρs

rs
=

Mρp

rp
1

1− ρ
r

=
Mρp

rp−1

1
r − ρ

,
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i.e.
|ϕ(z)− α| ≤ Mρp

rp−1(r − ρ)
. (6)

Next we impose to ρ the stronger restriction

ρ <
r

2
. (7)

Then, from (6) and (7) we obtain

|ϕ(z)− α| ≤ γρp , (8)

where
γ =

2M
rp

, ρ = |z − α|, z ∈ K
(
α,

r

2

)
.

Let the first approximation z0 of (4) is in

K(α, ρ̃) = {z : |z − α| < ρ̃} , ρ̃ = min
(r

2
, γ

1
1−p

)
and ρ0 = |z0 − α| > 0. The case ρ0 = 0 is trivial. Then we consider the case
ρ0 > 0. It is easy to prove

0 < ρk = |zk − α| = |ϕ(zk−1)− α| ≤ γρpk−1 < ρk−1 , (9)

for every k = 1, 2, . . ..
Hence,

0 ≤ ρk−1 < γ
1

1−p . (10)

From (9) and (10) it follows that ρk → 0. But we are to prove something more,
namely

ρk ≤ cqp
k

, where c = γ
1

1−p , q = γ
1

p−1 ρ0 ∈ (0, 1) . (11)

Indeed,

ρk ≤ γρpk−1 = γ
(
γρpk−2

)p = γ1+pρp
2

k−2 ≤ . . . ≤ γ1+p+...pk−1
ρp

k

0

= γ
pk−1
p−1 ρp

k

0 = γ
1

1−p

(
γ

1
p−1 ρ0

)pk

= cqp
k

,

where q ∈ (0, 1), according to (10).
The estimate (11) means, that (4) has an order of convergence p.

Example 1. From Theorem 2 it follows, that if f(z) is analytic in K and f ′(z) �=
0 for every z ∈ K(α, r) and if f(z) has a simple root α in K(α, r) , then the
Newton’s iterative process

zk+1 = zk −
f(zk)
f ′(zk)

, k = 0, 1, 2, . . . (12)

converges to α with an order of convergence p = 2 for z0 ∈ K(α, r), provided z0
is sufficiently close to α.
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Example 2. From Theorem 2 it follows, that if f(z) is analytic in K and f ′(z) �=
0 for every z ∈ K(α, r) and if f(z) has a simple root α in K(α, r) , then the
modified Newton’s method

zk+1 = zk − u(zk)−
f(zk − u(zk))

f ′(zk)
, k = 0, 1, 2, . . . (13)

where u(zk) = f(zk)
f ′(zk) converges to α for z0 ∈ K(α, r) with an order of convergence

p = 3, when z0 is sufficiently close to α.

These two examples illustrate the two of the most popular iterative methods
for solving nonlinear equations(see [4, 5, 7]).

3 Iterative Function of Several Complex Variables

Iterative functions of several complex variables are used in iterative methods for
solving systems of equations. Before considering this problem, we remind some
definitions, related to it.

Let Cn be the set of all vectors z = (z1, z2, . . . , zn) with n complex compo-
nents. Then a function of n complex variables has the form

u = f(z) or u = f(z1, z2, . . . , zn) , (14)

where u ∈ U ⊂ C1 , z ∈ Z ⊂ Cn.
If α = (α1, α2, . . . , αn) ∈ Cn and r̃ = (r1, r2, . . . , rn) is a vector with positive

components, then

P̄ (α, r̃) = {z : z = (zk) ∈ Cn , |zk − αk| ≤ rk , k = 1, 2, . . . , n} (15)

is called closed polydisc, and

P (α, r̃) = {z : z = {zk} ∈ Cn , |zk − αk| < rk , k = 1, 2, . . . , n} (16)

open polydisc.
Further we assume, that r1 = r2 = . . . = rn = r > 0 and we denote the

corresponding polydiscs by P̄ (α, r) and P (α, r).
Here we use the vectorial norm

‖ z ‖= max
k
|zk| . (17)

Let us consider the following nonlinear system

z1 = ϕ1(z), z2 = ϕ2(z), . . . , zn = ϕn(z) or z = ϕ(z) , (18)

where z = (z1, z2, . . . , zn). (We do not consider linear systems here. There are
many special iterative methods for them.) Let α = (α1, α2, . . . , αn) be a solution
of (18), or a fixed point of ϕ, localized in the polydisc P (α, r) ⊂ Cn. Moreover,
let z0 = {z0

i } be an initial approximation of α such that the iterative process

zk+1 = ϕ(zk) , k = 0, 1, 2, . . . (19)
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converges to α, i.e. ‖ zk − α ‖→ 0 for k → ∞. We say, that the order of
convergence is p > 1, if

‖ zk − α ‖≤ cqp
k

, c > 0 , q ∈ (0, 1) , k = 0, 1, 2, . . . (20)

Theorem 3. Let ϕ(z) from (18) has a unique fixed point α in K(α, r) and let
every ϕi(z) be analytic on K̄(α, r). If for an integer p > 1 we have

∂sϕi(α)
∂zs11 ∂zs22 . . . ∂zsn

n
= 0 , (21)

for s = 1, 2, . . . , p− 1; s1 + s2 + . . .+ sn = s; i = 1, 2, . . . , n and for at least one
combination (i; p1, p2, . . . , pn)

∂pϕi(α)
∂zp11 ∂zp22 . . . ∂zpn

n
�= 0 , p1 + p2 + . . . + pn = p (22)

is fulfilled, i.e. ϕ(z) has an order p, then for z0 sufficiently close to α, the iterative
process

zk+1 = ϕ(zk) , k = 0, 1, 2, . . . (23)

converges to α with an order of convergence p.

Proof. For every ϕi(z) , z ∈ K(α, r) we have

ϕi(z) = ϕi(α) +
∑

k1+k2+...+kn≥p
αk1,k2,...,kn

(z1 − α1)k1(z2 − α2)k2 . . . (zn − αn)kn

(24)
where z = (z1, z2, . . . , zn), and

|αk1,k2,...,kn
| ≤ Mi

rk1+k2+...+kn
,

where
Mi = max

z∈∂K̄
|ϕi(z)|

and ∂K̄ is the boundary of K̄.
From (24) under the stronger restriction ρ =‖ z − α ‖≤ r

2n we get

|ϕi(z)− αi| ≤Mi

∑
k1+k2+...+kn≥p

(ρ
r

)k1+k2+...+kn

= Mi

∑
s≥p

(
n + s− 1

s

)(ρ
r

)s
≤Mi

∞∑
s=p

(nρ
r

)s
= Mi

(nρ
r

)p 1
1− nρ

r

≤ 2Mi

(nρ
r

)p
or

|ϕi(z)− αi| ≤ 2Mi

(nρ
r

)p
.
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Further,

|ϕi(z)− αi| ≤ γρp , γ = 2
(n
r

)p
max
i

Mi , i = 1, 2, . . . , n . (25)

From (25), it follows the only one inequality

‖ ϕ(z)− α ‖≤ γρp . (26)

Let ρ̃ = min
(
r
2n , γ

1
1−p

)
and the initial approximation of the iteration (23) z0 ∈

K(α, ρ̃), z0 �= α, and ρk = ‖zk − α‖. Then from (26) we get

ρk ≤ γρpk−1 ≤ ρk−1 , k = 1, 2, 3, . . . (27)

Further, as in Section 2, we receive

‖zk − α‖ ≤ cqp
k

, (28)

where c = γ
1

1−p and q ∈ (0, 1). The condition (28) means, that the iteration
process (23) has an order of convergence p.

Example 3. Let f(z) be a polynomial of degree n with zeros α1, α2, . . . , αn (αi �=
αj for i �= j). Then the well known Weierstrass-Dochev iterative method for
simultaneous calculation of all zeros αi is

zk+1
i = zki −

f(zki )
Pi(zk)

, i = 1, . . . , n , k = 0, 1, 2, . . . , (29)

where zk = (zk1 , . . . , z
k
n) and Pi(zk) =

∏n
j 
=i(z

k
i − zkj ).

But the iterative process (29) could be considered as an iterative process for
solving the system of equations

zi = ϕi(z) , i = 1, . . . , n , (30)

where ϕi(z) = zi − f(zi)
Pi(z)

.
It is easy to see, that for all z ∈ K(α, ρ), α = (α1, α2, . . . , αn) and ρ suffi-

ciently small the iterative functions ϕi(z) are analytic in C(α, ρ), all ∂ϕi(α)
∂zs

= 0

and at least one ∂2ϕi(α)
∂zs∂zj

�= 0. Thus from Theorem 3 it follows, that the iter-
ative process (29) converges to α with order of convergence p = 2 for initial
approximation z0 sufficiently close to α.

Example 4. One possible modification of the iterative process (29) for solving of
the same problem is

zk+1
i = ψi(zk) , i = 1, . . . , n , (31)

where

ψi(z) = ϕi(z)−
f(ϕi(z))
Pi(z)

, i = 1, . . . , n (32)

and ϕi(z) is the iterative function (30).
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It is easy to verify, that in sufficiently small polydisc surrounding α the it-
erative functions ψi(z) are analytic and all derivatives of order 1 and 2 of these
functions in α are zero, and at least one derivative of order 3 is non zero. From
these properties and from Theorem 3 we get again, that for z0 sufficiently close
to α the iterative process (31) converges to α with order of convergence 3.

The iterative methods from examples 3 and 4 are studied in [5, 7, 8, 9], too.

Example 5. It is easy to apply the same approach to the Newton’s method

zk+1 = zk − f ′(zk)−1f(zk) ≡ λ(zk) (33)

and to the following modification of the Newton’s method

zk+1 = λ(zk)− f ′(zk)−1f(λ(zk)) (34)

for solving of the nonlinear system

f(z) = (f1(z), f2(z), . . . , fn(z)) = 0 .

The described approach for investigation of iterative processes sometimes is
more natural and shorter(see [7] for the Dochev’s method). In the same time this
approach gives alternative options for location of the solution α and the choice
of the initial approximation z0.

4 Numerical Experiments

In this section we compare the behavior of the single-root algorithms: Newton’s
method (12) and the modified Newton’s method obtained by (13); and the simul-
taneous methods: Weierstrass-Dochev’s method (29) and modified Weierstrass-
Dochev’s method obtained by (32). The software implementation of the algo-
rithms has been made in the MATLAB programming language.

Example 6. Let consider the equation f(z) = z6 − 1 = 0 with a root α1 = 1.
From (12) we obtain ϕ(z) = z − z6−1

6z5 . Obviously the function ϕ is analytic in
the disc K(1, 1/2). It is easy to prove that M = max

|z−1|= 1
2

|ϕ(z)| < 7 and γ = 56.

From Theorem 2 it follows that the Newton’s method is convergent to the root
α1 = 1 for initial approximations z0 ∈ K(1, ρ̃), where ρ̃ = min(r/2, γ−1) = 1

56 .

Table 1. Experimental results of Example 6

Initialapproximation iter
x0 (12) (13)

x0 = 1.006 + 0.01 i 5 4
x0 = 1.1 − 0.1 i 6 5
x0 = 1.3 + 0.2 i 8 6
x0 = 1.5 + 0.4 i 10 7
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Table 2. Experimental results of Example 7

Initialapproximation iter
x0 (29) (32)

x0 = (0.1 − 1.1 i, 0.2 + 1.9 i, 3.8 + 0.1 i) 5 4
x0 = (0.2 − 0.8 i, 0.3 + 2.2 i, 4.2 + 0.2 i) 5 4
x0 = (0.4 − 1.3 i, 0.3 + 2.5 i, 4.4 + 0.3 i) 6 4
x0 = (0.5 − 0.5 i, 0.4 + 1.5 i, 3.5 − 0.3 i) 7 5

Example 7. Let consider the equation f(z) = (x + i)(x − 2 i)(x − 4) = 0 with
solution α = (−i , 2 i , 4).

We have denoted: x0- initial approximation; iter- the number of iterations
for which the exact root α is reached.
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Abstract. Large scale air pollution models are powerful tools, designed
to meet the increasing demand in different environmental studies. The
atmosphere is the most dynamic component of the environment, where
the pollutants can be moved quickly on far distnce. Therefore the air pol-
lution modeling must be done in a large computational domain. More-
over, all relevant physical, chemical and photochemical processes must
be taken into account. In such complex models operator splitting is very
often applied in order to achieve sufficient accuracy as well as efficiency
of the numerical solution.

The Danish Eulerian Model (DEM) is one of the most advanced such
models. Its space domain (4800 × 4800 km) covers Europe, most of the
Mediterian and neighboring parts of Asia and the Atlantic Ocean. Ef-
ficient parallelization is crucial for the performance and practical capa-
bilities of this huge computational model. Different splitting schemes,
based on the main processes mentioned above, have been implemented
and tested with respect to accuracy and performance in the new version
of DEM. Some numerical results of these experiments are presented in
this paper.

1 Introduction

The problem for air pollution modelling has been studied for years [8, 15]. An
air pollution model is generally described by a system of partial differential
equations for calculating the concentrations of a number of chemical species
(pollutants and other components of the air that interact with the pollutants)
in a large 3-D domain (part of the atmosphere above the studied geographical
region). The main physical and chemical processes (horizontal and vertical wind,
diffusion, chemical reactions, emissions and deposition) should be adequately
represented in the system.

The Danish Eulerian Model (DEM) [1, 10, 14, 15, 16] is mathematically rep-
resented by the following system of partial differential equations:

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 440–447, 2005.
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∂cs

∂t = −∂(ucs)
∂x

− ∂(vcs)
∂y

− ∂(wcs)
∂z

+

+
∂

∂x

(
Kx

∂cs
∂x

)
+

∂

∂y

(
Ky

∂cs
∂y

)
+

∂

∂z

(
Kz

∂cs
∂z

)
+ (1)

+ Es + Qs(c1, c2, . . . cq)− (k1s + k2s)cs, s = 1, 2, . . . q .

where

– cs – the concentrations of the chemical species;
– u, v, w – the wind components along the coordinate axes;
– Kx, Ky, Kz – diffusion coefficients;
– Es – the emissions;
– k1s, k2s – dry / wet deposition coefficients;
– Qs(c1, c2, . . . cq) – non-linear functions describing the chemical reactions be-

tween species under consideration (Gery et al. (1989)).

2 Splitting into Submodels

The above rather complex system (1) is split into 3 subsystems / submodels,
according to the major physical / chemical processes and the numerical methods
applied in their solution.

∂c
(1)
s

∂t
= −∂(uc(1)s )

∂x
− ∂(vc(1)s )

∂y
+

∂

∂x

(
Kx

∂c
(1)
s

∂x

)
+

∂

∂y

(
Ky

∂c
(1)
s

∂y

)
= A1c

(1)
s (t)

horizontal advection & diffusion

∂c
(2)
s

∂t
= Es + Qs(c

(2)
1 , c

(2)
2 , . . . c(2)q )− (k1s + k2s)c(4)s = A2c

(2)
s (t)

chemistry, emissions & deposition

∂c
(3)
s

∂t
= −∂(wc

(3)
s )

∂z
+

∂

∂z

(
Kz

∂c
(3)
s

∂z

)
= A3c

(3)
s (t)

vertical transport

Various splitting schemes have been proposed and analysed in [2, 3, 4, 5, 8, 9,
13] The three splitting schemes, discussed in this paper and used in our experi-
ments, are briefly described below.
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2.1 Sequential Splitting Scheme, Used by Default in UNI-DEM

dc(1)s (t)
dt = A1c

(1)
s (t), t ∈ ((k − 1)τ, kτ ]

c
(1)
s ((k − 1)τ) = c

(2)
s ((k − 1)τ)

}
(2)

dc(2)s (t)
dt = A2c

(2)
s (t), t ∈ ((k − 1)τ, kτ ]

c
(2)
s ((k − 1)τ) = c

(1)
s (kτ)

}
(3)

s = 1, 2, . . . , q( q – the number of chemical species).

Equations (2)–(3) describe the sequential splitting scheme in the 2-D case
(without the vertical transport). The splitting error of this scheme, used by
default in UNI-DEM, is O(τ), where τ is the time step.

2.2 Marchuck - Strang Splitting Scheme

dc(1)s (t)
dt = A1c

(1)
s (t), t ∈ ((k − 1)τ, (k − 1

2 )τ ]
c
(1)
s ((k − 1)τ) = ĉ(1)((k − 1)τ)

}
(4)

dc(2)s (t)
dt = A2c

(2)
s (t), t ∈ ((k − 1)τ, kτ ]

c
(2)
s ((k − 1)τ) = w

(1)
k ((k − 1

2 )τ)

}
(5)

dĉ(1)s (t)
dt = A1ĉ

(1)
s (t), t ∈ ((k − 1

2 )τ, kτ ]
ĉ
(1)
s ((k − 1

2 )τ) = c
(2)
s (kτ)

}
(6)

s = 1, 2, . . . , q( q – the number of chemical species).

Equations (4)–(6) describe the symmetric splitting scheme (due to Marchuck
and Strang) in the 2-D case (without the vertical transport). This scheme has
higher order of accuracy, O(τ2), where τ is the time step.

2.3 Weighted Sequential Splitting Scheme

The sequential splitting scheme (2)–(3) is applied twice on each step with reverse
order of the two operators A1 and A2. The average of the two results for cs((k−
1)τ) is taken as initial value for calculations of the cs(kτ) on the next step. This
scheme has also second order of accuracy, O(τ2).
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3 Parallelization Strategy and Numerical Methods, Used
in the Solution of the Submodels

Although the splitting is a crucial step in the efficient numerical treatment of the
model, after discretization of the large computational domain each submodel be-
comes itself a huge computational task. In addition, the dynamics of the chemical
and photo-chemical processes requires using of small time-step to keep stabil-
ity of the computations. Large parallel supercomputers must be used in order
to meet the high speed and storage requirements. Moreover, development and
impementation of efficient parallel algorithms is very important for improving
the practical capabilities and the performance of DEM. That topic has been
discussed in more detail in [10, 11, 12, 15, 16].

Distributed memory parallelization model via MPI [6] is used in the current
UNI-DEM version considered in this work. For maximum portability only stan-
dard MPI routines are used in the UNI-DEM code. Parallelization is based on
domain decomposition of the horizontal grid, which implies certain restrictions
on the number of MPI tasks and requires communication on each time step.
Improving the data locality for more efficient cache utilization is achieved by
using chunks to group properly the small tasks in the chemistry-deposition and
vertical exchange stages.

Additional pre-processing and post-processing stages are needed for scat-
tering the input data and gathering the results. These are cheap, but their rel-
ative weight grows up with increasing the number of MPI tasks, affecting the
total speed-up and scalability.

The numerical methods, used in the solution of the submodels, are given
below.

– Advection-diffusion part: Finite elements, followed by predictor-corrector
schemes with several different correctors. The native parallel tasks in this
case are the calculations for a given pollutant in a given layer. There are
enough parallel tasks, sometimes too big to fit into the cache (depends on
the subdomain size).

– Chemistry-deposition part: An improved version of the QSSA (Quazi Steady-
State Approximation) (Hesstvedt et al. - [7]). The native parallel tasks here
are the calculations in a single grid-point. These small tasks are grouped in
chunks for efficient cache utilization.

– Vertical transport: Finite elements, followed by θ-methods. The native par-
allel tasks here are the calculations along each vertical grid-line. The number
of these tasks is large, while the tasks are relatively small. They also can be
grouped in chunks, like those in the chemical stage.

4 Numerical Results

The experiments, presented in this section, are performed on the SUN Sunfire
6800 parallel machine (24 CPU UltraSparc-III / 750 MHz), located at the Danish
Technical University (DTU) in Lyngby, Denmark. All experiments are for a
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Table 1. NO2 results (concentrations, discrepancy and correlation factor) for 1998

UNI-DEM results for NO2 on (96 × 96 × 1) grid,
in comparison with the measurements of 35 stations in Europe

Month Concentration [mol/l] ‖Discrepancy %‖ Correlation
Obs. Seq. Weig. M.-S. Seq. Weig. M.-S. Seq. Weig. M.-S.

January 2.79 3.20 3.21 2.35 13 13 19 0.67 0.66 0.62
February 3.24 4.96 4.97 3.83 35 35 15 0.61 0.61 0.59
March 2.18 1.83 1.84 1.38 19 19 58 0.69 0.69 0.75
April 1.98 1.76 1.76 1.39 12 12 42 0.59 0.59 0.49
May 1.81 2.05 2.05 1.66 12 12 9 0.64 0.64 0.66
June 1.58 2.33 2.34 1.95 32 32 19 0.56 0.56 0.47
July 1.57 1.86 1.86 1.56 15 16 1 0.50 0.50 0.49
August 1.70 1.99 1.99 1.81 15 15 6 0.59 0.59 0.57
September 1.84 2.42 2.42 2.11 24 24 13 0.65 0.65 0.56
October 1.96 2.38 2.39 1.85 18 18 6 0.57 0.57 0.53
November 3.10 3.97 3.97 3.04 22 22 2 0.65 0.65 0.70
December 3.33 4.10 4.11 3.10 19 19 8 0.70 0.69 0.71
mean 2.26 2.74 2.74 2.17 17 17 4 0.69 0.69 0.68

time period of 1 year (1998). The number of chemical species considered by the
chemical submodel in the current version is q = 35. Chunk size equal to 48 is
used in the experiments, which seems to be optimal for this problem and the
target machine.

4.1 Accuracy Results

These results are obtained by experiments with real data (meteorological data
sets, collected by the Norwegian Meteorological Institute; as well as emmision
data) for 1998. The results are compared to the records of several stationary
measuring stations throughout Europe, wich have enough measurements. It is
not possible to extract only the splitting error in these experiments. Other errors,
which are present in the results, are as follows:

– Input data error;
– Error of the numerical methods, used in the different submodels;
– Spatial discretization error (depending on the grid step);
– Computational (rounding) error;

and so on. In addition, the error of the measurement instruments is also included.
Such accuracy results for three major pollutants: nitrogen dioxide (NO2), sulphur
dioxide (SO2) and amonia (NH3 + NH4); are given in Tables 1 – 3 respectively.

The following abbreviations are used in the column headings of these tables:
Obs. - observed by the measurement stations;
Seq. - computed by DEM with sequenial splitting;
Weig. - computed by DEM with weighted sequenial splitting;
M.-S. - computed by DEM with Marchuck - Strang splitting.
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Table 2. SO2 results (concentrations, discrepancy and correlation factor) for 1998

UNI-DEM results for SO2 on (96 × 96 × 1) grid,
in comparison with the measurements of 35 stations in Europe

Month Concentration [mol/l] ‖Discrepancy %‖ Correlation
Obs. Seq. Weig. M.-S. Seq. Weig. M.-S. Seq. Weig. M.-S.

January 1.36 2.70 2.72 2.49 50 50 46 0.83 0.83 0.83
February 1.41 2.02 2.04 1.91 30 31 26 0.61 0.61 0.69
March 1.11 1.49 1.51 1.41 26 26 22 0.64 0.64 0.64
April 0.80 1.06 1.07 1.01 25 25 21 0.60 0.60 0.64
May 0.73 1.13 1.14 1.12 35 36 35 0.71 0.71 0.72
June 0.51 0.72 0.72 0.72 29 30 30 0.72 0.72 0.70
July 0.49 0.63 0.64 0.62 22 23 20 0.82 0.83 0.83
August 0.56 0.73 0.74 0.75 23 24 25 0.63 0.63 0.71
September 0.60 0.85 0.88 0.86 29 29 30 0.82 0.82 0.81
October 0.58 0.68 0.69 0.67 16 17 15 0.75 0.75 0.81
November 1.32 1.59 1.60 1.58 17 18 17 0.29 0.28 0.45
December 1.41 2.89 2.91 2.64 51 52 47 0.39 0.39 0.52
mean 0.91 1.38 1.39 1.32 34 34 31 0.71 0.71 0.77

Table 3. Amonia results (concentrations, discrepancy and correlation factor) for 1998

UNI-DEM results for NH3 + NH4 on (96 × 96 × 1) grid,
in comparison with the measurements of 24 stations in Europe

Month Concentration [mol/l] ‖Discrepancy %‖ Correlation
Obs. Seq. Weig. M.-S. Seq. Weig. M.-S. Seq. Weig. M.-S.

January 1.02 1.27 1.37 1.04 20 26 2 0.78 0.78 0.80
February 1.51 1.43 1.51 1.18 5 0 28 0.79 0.79 0.79
March 1.19 1.42 1.52 1.16 16 22 2 0.67 0.64 0.67
April 1.36 1.29 1.35 1.12 6 0 21 0.65 0.64 0.63
May 1.46 1.67 1.75 1.31 12 17 11 0.76 0.75 0.69
June 1.20 0.99 1.02 0.93 21 18 29 0.74 0.74 0.74
July 1.09 1.00 1.03 0.97 9 6 12 0.72 0.72 0.68
August 1.01 1.17 1.18 1.06 13 15 4 0.83 0.83 0.82
September 1.39 1.86 1.96 1.53 25 29 9 0.78 0.77 0.80
October 0.73 0.89 0.93 0.76 18 21 4 0.65 0.64 0.67
November 1.19 1.82 1.95 1.59 34 39 25 0.65 0.64 0.66
December 1.13 1.70 1.83 1.46 33 38 22 0.76 0.77 0.77
mean 1.19 1.38 1.45 1.18 13 17 1 0.78 0.77 0.77

4.2 Performance Results

Some time and speed-up results, showing the performance of UNI-DEM on Sun-
fire 6800 computing system, are presented in Table 4.
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Table 4. Time in seconds and the (speed-up) (given in brackets below) of UNI-
DEM for running an 1-year experiment on different size grids (2-D and 3-D versions)
on a Sunfire 6800 machine at DTU

Time / (speed-up) results of UNI-DEM on a SunFire 6800 at DTU
Grid size / stage 1 proc. 2 proc. 4 proc. 8 proc. 16 proc.

[96 × 96 × 1] – total 36270 18590 10296 4788 2492
(1.95) (3.52) (7.58) (14.55)

– advection 9383 4882 2512 1540 792
(1.92) (3.74) (6.09) (11.85)

– chemistry 24428 13120 7122 3088 1544
(1.86) (3.43) (7.91) (15.82)

[96 × 96 × 10] – total 415442 211370 108620 52920 30821
(1.97) (3.82) (7.85) (13.48)

– advection 132660 64759 31367 15422 8612
(2.05) ( 4.23) (8.60) (15.40)

– chemistry 263584 133496 68138 34255 17621
(1.97) (3.87) (7.69) (14.96)

[288 × 288 × 1] – total 699622 352470 197811 98033 44465
(1.98) (3.54) (7.14) (15.95)

– advection 348024 169773 85812 42558 20782
(2.05) (4.05) (8.18) (16.75)

– chemistry 294155 150088 84504 37923 18498
(1.96) (3.48) (7.76) (15.90)

5 Conclusions and Plans for Future Work

– By using high performance parallel computers to run the variable grid-size
code UNI-DEM, reliable results for a large region (whole Europe) and for a
very long period (one or several years) can be obtained within a reasonable
time.

– In most cases the results, obtained with the weighted sequential splitting, are
quite similar to those of the sequential splitting. This could be an indication
for a small commutator of the two operators.

– The splitting is not the only source of error in UNI-DEM. Nevertheless,
its contribution in the total error seems to be significant. For some species
(NO2, SO2, amonia) the Marchuck-Strang scheme gives results, closer to the
measuremets than the other two splitting methods. More experiments are
needed in order to investigate the consistency of such behaviour.

– The parallel code, created by using MPI standard library, appears to be
highly portable and shows good efficiency and scalability. The limited size
of the fast cache-memory causes superlinear speed-up in some cases.
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Abstract. The paper deals with the condition number estimation and
the computation of residual-based forward error estimates in the numer-
ical solution of the matrix Riccati equations. Efficient, LAPACK-based
condition and error estimators are proposed involving the solution of
triangular Lyapunov equations along with one-norm computation.

1 Introduction

In this paper we consider the estimation of condition numbers and the com-
putation of residual-based forward error estimates pertaining to the numerical
solution of matrix algebraic continuous-time and discrete-time Riccati equations
which arise in optimal control and filtering theory.

The following notation is used in the paper: R – the field of real numbers;
Rm×n – the space of m × n matrices A = [aij ] over R; AT – the transpose
of A; σmax(A) and σmin(A) – the maximum and minimum singular values of
A; ‖A‖1 – the 1-norm of the matrix A; ‖A‖2 = σmax(A) – the spectral norm
of A; ‖A‖F = (

∑
|aij |2)1/2) – the Frobenius norm of A; In – the unit n × n

matrix; A ⊗ B – the Kronecker product of matrices A and B; vec(A) – the
vector, obtained by stacking the columns of A in one vector; ε – the roundoff
unit of the machine arithmetic.

In what follows we shall consider the continuous-time Riccati equation

ATX + XA + C −XDX = 0 (1)

and the discrete-time Riccati equation

ATXA−X + C −ATXB(R + BTXB)−1BTXA = 0 (2)

or its equivalent

X = C + ATX(In + DX)−1A, D = BR−1BT

where A ∈ Rn×n and the matrices C, D, X ∈ Rn×n are symmetric. We assume
that there exists a non-negative definite solution X which stabilizes A−DX and
(In + DX)−1A, respectively.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 448–455, 2005.
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The numerical solution of matrix Riccati equations may face some difficul-
ties. First of all, the corresponding equation may be ill-conditioned, i.e. small
perturbations in the coefficient matrices A, C, D may lead to large variations in
the solution. Therefore, it is necessary to have a quantitative characterization of
the conditioning in order to estimate the accuracy of solution computed.

The second difficulty is connected with the stability of the numerical method
and the reliability of its implementation. It is known [1] that the methods for
solving the Riccati equations are generally unstable. This requires to have an
estimate of the forward error in the solution computed.

The paper is organized as follows. In Section 2 we discuss the conditioning of
the equations (1), (2). In Section 3 we present an efficient method for computing
condition number estimates which is based on matrix norm estimator imple-
mented in LAPACK [2]. In Section 4 we propose residual based forward error
estimates which implement also the LAPACK norm estimator and may be used
in conjunction with different methods for solving the corresponding equation.

2 Conditioning of Riccati Equations

Let the coefficient matrices A, C, D in (1), (2) be subject to perturbations ΔA,
ΔC, ΔD, respectively, so that instead of the initial data we have the matrices
Ã = A+ΔA, C̃ = C +ΔC, D̃ = D+ΔD. The aim of the perturbation analysis
of (1), (2) is to investigate the variation ΔX in the solution X̃ = X + ΔX due
to the perturbations ΔA, ΔC, ΔD. If small perturbations in the data lead to
small variations in the solution we say that the corresponding equation is well-
conditioned and if these perturbations lead to large variations in the solution this
equation is ill-conditioned. In the perturbation analysis of the Riccati equations
it is supposed that the perturbations preserve the symmetric structure of the
equation, i.e. the perturbations ΔC and ΔD are symmetric. If ‖ΔA‖, ‖ΔC‖
and ‖ΔD‖ are sufficiently small, then the perturbed solution X̃ = X + ΔX is
well defined.

Consider first the Riccati equation (1). The condition number of the Riccati
equation is defined as (see [3])

K = lim
δ→0

sup
{
‖ΔX‖
δ‖X‖ : ‖ΔA‖ ≤ δ‖A‖, ‖ΔC‖ ≤ δ‖C‖, ‖ΔD‖ ≤ δ‖D‖

}
.

For sufficiently small δ we have (within first order terms)

‖ΔX‖
‖X‖ ≤ Kδ.

Let X̄ be the solution of the Riccati equation computed by a numerical
method in finite arithmetic with relative precision ε. If the method is backward
stable, then we can estimate the error in the solution error

‖X̄ −X‖
‖X‖ ≤ p(n)Kε
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with some low-order polynomial p(n) of n. This shows the importance of the
condition number in the numerical solution of Riccati equation.

Consider the perturbed Riccati equation

(A + ΔA)T (X + ΔX) + (X + ΔX)(A + ΔA) + C + ΔC (3)

− (X + ΔX)(D + ΔD)(X + ΔX) = 0

and set Ac = A−DX. Subtracting (1) from (3) and neglecting the second and
higher order terms in ΔX we obtain a Lyapunov equation in ΔX:

ATc ΔX + ΔXAc = −ΔC − (ΔATX + XΔA) + XΔDX. (4)

Let vec(M) denotes the vector, obtained by stacking the columns of the
matrix M . Then we have that

‖vec(M)‖2 = ‖M‖F

and equation (4) can be written in the vectorized form as

(In ⊗ATc + ATc ⊗ In)vec(ΔX) = − vec(ΔC)

− (In ⊗X + (X ⊗ In)W )vec(ΔA) (5)

+ (X ⊗X)vec(ΔD))

where we use the representations

vec(ΔAT ) = Wvec(ΔA)

vec(MZN) = (NT ⊗M)vec(Z)

and W is the vec-permutation matrix.
Since the matrix Ac is stable, the matrix In ⊗ ATc + ATc ⊗ In is nonsingular

and we have that

vec(ΔX) = (In ⊗ATc + ATc ⊗ In)−1(−vec(ΔC)

− (In ⊗X + (X ⊗ In)W )vec(ΔA) (6)

+ (X ⊗X)vec(ΔD))

Equation (6) can be written as

vec(ΔX) = −[P−1, Q, −S]

⎡⎢⎣ vec(ΔC)
vec(ΔA)
vec(ΔD)

⎤⎥⎦ (7)

where
P = In ⊗ATc + ATc ⊗ In

Q = P−1(In ⊗X + (X ⊗ In)W )

S = P−1(X ⊗X).
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If we set

η = max {‖ΔA‖F /‖A‖F , ‖ΔC‖F /‖C‖F , ‖ΔD‖F /‖D‖F }

then it follows from (7) that

‖ΔX‖F /‖X‖F ≤
√

3KF η,

where
KF = ‖[P−1, Q, S]‖2/‖X‖F

is the condition number of (1) using Frobenius norms.
The computation of KF requires the construction and manipulation of n2×n2

matrices which is not practical for large n. Furthermore, the computation of the
condition number of the Riccati equation involves the solution matrix X, so that
the condition number can be determined only after solving the equation.

Since the computation of the exact condition number is a difficult task, it is
useful to derive approximations of K that can be obtained cheaply.

Rewrite equation (4) as

ΔX = −Ω−1(ΔC)−Θ(ΔA) + Π(ΔD) (8)

where
Ω(Z) = ATc Z + ZAc

Θ(Z) = Ω−1(ZTX + XZ)

Π(Z) = Ω−1(XZX)

are linear operators in the space of n×n matrices, which determine the sensitivity
of X with respect to the perturbations in C, A, D, respectively. Based on (8)
it was suggested in [3] to use the approximate condition number

KB :=
‖Ω−1‖‖C‖+ ‖Θ‖‖A‖+ ‖Π‖‖D‖

‖X‖ (9)

where
‖Ω−1‖ = maxZ 
=0

‖Ω−1(Z)‖
‖Z‖

‖Θ‖ = maxZ 
=0
‖Θ(Z)‖

‖Z‖

‖Π‖ = maxZ 
=0
‖Π(Z)‖

‖Z‖

are the corresponding induced operator norms. Note that the quantity

‖Ω−1‖F = max
Z 
=0

‖Z‖F
‖ATc Z + ZAc‖F

=
1

sep(ATc ,−Ac)
where

sep(ATc ,−Ac) := min
Z 
=0

‖ATc Z + ZAc‖F
‖Z‖F

= σmin(In ⊗ATc + ATc ⊗ In)

is connected to the sensitivity of the Lyapunov equation
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ATc X + XAc = −C.
Comparing (6) and (8) we obtain that

‖Ω−1‖F = ‖P−1‖2

‖Θ‖F = ‖Q‖2 (10)

‖Π‖F = ‖S‖2.

In the case of the discrete-time Riccati equation (2) the corresponding oper-
ators are determined from

Ω(Z) = ATc ZAc − Z

Θ(Z) = Ω−1(ZTXAc + ATc XZ)

Π(Z) = Ω−1(ATc XZXAc)

where Ac = (In + DX)−1A.

3 Conditioning Estimation

The quantities ‖Ω−1‖1, ‖Θ‖1, ‖Π‖1 arising in the sensitivity analysis of Riccati
equations can be efficiently estimated by using the norm estimator, proposed
in [4] which estimates the norm ‖T‖1 of a linear operator T , given the ability
to compute Tv and TTw quickly for arbitrary v and w. This estimator is im-
plemented in the LAPACK subroutine xLACON [2], which is called via a reverse
communication interface, providing the products Tv and TTw.

Consider for definiteness the case of continuous-time Riccati equation. With
respect to the computation of

‖Ω−1‖F = ‖P−1‖2 =
1

sepF (ATc ,−Ac)

the use of xLACON means to solve the linear equations

Py = v, PT z = v

where
P = In ⊗ATc + ATc ⊗ In, PT = In ⊗Ac + Ac ⊗ In,

v being determined by xLACON. This is equivalent to the solution of the Lyapunov
equations

ATc Y + Y Ac = V

AcZ + ZATc = V
(11)

where vec(V ) = v, vec(Y ) = y, vec(Z) = z.
The solution of these Lyapunov equations can be obtained in a numerically

reliable way using the Bartels-Stewart algorithm [5]. Note that in (11) the matrix
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V is symmetric, which allows a reduction in complexity by operating on vectors
v of length n(n + 1)/2 instead of n2.

An estimate of ‖Θ‖1 can be obtained in a similar way by solving the Lyapunov
equations

ATc Y + Y Ac = V TX + XV

AcZ + ZATc = V TX + XV.
(12)

To estimate ‖Π‖1 via xLACON, it is necessary to solve the equations

ATc Y + Y Ac = XVX

AcZ + ZATc = XVX
(13)

where the matrix V is again symmetric and we can again work with shorter
vectors.

The estimation of ‖Ω‖1, ‖Θ‖1, ‖Π‖1 in the case of the discrete-time Riccati
equation is done in a similar way.

The accuracy of the estimates that we obtain via this approach depends on
the ability of xLACON to find a right-hand side vector v which maximizes the
ratios

‖y‖
‖v‖ ,

‖z‖
‖v‖

when solving the equations Py = v, PT z = v. As in the case of other condition
estimators it is always possible to find special examples when the value pro-
duced by xLACON underestimates the true value of the corresponding norm by
an arbitrary factor. Note, however, that this may happens in rare circumstances.

4 Error Estimation

A posteriori error bounds for the computed solution of the matrix equations (1),
(2) can be obtained in several ways. One of the most efficient and reliable ways
to get an estimate of the solution error is to use practical error bounds, similar
to the case of solving linear systems of equations [6, 2] and matrix Sylvester
equations [7].

Consider again the Riccati equation (1). Let

R = AT X̄ + X̄A + C − X̄DX̄

be the exact residual matrix associated with the computed solution X̄. Setting
X̄ := X + ΔX, where X is the exact solution and ΔX is the absolute error in
the solution, one obtains

R = (A−DX̄)TΔX + ΔX(A−DX̄) + ΔXDΔX.

If we neglect the second order term in ΔX, we obtain the linear system of
equations

P̄vec(ΔX) = vec(R)
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where P̄ = In ⊗ ĀTc + ĀTc ⊗ In, Āc = A−DX̄. In this way we have

‖vec(X − X̄)‖∞ = ‖P̄−1vec(R)‖∞ ≤ ‖ |P̄−1| |vec(R)| ‖∞.

As it is known [6], this bound is optimal if we ignore the signs in the elements
of P̄−1 and vec(R).

In order to take into account the rounding errors in forming the residual
matrix, instead of R we use

R̄ = fl(C + AT X̄ + X̄A− X̄DX̄) = R + ΔR
where

|ΔR| ≤ ε(4|C|+ (n + 4)(|AT | |X̄|+ |X̄| |A|) + 2(n + 1)|X̄| |D| |X̄|) =: Rε

and fl denotes the result of a floating point computation. Here we made use of
the well known error bounds for matrix addition and matrix multiplication.

In this way we have obtained the overall bound

‖X − X̄‖M
‖X̄‖M

≤ ‖ |P−1| (|vec(R̄)|+ vec(Rε))‖∞
‖X̄‖M

(14)

where ‖X‖M = maxi,j |xij |.
The numerator in the right hand side of (14) is of the form ‖ |P−1| r ‖∞, and

as in [6, 7] we have

‖ |P̄−1| r ‖∞ = ‖ |P̄−1|D
R
e‖∞ = ‖ |P̄−1D

R
| e‖∞

= ‖ |P̄−1D
R
| ‖∞ = ‖P̄−1D

R
‖∞

where D
R

= diag(r) and e = [1, 1, . . . , 1]T . This shows that ‖ |P−1| r ‖∞ can
be efficiently estimated using the norm estimator xLACON in LAPACK, which
estimates ‖Z‖1 at the cost of computing a few matrix-vector products involving
Z and ZT . This means that for Z = P̄−1D

R
we have to solve a few linear

systems involving P̄ = In ⊗ ĀTc + ĀTc ⊗ In and P̄T = In ⊗ Āc + Āc ⊗ In or, in
other words, we have to solve several Lyapunov equations ĀTc X +XĀc = V and
ĀcX + X̄ATc = W . Note that the Schur form of Āc is already available from the
condition estimation of the Riccati equation, so that the solution of the Lyapunov
equations can be obtained efficiently via the Bartels-Stewart algorithm. Also,
due to the symmetry of the matrices R̄ and Rε, we only need the upper (or
lower) part of the solution of this Lyapunov equations which allows to reduce
the complexity by manipulating only vectors of length n(n+ 1)/2 instead of n2.

To avoid overflows, instead of estimating the condition number KB an esti-
mate of the reciprocal condition number

1
K̃B

=
s̃ep1(ĀTc ,−Āc)‖X̄‖1

‖C‖1 + s̃ep1(ĀTc ,−Āc)(‖Θ̃‖1‖A‖1 + ‖Π̃‖1‖D‖1)
is determined. Here Āc is the computed matrix Ac and the estimated quantities
are denoted by tilde.

The error estimation in the solution of (2) is done in a similar way.
The software implementation of the condition and error estimates is based

entirely on LAPACK and BLAS [8, 9] subroutines.



Conditioning and Error Estimation in the Numerical Solution 455

References

1. P.Hr. Petkov, N.D. Christov, M.M. Konstantinov. Computational Methods for Lin-
ear Control Systems. Prentice Hall, N.Y., 1991.

2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’
Guide. SIAM, Philadelphia, second edition, 1995.

3. R. Byers. Numerical condition of the algebraic Riccati equation. Contemp. Math.,
47, 1985, pp. 35-49.

4. N.J. Higham. FORTRAN codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation (Algorithm 674). ACM Trans.
Math. Software, 14, 1988, pp. 381-396.

5. R.H. Bartels, G.W. Stewart. Algorithm 432: Solution of the matrix equation AX +
XB = C. Comm. ACM, 15, 1972, pp. 820-826.

6. M. Arioli, J.W. Demmel, I.S. Duff. Solving sparse linear systems with sparse back-
ward error. SIAM J. Matrix Anal. Appl., 10, 1989, pp. 165-190.

7. N.J. Higham. Perturbation theory and backward error for AX - XB = C. BIT, 33,
1993, pp. 124-136.

8. C.L. Lawson, R.J. Hanson, D.R. Kincaid, F.T. Krogh. Basic Linear Algebra Sub-
programs for FORTRAN usage. ACM Trans. Math. Software, 5, 1979, pp. 308-323.

9. J.J. Dongarra, J. Du Croz, I. Duff, S. Hammarling. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Software, 16, 1990, pp. 1-17.



Numerical Modelling of the One-Phase Stefan
Problem by Finite Volume Method

Nickolay Popov1, Sonia Tabakova1, and François Feuillebois2

1 Department of Mechanics, TU - Sofia, branch Plovdiv,
4000 Plovdiv, Bulgaria
stabakova@hotmail.com

2 Laboratoire PMMH, CNRS, ESPCI, 75231 Paris, France
feuillebois@pmmh.espci.fr

Abstract. The one-phase Stefan problem in enthalpy formulation, de-
scribing the freezing of initially supercooled droplets that impact on solid
surfaces, is solved numerically by the finite volume method on a non-
orthogonal body fitted coordinate system, numerically generated. The
general case of third order boundary conditions on the droplet is con-
sidered. The numerical results for the simple case of a spherical droplet
touching a surface at first order boundary conditions are validated well
by the known 1D asymptotic solution. The proposed solution method oc-
curs faster than another method, based on ADI implicit finite-difference
scheme in cylindrical coordinates, for the same droplet shapes.

1 Introduction

The phase change process at supercooled droplet impact on a cold substrate has
numerous technological applications, as well as observations at some phenomena
in nature, for example ice accretion on aircrafts during flights [1 - 3]. Since a
great number of parameters control the process, it is difficult to study it either
experimentally and theoretically. The droplet shape initially assumed spherical
deforms during impact and finally takes an uneven form as solid. The freezing
process is complicated and roughly separated into two stages [4]: initial freez-
ing (return to stable equilibrium at solidification temperature); full freezing (all
material becomes solid). If the droplet is assumed undeformable after the initial
freezing [1 - 3], then the full freezing problem can be considered as a one-phase
Stefan problem with third or first order boundary conditions on the droplet
surfaces exposed to the ambient and substrate. Although the droplet shape is
supposed axisymmetrical, but generally not spherical, the Stefan problem is 2D
and does not possess analytical solution. The numerical grid generation method
is appropriate [5] for arbitrary shaped objects and especially for free and moving
boundary problems, if the generated coordinates are ”body-fitted” (BFC). Then
the physical problem is solved into the transformed computational region, which
is rectangular or square. The BFC can be: orthogonal, which require special
techniques for complex spaces [5]; or non-orthogonal, which is more flexible, but
causes complications in the physical problems [6 - 7].

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 456–462, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Numerical Modelling of One-Phase Stefan Problem 457

In the present paper we study numerically the one-phase Stefan problem of a
droplet of arbitrary axisymmetrical shape, which freezes at impact on a substrate.
The numerical model is based on the enthalpy method in finite volume approach on
a non-orthogonal BFC. The obtained results after the numerical simulations refer
to the case of a supercooled water droplet. The proposed model is compared well
by the 1D analytical solution described in [4] for the special case of a spherical drop
and by another numerical solution in cylindrical coordinates given in [1 - 3] for the
arbitrary droplet shape. The scheme based on the non-orthogonal BFC is faster
than the other one, which is promising for future studies with fluid dynamics taken
into account in the model.

2 Problem Formulation

We assume that at the initial moment of the full freezing stage, the droplet
substance is a liquid-solid mixture with constant properties, different from those
of liquid and solid phases. Then in the mixture phase Ωm the temperature is
equal to the freezing temperature θ = θm. The one-phase Stefan problem is given
by the heat conduction equation for the solid phase Ωs:

ρscs
∂θ

∂t
= κs∇2θ (1)

and by the heat flux jump on the moving surface Γ , the interface with freezing
temperature θ = θm:

κs∇θ · n = −ρsLmvn, (2)

where Lm is the latent heat of fusion of mixture, vn is the interface normal
velocity, ρs, cs, κs are correspondingly the solid phase density, heat capacity and
conductivity. The heat flux boundary conditions on the droplet surface facing
the ambient gas and substrate are as follows:

− κi∇θ · nj = αj(θ − θj), (3)

where the subscript (i) corresponds to mixture (m) or solid (s) and (j) to the
droplet surface exposed to ambient gas (a) and to substrate (s). The heat trans-
fer coefficient αa or αs is between the droplet and ambient gas or substrate.
If the droplet surface is isothermal, then instead of (3), θ = θa. The initial
temperature condition states that at impact the supercooled droplet returns to
thermodynamic equilibrium at the freezing temperature:

θ = θm, at t = 0, (4)

and the the droplet surface is the initial position of Γ .

3 Numerical Methods

3.1 Grid Generation

The cylindrical coordinate system (r, z, ϕ) in the physical domain, as shown in
Fig.1., is connected with the coordinate system (ξ, η, ϕ) in the computational
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j

z

r

Fig. 1. The numerical mapping of the droplet physical domain (r, z, ϕ) to the compu-
tational domain (ξ, η, ϕ)

domain by the transformation ξ = ξ(r, z), η = η(r, z). The transformation
Jacobian is given by

√
g, where g = det(g) = r2(g11g22 − g2

12) and g is the
covariant metric tensor in physical domain. The transformed coordinates ξ and
η are solutions of the Laplace generating equations ∇2ξ = 0 and ∇2η = 0
with Ist order boundary conditions on the four boundaries (Fig.1). The inverse
transformation r = (r(ξ, η), z(ξ, η)) is obtained as a solution of the homogeneous
quasi-liner elliptic system:

g22rξξ + g11rηη − 2g12rξη = 0, (5)

with Ist order boundary conditions on the four boundaries (Fig.1.). The sys-
tem (5) is solved numerically as in [7] by the iterative SOR method [9] with
a transfinite grid as initial approximation in order to accelerate the iterative
procedure.

3.2 Enthalpy Method

There exist two main groups of numerical methods for the Stefan problem [10]:
front tracking methods and fixed domain methods. The most common of the
latter methods is the enthalpy method and the results obtained by it in [1] for
the simple case of a free spherical droplet with Ist order boundary conditions
have excellent accuracy with respect to the asymptotic - analytical solution
of [4]. The enthalpy reformulation of (1) - (2) includes the enthalpy function
H(θ) =

∫
ρ(θ)c(θ)d(θ) +Lmρ(θ)η(θ− θm), to reach to only one equation for the

whole droplet region:
∂H(θ)
∂t

= κs∇2θ, (6)
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where η is the Heaviside step function η(θ − θm) =
{

1 for θ ≥ θm
0 for θ < θm

and ρ(θ)

and c(θ) are the density and specific heat, such that ρ(θ) = ρm and c(θ) = cm at
θ = θm; ρ(θ) = ρs and c(θ) = cs at θ < θm. The equation (6) has a singularity
at θ = θm and a smoothing over a small temperature zone is applied in the
numerical scheme [10], [1 - 3].

3.3 Numerical Scheme for the Stefan Problem

The dimensionless form of (6) with (3), (4), written in BFC, is the following:

[Stm + δ(T − 1)]
∂T

∂τ
=

1
√
g

{
∂

∂ξ
[J(g22Tξ − g12Tη)] (7)

+
∂

∂η
[J(g11Tη − g12Tξ)]

}
in Ωm ∪Ωs ∪ Γ

− J
√
g22

(g22Tξ − g12Tη) = Bi(T )T, on ∂Ωa, (8a)

− J
√
g11

(g11Tη − g12Tξ) = Bit(T )T, on ∂Ωs, (8b)

T = 1 at τ = 0, (9)

where J = r2/
√
g, Stm = cs�θ/Lm is the mixture Stefan number, δ(T − 1)

the Dirac delta function, T = θ − θa the dimensionless temperature (θa = θs
is assumed), τ = t/tfr the dimensionless time, Bi(T ) = αaam/(κsk(T )) and
Bit(T ) = αsam/κsk(T ) respectively the Biot numbers for the ambient gas and
target substrate surface, k(T ) = 1 for T < 1 and k(T ) = κm/κs at T = 1.
Here, the characteristic parameters are am for length, tfr for freezing time, �θ
for temperature, ρs for density, κs for conductivity and cs for heat capacity.
If the first order boundary conditions are present on the droplet surface, their
dimensionless form is: T = 0.

The numerical scheme for the unsteady non-linear problem (7) - (9) is based
on the implicit Euler method in time and finite volumes method in the compu-
tational square 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 with constant grid step �ζ = �ξ = �η.
At each time layer an inner iterative procedure by the SOR method with ω as
relaxation parameter is performed till solution convergence is achieved ((n) is
the index of time layer, (s) the index of the inner iterations):

s+1Tn+1
ij =

[
Tnij + A

∑
(k,l) 
=(i,j) Ckl

sTn+1
kl

1−ACij

]
ω + (1− ω)sTn+1

ij , (10)

where i, j = 0, ..., N are the grid points indexes in ξ and η direction, A =
�τ/

[
�ζ2

(
Stm + δ

(
sTn+1
ij − 1

))]
, Cij the metrics coefficients in the right-hand

side of (7) (not given here for sake of brevity), �τ is the time step.
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4 Numerical Results

Here we present the results for two droplet shapes (both correspond to the same
volume): spherical and arbitrary axisymmetrical (registered from experiments of
droplet impact [1 - 3]). For both of them BFC systems are generated and the ob-
tained grids contain 4489 nodal points each, correspondent to 67 x 67 points on
the unit square in the computational domain (Cf. Fig.2 for the arbitrary shape).

For the spherical case the full freezing times due to our model (BFC) are
found to be in very good agreement with the analytical solution [4] (for first
order boundary conditions) and another numerical solution by finite-difference
ADI scheme in cylindrical coordinate system (CCS) [1 - 3] (for first and third
order boundary conditions), as shown in Table 1.

Table 1. Dimensionless final freezing time for a spherical droplet

Ist b.c. IIIrd b.c., Bi = 100
Stm BFC CCS [1] Analytical [4] BFC CCS [3]
0.01 0.1657 0.1680 0.1682 0.1681 0.1785
0.1 0.1714 0.1811 0.1803 0.1821 0.1917

0.489 0.2168 0.2255 0.2149 0.2308 0.2389

Moreover, the temperature profile due to (BFC) possesses spherical sym-
metry for any ray η = const. and is presented in Fig.3 for different times in
correspondence with the analytical [4] and numerical (CCS) [1] for first order
boundary conditions (droplet dimensionless radius is 0.325 and Stm = 0.01). A
good agreement between the results in (BFC) and in (CCS) for the case of an
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Fig. 2. Numerically generated BFC system for arbitrary droplet shape
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Fig. 3. Temperature profiles for spherical droplet case for Stm = 0.01 at different
times: points represent the analytical solution [4], solid line (CCS) [1], dash-dotted line
(BFC)
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Fig. 4. Temperature profiles for arbitrary shape case at different times and Stm =
0.489: solid line is due to (CCS) [1], dash-dotted line due to (BFC)

arbitrary shape (as given in Fig.2) is achieved, which is presented in Fig.4 for
the first order boundary conditions. Due to our numerous calculations with the
proposed model in BFC and with different values of problem parameters: Stm,
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Bi, Bit we can conclude that it is several times faster that the model (CCS) and
more flexible for complicated droplet shapes.

5 Conclusions

A numerical model based on the enthalpy method in finite volume approach on
a non-orthogonal BFC has been proposed to solve the one-phase Stefan problem
of a droplet of arbitrary axisymmetrical shape, which freezes at impact on a
substrate. It is validated for the simple case of a spherical droplet with the
1D analytical solution described in [4] and by another numerical solution in
cylindrical coordinates given in [1 - 3] for an arbitrary droplet shape. The present
scheme is faster than the one in [1 - 3] and on its basis our future studies, with
fluid dynamics taken into account, will be developed.
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Discontinuous Fields
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Abstract. A technique for adaptive conjugate smoothing of discontinu-
ous fields is presented in the paper. The described technique is applicable
in various engineering problems and is especially effective when hybrid
numerical - experimental methodologies are used. Adaptive smoothing
strategy is illustrated for a discontinuous plain stress field problem when
photoelastic fringes representing the variation of stress are constructed
in virtual projection plane.

Keywords: Finite element method, adaptive smoothing, visualization

1 Introduction

Adaptive smoothing of discontinuous fields is a problem of a high importance
in hybrid numerical - experimental techniques when the results of experimental
analysis are mimicked in virtual numerical environment [1]. Typical example
is the construction of digital fringe images from finite element analysis results
imitating the stress induced effect of photo-elasticity [2].

Conventional finite element analysis is based on interpolation of nodal vari-
ables (displacements) inside the domain of each element [3]. Though the field
of displacements is continuous in the global domain, the field of stresses is dis-
continuous at inter-element boundaries due to the operation of differentiation.
Construction of digital fringe images from finite element analysis results is a
typical problem when discontinuous fields are to be visualized. Therefore it is
important to develop numerical techniques enabling physically based smoothing
applicable for visualization procedures.

The proposed strategy of smoothing parameter is based on the assumption
that the larger smoothing is required in the zones where the discontinuity of the
field is higher.

The finite element norm representing the residual of stress field reconstruc-
tion in the domain of the analyzed element is introduced. It can be noted that
the calculation of element norms is not a straightforward procedure. First, the
nodal stress values in the global domain are sought by the least square method
minimizing the differences between the interpolated stress field from the nodal
stress values and discontinuous stress field calculated directly from the displace-
ment field. As the minimization is performed over the global domain and the
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interpolations are performed over the local domains of every element, direct
stiffness procedure based on Galiorkin method is developed and applied to the
described problem.

When the nodal stress values are calculated, the finite element norms are cal-
culated for each element as the average error of the field reconstruction through
the interpolation of those nodal values.

It can be noted that the first step of calculation of the nodal values of stress
produces a continuous stress field of stresses over the global domain. Neverthe-
less that field is hardly applicable for visualization procedures as the derivatives
of the field are discontinuous and the plotted fringes are unsmooth. Therefore
the augmented residual term is added to the previously described least squares
procedure while the magnitudes of the terms for every finite element are propor-
tional to the element norms. Explicit analysis of the smoothing procedure for
the reconstruction of the stress field is presented for a one-dimensional problem.

Digital images of two-dimensional systems simulating the realistic effect of
photoelasticity are presented. Those examples prove the importance of the in-
troduced smoothing procedure for practical applications and build the ground
for the development of hybrid numerical experimental techniques.

2 FEM Based Technique for Adaptive Conjugate
Smoothing

Stress component σ (a continuous function) inside a finite element can be cal-
culated in a usual way [3]:

σ = [D]{ε} (1)

where {ε} – column of generalized nodal strains of the analysed finite element;
[D] – vector row relating the strain component and nodal strains in the domain
of the finite element. Vector [D] involves the derivatives of the element’s shape
functions in conventional FEM models based on displacement formulation [3].
Therefore, though the displacement field is continuous in the global domain, the
strain field can be discontinuous at the inter-element boundaries [3].

Techniques used for the visualization of results from FEM analysis [4] require
the nodal values of the plotted parameter which are interpolated in the domain
of each finite element by its shape functions. Therefore visualization of the stress
field requires data on the nodal values of the stress. This is not a straightforward
problem for conventional FEM formulations.

Probably the natural way for calculation of nodal values of stress would be
the minimization of residual constructed as an integral of the squared difference
between the interpolated and factual stress fields over the global domain:∑

D.S.

(∫∫ (
[N ]{s} − σ

)2
dxdy

)
(2)

where abbreviation D.S. stands for FEM direct stiffness procedure [5]; integrals
are calculated over the domain of each finite element; [N ]–row of the shape func-
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tions of finite element;{s} – column of unknown nodal values of the component
of stress in currently integrated finite element.

Though such reconstruction of stress field solves the problem of discontinuity,
the derivatives of the stress field are still discontinuous at inter-element bound-
aries. Visualization procedures for such types of interpolated fields are highly
sensitive to such discontinuities of derivatives [4]. Therefore there exists a need
to design a method for smoothing the reconstructed field.

The proposed method is based on the augmentation of the residual (3) by a
penalty term for fast change of the stress in any direction in the analysed plane:

λi

((
∂σ

∂x

)2

+
(
∂σ

∂y

)2
)

(3)

where λi > 0 are smoothing parameters selected individually for every finite ele-
ment. Keeping in mind that the stress field is interpolated by the form functions
of the finite element the augmentation term can be approximately interpreted
as (

∂w

∂x

)2

+
(
∂w

∂y

)2

≈ {s}T [C]T [C]{s} (4)

where

[C] =

[
∂N1
∂x

∂N2
∂x . . . ∂Nn

∂x
∂N1
∂y

∂N2
∂y . . . ∂Nn

∂y

]
and n–number of nodes in the analyzed element; Ni – shape functions of the
i− th node.

Then the nodal values of stress are found minimizing the augmented residual:

d

(∑
D.S.

( ∫∫ (
([N ]{s} − σ)2 + λi{s}T [C]T [C]{s}

)
dxdy

))
dsi

= 0, (5)

where i = 1, . . . ,m, si is an i − th component (i − th nodal value) of global
vector of nodal values of strain {S}; m - number of nodes in the global domain.
Step-by-step differentiation leads to following equality:∑

D.S.

(∫∫ (
[N ]T [N ] + [C]Tλi[C]

)
dxdy

)
· {S} =

∑
D.S.

(∫∫
[N ]Tσdxdy

)
(6)

It can be noted that eq. 6 is a system of linear algebraic equations in respect of
unknown nodal values of {S}. Moreover, this formulation conveniently involves
the smoothing parameter λ into FEM formulation.

∑
D.S.(

∫∫
[N ]T [N ]dxdy) is a

positive definite matrix in conventional FEM [5], so the system matrix in eq. 6
will be also positive definite at λ > 0, what will guarantee the solution of {S}.
Finally, eq. 6 is very convenient for implementation, straightforwardly falls into
FEM ideology and therefore does not require extensive modifications of standard
FEM codes.
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3 One-Dimensional Example

The properties of conjugate smoothing can be illustrated by the following trivial
example. One-dimensional system consisting from three elements and four nodes

Fig. 1. One-dimensional system consisting from 3 linear finite elements and 4 nodes

is presented in Fig. 1. For simplicity it is assumed that the elements are linear,
co-ordinates of the nodes xk are:

xk = k − 1, k = 1, . . . , 4 (7)

Then the shape functions of the i− th element are:

N
(i)
1 (x) = i− x (8)

N
(i)
2 (x) = x− i + 1,

Here i = 1, . . . , 3.
The nodal strains are explicitly defined as εk. Strain distribution in the do-

main of the i−th finite element is approximated by appropriate shape functions:

ε(i)(x) = N
(i)
1 (x)εi + N

(i)
2 (x)εi+1 (9)

Then the stress inside the i− th element is calculated as the derivative of strain
[2]:

σ(i)(x) = B
(i)
1 (x)ε(i) + B

(i)
2 εi+1 = εi+1 − ε(i) (10)

where

B
(i)
1 (x) =

∂N
(i)
1 (x)
∂x

= −1 B
(i)
2 (x) =

∂N
(i)
2 (x)
∂x

= 1 (11)

The unknown nodal values of stress are denoted as sk. It can be noted that
[N ] =

⌊
N

(i)
1 (x);N (i)

2 (x)
⌋
; [C] =

⌊
B

(i)
1 (x);B(i)

2 (x)
⌋
. Then, for the i− th element:

i∫
i−1

[N ]T [N ]dx =

i∫
i−1

[ (
N

(i)
1 (x)

)2
N

(i)
1 (x)N (i)

2 (x)
N

(i)
1 (x)N (i)

2 (x)
(
N

(i)
2 (x)

)2
]
dx =

[
1
3

1
6

1
6

1
3

]
i∫

i−1

[C]T [C]dx =

i∫
i−1

[ (
B

(i)
1

)2
B

(i)
1 B

(i)
2

B
(i)
1 B

(i)
2

(
B

(i)
2

)2
]
dx =

[
1 −1
−1 1

]
(12)

i∫
i−1

[N ]Tσ(i)(x)dx =

i∫
i−1

[
N

(i)
1 (x)σ(i)(x)

N
(i)
2 (x)σ(i)(x)

]
dx =

[ εi+1−εi

2
εi+1−εi

2

]
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Initially it is assumed that the smoothing parameter λ is the same for all el-
ements. Direct stiffness procedure [5] over the three elements results into the
following system of linear algebraic equations:⎡⎢⎢⎣

1
3 + λ 1

6 − λ 0 0
1
6 − λ 2

3 + 2λ 1
6 − λ 0

0 1
6 − λ 2

3 + 2λ 1
6 − λ

0 0 1
6 − λ 1

3 + λ

⎤⎥⎥⎦ ·
⎡⎢⎢⎣
s1
s2
s3
s4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ε2−ε1

2
ε3−ε1

2
ε4−ε2

2
ε4−ε3

2

⎤⎥⎥⎦ (13)

The solution of this linear system can be found using computer algebra:

s1 =
36λ2(ε4 − ε1)− 12λ(8ε1 − 6ε2 − 3ε3 + ε4)− 19ε1 + 24ε2 − 6ε3 + ε4

3(36λ2 + 36λ + 5)

s2 =
36λ2(ε4 − ε1)− 6λ(10ε1 − 3ε2 − 6ε3 − ε4)− 7ε1 − 3ε2 + 12ε3 − 2ε4

3(36λ2 + 36λ + 5)
(14)

s3 =
36λ2(ε4 − ε1)− 6λ(ε1 + 6ε2 + 3ε3 − 10ε4) + 2ε1 − 12ε2 + 3ε3 + 7ε4

3(36λ2 + 36λ + 5)

s4 =
36λ2(ε4 − ε1) + 12λ(ε1 − 3ε2 − 6ε3 + 8ε4)− ε1 + 6ε2 − 24ε3 + 19ε4

3(36λ2 + 36λ + 5)

The reconstructed stress in the domain of the i− th element is approximated by
the shape functions of the i− th element:

S(i)(x, λ) = si(λ)N (i)
1 (x) + si+1(λ)N (i)

2 (x) i = 1, . . . , 3 (15)

It can be noted that

lim
λ→∞

(
s1(λ)

)
= lim
λ→∞

(
s2(λ)

)
= lim
λ→∞

(
s3(λ)

)
= lim
λ→∞

(
s4(λ)

)
=

ε4 − ε1

3
(16)

By the way, application of computer algebra simplifies the calculation of the
following integral:

3∑
i=1

(∫ i

i−1
S(i)(x, λ)dx

)
= ε4 − ε1 (17)

Remarkable is the simplicity of the result and the fact that the integral does not
depend from λ . By the way,

3∑
i=1

(∫ i

i−1
σ(i)(x)dx

)
=

3∑
i=1

(∫ i

i−1
(εi+1 − εi)dx

)
= ε4 − ε1 (18)

The produced equalities (14) and (15) enable construction of smoothed field of
stresses in the analyzed domain. Further improvement of the smoothing tech-
nique is possible when the smoothing parameters are selected individually for
each element. Such adaptive selection is based on the magnitude of error norms
of the elements which are calculated as:

Ri =

√√√√√ i∫
i−1

(
N

(i)
1 (x)si(0) + N

(i)
2 (x)si+1(0)− σ(i)(x)

)2
dx (19)



468 M. Ragulskis and V. Kravcenkiene

It can be noted that in determination (20) the nodal values of stress si(0) and
si+1(0) require the solution of eg. (13) at λ = 0. Calculation of the error norms
enables the selection of individual parameters of smoothing:

λi = aRi (20)

where a is a constant. Direct stiffness procedure will produce the following system
of algebraic equations:⎡⎢⎢⎣

1
3 + aR1

1
6 − aR1 0 0

1
6 − aR1

2
3 + a(R1 + R2) 1

6 − aR2 0
0 1

6 − aR2
2
3 + a(R2 + R3) 1

6 − aR3
0 0 1

6 − aR3
1
3 + aR3

⎤⎥⎥⎦ ·
⎡⎢⎢⎣
s1
s2
s3
s4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ε2−ε1

2
ε3−ε1

2
ε4−ε2

2
ε4−ε3

2

⎤⎥⎥⎦(21)

It is clear that the solution of eq.21 at a = 0 will coincide with the solution of
eq.13 at λ = 0. Computer algebra helps to prove that

lim
a→∞

(
s1(a)

)
= lim
a→∞

(
s2(a)

)
= lim
a→∞

(
s3(a)

)
= lim
a→∞

(
s4(a)

)
=

ε4 − ε1

4
(22)

at bounded error norms Ri.
Assumption of particular values of strains - for example ε1 = 0.02; ε2 = 0.02;

ε3 = 0.06 and ε4 = −0.02 enables the illustration of the reconstructed field
of stress. The nodal values of strain at λ = 0 are: s1 = −0.083; s2 = 0.045;
s3 = 0.021; s4 = −0.131. The error norms of the elements are: R1 ≈ 0.0426667;
R2 ≈ 0.0471781; R3 ≈ 0.0506667.

Then the system of equations 22 can be solved at different values of a and the
calculated nodal values of stress can be interpolated by the shape functions in
the domain of every element. The results are visualized in Fig. 2. It can be noted
that the reconstructed field of stress at a = 0 is continuous in the global domain,
but the discontinuity of its derivatives at inter-element boundaries is an obstacle
for construction of its smooth visual interpretations. Increase of parameter a
helps solving this problem what is illustrated in the following section.

Fig. 2. Reconstructed field of stress S at a = (i−1)∗0.25; i = 1, . . . , 20; the horizontal
lines represent σ
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4 Adaptive Smoothing for Stress Field Visualisation in
the Problem of Plane Stress

The components of stresses in the domain of the analysed finite element are
calculated in the usual way [2, 5]:⎧⎨⎩ σx

σy
τxy

⎫⎬⎭ = [D][B]{δ0} (23)

where {δ0} is the vector of nodal displacements of the analysed element; [B] is
the matrix relating the strains with the displacements; [D] is the matrix relating
the stresses with the strains; σx, σy, τxy are the components of the stresses in
the problem of plane stress. Conjugate smoothing of the stress field in the global
domain results in the following system of equations:(∑

i

∫∫
ei

(
[N ]T [N ] + [C]Tλi[C]

)
dxdy

)
· {δx} =

∑
i

∫∫
ei

[N ]Tσxdxdy

(∑
i

∫∫
ei

(
[N ]T [N ] + [C]Tλi[C]

)
dxdy

)
· {δy} =

∑
i

∫∫
ei

[N ]Tσydxdy (24)

(∑
i

∫∫
ei

(
[N ]T [N ] + [C]Tλi[C]

)
dxdy

)
· {δxy} =

∑
i

∫∫
ei

[N ]T τxydxdy

where {δx} - the vector of nodal values of σx; {δy} - the vector of nodal values of
σy; {δxy} - the vector of nodal values of τxy. Relative error norms for finite ele-
ments are calculated using the methodology described in Eq.(21) and averaging
for all three components of plain stress.

5 Computational Example and Concluding Remarks

Practical applicability and usefulness of the presented technique for adaptive
smoothing of discontinuous fields is illustrated by the following example where
the discontinuous stress field is visualised generating digital image of isochromat-
ics in virtual projection plane. The numerical procedure used for constructing
digital fringes is presented in [4]. Three patterns of fringes corresponding to the
same strain field are presented in Fig. 3. Unsmoothed fringes are presented in
Fig. 3a. It can be clearly seen that the structure of fringes is not uniform at the
inter-element boundaries what is especially distinct in the corners of the area.
Fig. 3b presents uniformly smoothed fringes. Though the structure of the pat-
tern is smoother than in Fig. 3a, the fringes in the corners are missing. That
corresponds to an over-smoothed state and illustrates a non-physical behaviour
of the system. Fig. 3c corresponds to adaptive smoothing where the value of pa-
rameter λ is selected in accordance to finite element norms as described earlier.
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Fig. 3. Photoelastic fringes for a plane stress problem: a–unsmoothed fringes at λ =
0; b–smoothed fringes at constant λ = 0, 1 for all elements; c–fringes after adaptive
smoothing

The whole pattern of fringes is rather smooth, while the corner fringes are not
eliminated.

Presented smoothing technique can be applied in different engineering ap-
plications. Especially it is useful in hybrid numerical - experimental techniques
where the functionality of the systems is mimicked in virtual computational
environment and the represented field of physical parameters is discontinuous.
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Finite Differences Scheme for the Euler System
of Equations in a Class of Discontinuous

Functions
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Istanbul 34900, Turkey

Abstract. In this paper, the finite difference scheme for solving the
Cauchy problem for the simplified Euler system in a class of discountin-
uous functions, which describes irrational flow of fluid by neglecting the
viscosity and temperature effects is investigated. For this purpose, firstly
the Euler system is decomposed with respect to its coordinates. Then
an auxiliary problem which is superiour to the main problem in terms
of obtaining the solution is introduced, and shown that the solutions of
this auxiliary problem are smoother than the solutions of the main prob-
lem. Additionally, the auxiliary problem provides to develop effective and
efficient algorithms.

Keywords: Computational hydrodynamics, compressible and incom-
pressible flow, Euler systems, numerical modeling, shock waves.

1 Introduction

In this paper, we will investigate the system of differential equations describing
the flow of perfect fluid given as below

∂u
∂t

+ (u∇)u = F− 1
ρ
∇p, (1.1)

∂ρ

∂t
+∇(ρu) = 0. (1.2)

Here, u=(u1, u2, u3) is the velocity vector, F is the body force on an elementary
unit volume dv; p is the surface force (pressure) on a unit surface element ds; ρ
is the density; and ∇ is the nabla operator.

Further details about these equations (1.1), (1.2) can be found in [2], [3],
[4], [5], [12], and etc. Also, it is a well known fact that by using Euler system of
differential equations many problems of fluid dynamics can be solved. Within the
limits of this paper for the simplified Euler system, the special finite differences
method in a class of discontinuous functions is suggested.

If it is assumed that the problem is one-dimensional and the body force F
and the surface force p are ignored, then the system of equations above become
the well known Hopf’s equation as ∂u

∂t + u∂u∂x = 0.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 471–477, 2005.
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The first order nonlinear partial equations, in particular, the Hopf’s equation
and its exact solution are well studied in literature (see [1], [3], [6], [7], [8]).

As it is known that if the initial profile has both a negative and a positive
slopes, the solution of Hopf’s equation includes the first type points of discounti-
nuity (shock waves) whose positions are unknown beforehand. Otherwise, the
solution of Hopf’s equation must be a discountinuous function. As to be forced
to work with discountinuous functions and be able to investigate the true nature
of the physical phenomena, it is required to obtain the solution of Euler system
(1.1) in a class of discountinuous functions. This is why, in this paper, a special
finite differences method for solving the Cauchy problem of the simplified Euler
system is examined.

In order to explain the details of the suggested numerical method, we assume
that the function F included in the Eq. (1.1) is zero.

We consider the system (1.1) of nonlinear partial equations with the initial
condition given as

u(x,0) = u(0)(x). (1.3)

Here, u(0)(x) is the given initial value of velocity vector having a compact
support and a positive and a negative slopes. We introduce the potential function
Φ such that

u = grad Φ (1.4)

and assume that the flow is irrotational, i.e,

curl u = 0. (1.5)

Taking account of (1.4), (1.5), and ρ = constant, then and the system equation
(1.1) can be rewritten as follows

∂

∂t
grad Φ + grad

[
1
2
U2 +

p
ρ

]
= 0. (1.6)

We introduce the following notations

U2 = u2 + v2 + w2, (1.7)

and

Φ = Φ∗ +
∫ t

0
c(τ)dτ. (1.8)

In this notations, we have

∂Φ∗

∂t
+

1
2
U2 +

p
ρ

= 0. (1.9)

The equation (1.9) is called Cauchy’s integral for (1.1). If the function u inde-
pendent of t, then the Eq.(1.9) can be rewritten as 1

2U
2 +p

ρ = 0. This relation
is called Bernoulli’s integral (see, [2], [3], [5], [12]).

On the other hand, the Eq.(1.9) is the vectorial form of the first integral of the
system of equations (1.1). It is obvious that, each solution of Eqs. (1.1) satisfies
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the equation (1.9) too, and inversely, the solutions of (1.9) are the solutions of
(1.1).

In general, the arbitrary constant c, which is included in (1.8) depends on t,
and therefore, the Eq.(1.6) is not defined as single-valued. Using the notations
(1.4) and (1.7), the Eqs. (1.6) can be rewritten as

∂u
∂t

+ grad
[(

U2

2
+

p

ρ

)]
= 0. (1.10)

Now, we consider the case that the ρ is depended on x and introduce the
following notation

- =
∫

dp

ρ
.

Then the system equations (1.6)) become as follows

grad
[
∂Φ

∂t
+

u2 + v2 + w2

2
+ -

]
= 0. (1.11)

Now, taking account of (1.9) and (1.7), the system equation (1.11) can be
rewritten as follows

∂u
∂t

+ grad
[
U2

2
+ -

]
= 0. (1.12)

Thus, as seen from (1.12) these equations are the decomposed form of the
system equations (1.1) with respect to its coordinates. The solution of each
equation in this system becomes multivalued functions when the corresponding
initial functions contain a positive and a negative slopes. Since, from a physical
point of view, the multivalued functions can not be true solutions as indicated
in [9], [10], [11], we are able to construct a single valued solution with the points
of discontinuity of the first type instead of a multivalued solution. It is clear that
the solution with these properties can be described by means of a weak solution.
For that reason, the weak solution is determined as:

Definition 1. A function u(x, t) which satisfy the condition (1.3) is called a
weak solution of the problem (1.1), (1.3), if the following integral relation∫

R4

{
u(x, t)

∂ϕ(x, t)
∂t

+
(

U2

2
+

p
ρ

)
gradϕ(x, t)

}
dxdt

+
∫ ∞

−∞
u(x,0)ϕ(x,0)dx = 0 (1.13)

hold for every test function ϕ(x, t) ∈ H1(
o
R

4
) and ϕ(x,T) = 0, here, H1(

o

R
4
)

is a Hilbert’s space on
o

R
4
.
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2 The Auxiliary Problem

When we include the concept of a weak solution for the system (1.1), (1.3), a
new problem arises that the position and time evolution of the points of disconti-
nuities are unknown. On the other hand the existence of points of discontinuities
causes many problems in the applications of well known classical numerical meth-
ods to the problem (1.1), (1.3) as the approximation of derivatives at the points
of discontinuities is not expressed by finite differences formula.

To determine the weak solution of the problem (1.1), (1.3) in accordance with
[9], [10], [11], we introduce the auxiliary problem as follows

∂

∂t

∫
u(x, t)dx +

U2

2
+

p

ρ
= C(t), (2.1)

u(x,0) = u(0)(x). (2.2)

Here C = (C1(t), C2(t), C3(t)), are any constants. As it is obvious, from (2.1),
(2.2) that the function u may be discontinuous function too. So the class of
solutions of the problem (2.1), (2.2) coincide with the class of weak solutions
defined by the relation (1.13).

We introduce the following notations as∫
u(x, t)dx + C(t) = v(x, t). (2.3)

Here, v=(v1, v2, v3), and the expresion (2.3) denotes
∫
ui(x, t)dxi + Ci(t) =

vi(x, t) in which Ci is an arbitrary function for each i and independent of xi
only, (i = 1, 2, 3).

In these notations, the system equations (2.1), (2.2) can be rewritten as

∂v
∂t

+
U2

2
+

p

ρ
= 0. (2.4)

The initial condition for (2.4) is

v(x,0) = v(0)(x). (2.5)

Here, v0(x) is any continuous solution of the following equation

dv(0)(x)
dx

= u(0)(x). (2.6)

The auxiliary problem (2.1), (2.2) has the following advantages:

• The function vector v(x, t) is smoother than the vector function u(x, t), as
their order of differentiable property is higher than the latter.

• u(x, t) can be determined without using the derivatives of the function
u(x, t) with respect to x1, x2, x3 and t;

• the function u(x, t) can be discontinuous too.
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Theorem 1. If v(x, t) is the smoother solution of the auxiliary problem (2.1),
(2.2), then the function

u(x, t) =
∂v(x, t)

∂x
(2.7)

is the weak solutions of the problem (1.1), (1.3) in the sense of definition 1.

Since, the suggested auxiliary problem does not involve any derivatives of
u(x, t) with respect to x1, x2, x3 and t the numerical solution to the problem
(1.1), (1.3) can be obtained with no difficulty by means of the numerical solution
to the problem (2.1), (2.2).

Each equation of the (1.10) is the first order nonlinear wave equation, and
furthermore, they express conservation laws. Therefore, the integral

∫
u(x, t)dx

independent of t. We introduce the following notation

E(0) =
∫

u(0)(x)dx.

The number E(0) is called the critical value of the function v(x, t).
Definition 2. The functions defined by

vext(x, t) =

{
v(x, t), v(x, t) < E(0),

E(0), v(x, t) ≥ E(0)
(2.8)

is called the extended solutions of the problem (2.1), (2.2).
From the theorem 1, for the weak solutions of the problem (1.1), (1.3), we

have

uext(x, t) =
∂vext(x, t)

∂x
. (2.9)

Thus, the function defined by (2.9) is the extended ( or weak ) solution of
the problem (1.1), (1.3). Thus, the geometrical location of the points at where
the functions v(x, t) take the critical values defining the jump surface of u(x, t)
vector. By putting another way, the jump points for the u(x, t) vector are such
points that on the right hand side of these points, u(x, t) takes zero values.

Note. The weak solution for the system equations (1.12) with initial condi-
tions (1.3) is constructed as above.

3 Numerical Algorithm in a Class of Discontinuous
Functions

In order to devolope a numerical algorithm for the problem (1.1), (1.3), at first,
we cover the region R4

x1,x2,x3,t by the grid as

Ωhx1 ,hx2 ,hx3 ,τ
= {(x1

i , x
2
j , x

3
l , tk) | x1

i = ihx1 , x2
j = jhx2 , x3

l = lhx3 , tk = kτ ;
i = . . .−M,−(M − 1), . . . ,−1, 0, 1, . . . ,M, . . . ;
j = . . .−N,−(N − 1), . . . ,−1, 0, 1, . . . , N, . . . ;
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l = . . .− L,−(L− 1), . . . ,−1, 0, 1, . . . , L; k = 0, 1, 2, . . . ;
hx1 > 0, hx2 > 0, hx3 > 0, τ > 0}.

Here, hx1 , hx2 , hx3 and τ are the steps of the grid Ωhx1 ,hx2 ,hx3 ,τ
with respect

to x1, x2, x3 and t variables, respectively.
At any point (x1

i , x
2
j , x

3
l , tk) of the grid Ωhx1 ,hx2 ,hx13,τ , we approximate the

equation (2.4) by the finite difference scheme as follows

Vk+1 = Vk −
τ

2
U

2
k −

℘k

ρ
. (3.1)

Here, the grid functions Vk, U
2
k, and ℘k represent the approximate values of

the functions v and p, at point (x1
i , x

2
j , x

3
l , tk).

The finite differences analog for the initial condition (2.5) at the (x1
i , x

2
j , x

3
l )

points of the grid Ωhx1 ,hx2 ,hx3 ,τ
is given as

V(0) = v(0)(xi). (3.2)

Here, the grid functions v0(xi) is defined by the following equation

(v(0)(xi))x = u(0)(xi). (3.3)

Thus, the following theorem holds good.

Theorem 2. If Vk+1 is the numerical solution of the auxiliary problem (3.1),
(3.2), then the relations defined by

Uk+1 = (Vx)k+1 (3.4)

is numerical solutions of the main problem (1.1), (1.3).

The difference scheme (3.1), (3.2) is the first order with respect to τ , however,
the order of it can be made higher by applying, for example, the Runge-Kutta
method.

As it can be seen from (3.1),(3.2), the suggested algorithm is very effective
and economic from a computational point of view.
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The λ-Error Order in Multivariate Interpolation
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Abstract. The aim of this article is to introduce and to study a gene-
ralization of the error order of interpolation, named λ - error order of
interpolation. This generalization makes possible a deeper analysis of the
error in the interpolation process. We derived the general form of the λ
- error order of interpolation and then we applied it for many choices of
the functional λ.

1 Preliminaries

We consider the general polynomial interpolation problem: for a given set of
functionals, Λ, find a polynomial subspace, V , of the space of polynomials in
”d” variables, Πd, such that, for an arbitrary analytical function f , there is a
unique polynomial p ∈ V which matches f on the set Λ, that is

λ(p) = λ(f), ∀ λ ∈ Λ; f ∈ A0 (1)

The space V is named an interpolation space for Λ.
We associate to any functional λ the generating function, λν :

λν(x) =
∑
α∈Nd

Dαλν(0)
α!

xα =
∑
α∈Nd

λ(mα)
α!

xα, (2)

mα(x) = xα, x ∈ Rd, α = (α1, . . . , αd) ∈ Nd.
The expression of this function can be deduced ( see [4]), using the equality:

λν(z) = λ(ez), with ez(x) = ez·x, z, x ∈ Rd. (3)

In order to represent the action of a functional on a polynomial, we introduce
the pair < f, p >, between an analytical function f and a polynomial p:

< f, p >= (p(D)f)(0) =
∑
α∈Nd

Dαp(0)Dαf(0)
α!

, (4)

Next, we denote by |α| = α1+. . .+αd the length of α. If p =
∑

|α|≤deg p
cα(·)α, then

p(D) is the differential operator with constant coefficients: p(D) =
∑

|α|≤deg p
cαD

α.

Obviously, the pair (4) is a genuine inner product on spaces of polynomials.
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Thus, λ(p) =
∑
α∈Nd

Dαλν(0)Dαp(0)
α!

= (p(D)λν)(0) =< λν , p >.

For any g ∈ A0, we define the least term, g↓= Tjg, such as the first nonzero
term in the Taylor polynomial of g.

Let be

HΛ = span{λν ; λ ∈ Λ}; HΛ↓= span{g↓; g ∈ HΛ}. (5)

Using the results in [4] it can be proved that the polynomial subspace HΛ↓
is an interpolation space for the conditions Λ. If Λ is a set of linear independent
functionals, then #Λ = dim HΛ and the generating functions of the functionals
in Λ form a basis for HΛ.

There comes out from [1] the following proposition:

Proposition 1. Let Λ = {λ1, . . . , λn} be a set of linear functionals, linear in-
dependent and let be a basis, for example pj = λνj , j ∈ {1, . . . , n}, of HΛ. We
can construct, inductive, another basis gj, j ∈ {1, . . . , n} of HΛ, having the ”or-
thogonality” property: < gi, gk↓>�= 0 ⇔ k = i. The functions of the new basis
are given by:

gj = pj −
j−1∑
l=1

gl
< pj , gl↓>
< gl, gl↓>

(6)

If, in the inductive process we obtain deg gj↓> deg gi↓, for certain i < j, then we
must recalculate the function gi, in order to maintain the orthogonality property,
using the formula:

gi = gi − gj ·
< gi, gj↓>
< gj , gj↓>

(7)

Let be

gj(x) =
n∑
i=1

cj,i λ
ν
i (x), j ∈ {1, . . . , n} (8)

and f ∈ A0. We extend the inner product (4) such as

< gj , f >=
n∑
i=1

cj,i < λνi , f >=
n∑
i=1

cj,iλi(f) (9)

with cj,i given in (8).

2 Properties of the Interpolation Scheme

Next, we will refer to the interpolation with respect to the conditions Λ, from
the space HΛ↓. This is the ”least interpolation”, introduced by C. de Boor in
[4]. In order to prove the main results in section 3, we need some properties of
the interpolation operator and of the dual operator and we need to introduce
two new notions: the λ-remainder of interpolation and the function ενΛ,λ.
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Theorem 1. The unique element LΛ(f) ∈ HΛ↓ which interpolates f ∈ A0 with
respect to the conditions Λ is

LΛ(f) =
n∑
j=1

gj↓
< gj , f >

< gj , gj↓>
, n = #Λ (10)

Proof. Using the orthogonality property of the basis gj , j ∈ {1, . . . n} and (10),
we get < gi, LΛ(f) >=< gi, f >, ∀ f ∈ A0 and hence λk(LΛ(f)) = λk(f),
k ∈ {1, . . . , n}.

The following theorem was proved in [6].

Theorem 2. The operator

L∗
Λ(f) =

n∑
j=1

gj
< f, gj↓>
< gj , gj↓>

; f ∈ A0. (11)

has the duality property:

< L∗
Λ(g), f >=< g,LΛ(f) >, g, f ∈ A0, (12)

In [7] we introduced the λ-remainder, which generalizes the classical inter-
polation remainder.

Definition 1. Let be the interpolation formula:

f = LΛ(f) + RΛ(f), (13)

with RΛ being the remainder operator. We name λ-remainder, the value

RΛ,λ(f) = λ(RΛ) = λ[(1− LΛ)(f)]; f ∈ A0; λ ∈ (Πd)′ (14)

We notice that for λ ∈ Λ we get RΛ,λ(f) = 0, ∀f ∈ A0.

Proposition 2. The λ-remainder can be expressed such as:

RΛ,λ(f) =< ενΛ,λ, f >, (15)

with
ενΛ,λ = (1− L∗

Λ)(λν). (16)

Proof. RΛ,λ(f) = λ[(1− LΛ)(f)] =< λν , f > − < L∗
Λ(λν), f >=

=< λν − L∗
Λ(λν), f >=< ενΛ,λ, f >.

Corollary 1. The expression of the classical interpolation remainder is:

(RΛ(f))(x) =< ex − L∗
Λ(ex), f >, with ex(t) = ex·t; x, t ∈ Rd. (17)

Proof. (RΛ(f))(x) = RΛ,δx
(f) =< ενΛ,δx

, f > and the generating function of the
evaluation functional λ = δx is λν = ex.
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Proposition 3. ενΛ,λ satisfies the equality

< ενΛ,λ, f >= λ(f),∀ f ∈ kerLΛ (18)

Proof. < ενΛ,λ, f >= RΛ,λ(f) =< λ, f > − < λ,LΛ(f) >.
But, LΛ(f) = 0 for all f ∈ kerLΛ and hence < λ,LΛ(f) >= 0.

Theorem 3. ενΛ,λ ⊥ HΛ↓ and every homogeneous component of ενΛ,λ satisfies
the same orthogonality property.

Proof. Let be p ∈ HΛ ↓. Then, < ενΛ,λ, p >= RΛ,λ(p) = 0. Consequently,
ενΛ,λ ⊥ HΛ↓.

The polynomial subspace HΛ↓ is generated by homogeneous polynomials.
Therefore (ενΛ,λ)

[k] ⊥ HΛ↓.
For any analytical function, g ∈ A0, we had defined the k - order homoge-

neous component, such as: g[k] =
∑

|α|=k
Dαg(0)(·)α/α!

Theorem 4. The operator LΛ in (10) is degree reducing, that is

(LΛ(f)) ≤ deg(f), ∀ f ∈ Πd

and the inequality is strict if and only if f ↑ ⊥HΛ↓, with f ↑ being the leading
term of the polynomial f .

Proof. Let f ∈ Πd and deg(f) = k.
There comes out from (10), that deg(LΛ) ≤ max

j=1,...n
(deg(gj↓)).

If deg(gj↓) > k then < gj , f >= 0. If deg(gj↓) = k, then, the following implica-
tions hold, for any j ∈ {1, . . . , n}:

f↑⊥ HΛ↓⇔< p, f↑>= 0,∀ p ∈ HΛ↓⇒< gj↓, f↑>= 0 ⇒< gj , f >= 0.

Consequently deg(LΛ(f)) < deg(f), ∀ f ∈ Πd, with f↑⊥ HΛ↓.
Let’s suppose now that deg LΛ(f) < deg (f). Hence (f − LΛ(f))↑= f↑.
We use the fact that if p(D) annihilates HΛ, then p↑ (D) annihilates HΛ↓

(see [1]) and the following implications:

λ(p) = 0, ∀ λ ∈ Λ⇔ p ⊥ HΛ ⇒ p↑⊥ HΛ↓ .

Therefore:

λ(f−LΛ(f)) = 0,∀ λ ∈ Λ⇔ (f−LΛ(f)) ⊥ HΛ ⇒ (f−LΛ(f))↑⊥ HΛ↓⇔ f↑⊥ HΛ↓

Corollary 2. The following inequality holds : deg LΛ(ενΛ,λ) < deg (ενΛ,λ)

Proof. Taking into account theorem 3, ενΛ,λ↑⊥ HΛ↓ and we may apply theorem 4.
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3 The λ-Error Order of Interpolation

Definition 2. (C. de Boor, [3]) Let be L : A0 → Πd a polynomial interpolation
operator. The error order of interpolation is the greatest integer k such that
f(x)− (L(f))(x) = 0, ∀ f ∈ Πd

<k.

We generalize this definition.

Definition 3. For the interpolation scheme presented in section 1, we name λ-
error of interpolation, the greatest integer k such that RΛ,λ = 0, ∀ f ∈ Πd

<k,
λ ∈ (Πd)′, RΛ,λ being defined in (14).

If in definition 3 we take λ = δx,∀x ∈ Rd, we obtain definition 2.

Theorem 5. If HΛ↓�= Πm, then the λ-error order of interpolation is given by
the deg(ενΛ,λ↓), ενΛ,λ being defined in (16).

Proof. Let k = deg(ενΛ,λ↓) and f ∈ Πd
<k. Obviously deg(f↑) < k and

< ενΛ,λ, f >= 0, hence the λ-error order of interpolation is greater or equal k.
First, let’s consider that there is not any m ∈ N such that HΛ↓= Πd

m. Let’s
suppose by contradiction that RΛ,λ(f) = 0,∀ f ∈ Πd

k . Then < ενΛ,λ, f >= 0 and
taking into account theorem 3 we also get < ενΛ,λ↓, f >= 0,∀ f ∈ Πd

k . This is a
contradiction, because ενΛ,λ↓ is a homogeneous polynomial of degree k.

Similarly, the supposition that RΛ,λ(f) = 0, ∀ f ∈ Πd
<q, with q > k leads

us to the contradiction < ενΛ,λ↓, f [k] >= 0,∀ f ∈ Πd
<q.

If HΛ↓= Πd
m, the λ- error order of interpolation is m + 1, be cause

ενΛ,λ↓⊥ HΛ↓.

Theorem 6. The following equality holds:
deg ενΛ,λ↓= min{deg p|p ∈ Πd; λ(p) �= 0; λ ∈ (Πd)′; λ �∈ Λ; p ∈ ker(LΛ)}.

Proof. Let k = deg ενΛ,λ↓ and
k′ = min{deg p|p ∈ Πd; λ(p) �= 0; λ ∈ (Πd)′; λ �∈ Λ; p ∈ ker(LΛ)}.
Taking into account theorem 3 we get:
p ∈ ker(LΛ) ⇒< ενΛ,λ, p >= λ(p) �= 0 ⇒ deg ενΛ,λ↓≤ deg p↑= deg p⇒ k ≤ k′.

On the other hand let q = ενΛ,λ↓ −LΛ(ενΛ,λ↓). Using theorems 3 and 4, we
obtain deg q = deg ενΛ,λ↓= k.

Much more λ(q) = RΛ,λ(ενΛ,λ↓) =< ενΛ,λ, ε
ν
Λ,λ↓> > 0 and LΛ(q) = 0. But,

from q ∈ Πd; λ(q) �= 0 and q ∈ ker(LΛ) we obtain deg q ≥ k′, that is k ≥ k′.

Corollary 3. If q ∈ Πd
≥k, then the expression of the λ- remainder is

RΛ,λ(q) =< ενΛ,λ, q >=
∑

α∈Nd,|α|≥k

DαενΛ,λ(0) ·Dαq(0)
α!

with k = deg ενΛ,λ↓.
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Taking into account that
(
q(D)ενΛ,λ

)
(0) = 0,∀ q ∈ Π<k, we may formulate

the following corollary:

Corollary 4. ενΛ,λ vanishes to order k = deg ενΛ,λ↓ at 0.

The next theorem allows us to study the classical remainder and hence to
obtain the error order of interpolation.

Theorem 7. The operator LΛ given in (10) reproduces the monomials xα,

x ∈ Rd, α ∈ Nd, if and only if
n∑
i=1

ck,iλi(xα) = Dαgk(0), with coefficients

ck,i given in (8).

We proved this theorem in [5], for d = 2, but the proof is the same for
d > 2.

4 Application

Let Λ = δΘ, Θ = {θi; i = 1, . . . , 4} = {(a, 0); (0, b); (−a, 0); (0,−b)}, a, b ∈ R+.
We generate the basis {gi; i = 1, . . . , 4} and {gi↓; i = 1, . . . , 4} of the spaces
HΛ and HΛ ↓, using the relations (6) and (7). We start with g1 = eθ1 and
obtain:

g1(x, y) =
1

a4 + b4
[
b4 cosh(ax) + a4 cosh(by)

]
g1↓ (x, y) = 1; < g1, g1↓>= 1

g2(x, y) = sinh(by)− sinh(ax)

g2↓ (x, y) = by − ax; < g2, g2↓>= a2 + b2

g3(x, y) =
1

(a2 + b2)(a4 + b4)
· E(x, y)

E(x, y) = [(a6 − a4 + a4b2 + a2b2 + 2b6) cosh(ax)− 2(a4b2 + b6)eax+
+(a6 + a4 + a4b2 − a2b2 + 2a2b4) cosh(by)− 2(a6 + a2b4)eby ]

g3↓ (x, y) = − 2ab2

a2 + b2
x− 2a2b

a2 + b2
y; < g3, g3↓>=

4a2b2

a2 + b2

g4(x, y) = 2[cosh(by)− cosh(ax)]

g4↓ (x, y) = −a2x2 + b2y2; < g4, g4↓>= 2(a4 + b4).

The polynomials g2↓ and g3↓ are linear independent, hence, the interpo-
lation space is: HΛ↓= span{gi↓; i = 1, . . . 4} = Π1 + span{−a2x2 + b2y2}
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The coefficients ci,j ; i, j ∈ {1 . . . 4}, in formula (8) are given below:

c1,1 =
b4

2(a4 + b4)
; c3,1 = k(a6 − 3a4b2 − a4 + a2b2 − 2b6);

c1,2 =
a4

2(a4 + b4)
; c3,2 = k(−3a6 + a4b2 + a4 − a2b2 − 2a2b4);

c1,3 =
b4

2(a4 + b4)
; c3,3 = k(a6 + a4b2 − a4 + a2b2 + 2b6);

c1,4 =
a4

2(a4 + b4)
; c3,4 = k(a6 + a4b2 + a4 − a2b2 + 2a2b4);

c2,1 = −1/2; c4,1 = −1
c2,2 = 1/2; c4,2 = 1
c2,3 = 1/2; c4,3 = −1
c2,4 = −1/2; c4,4 = 1

We used the notation k =
1

2(a2 + b2)(a4 + b4)
.

Using (17), we get the expression of the remainder

(RΛ(f)) (x, y) =< e(x,y), f > −
4∑
i=1

(d1,i + d2,ix + d3,iy + d4,ix
2 + d5,iy

2) · f(θi),

For i ∈ {1, . . . , 4} we have:

d1,i = c1,i; d2,i = −
(

a

a2 + b2
c2,i +

1
2a

c3,i

)
; d3,i =

b

a2 + b2
c2,i −

1
2b

c3,i;

d4,i = − a2

2(a4 + b4)
c4,i; d5,i =

b2

2(a4 + b4)
c4,i

We will calculate and analyze the λ-error order of interpolation for various
choices of functional λ.

Case 1. The case of evaluation functionals

We want to study the classical error order of interpolation, using theorem 5.
In this case λ = δ(t1,t2), (t1, t2) ∈ R2. The generating function is
λν(x, y) = et1x+t2y. We calculate the homogeneous components of ενΛ,λ and
obtain: (ενΛ,λ)

[0] = 0;

(ενΛ,λ)
[1] =

b(b− a)
a2 + b2

(t1 − t2)x +
1

a2 + b2
[t1(ab− a2)− t2(ab + b2)]y

If a �= b then deg(ενΛ,λ)↓= 1, ∀(t1, t2) ∈ R2 and the λ-error order equals 1,
∀λ = δ(t1,t2), that is the classical error order of interpolation is equal to 1.

If a = b, then for t2 = 0, (ενΛ,λ)
[1] = 0, that is the λ-error order of interpola-

tion is greater than 1, for λ = δ(t1,0).
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The same result can be obtained using theorem 7.

LΛ reproduces the constant functions, because
4∑
i=1

ck,iδθi(1) = gk(0),

∀k ∈ {1, . . . , 4}, but it does not reproduce the polynomials of degree 1, be-

cause
4∑
i=1

c3,iδθi(m(1,0)) �= D(1,0)g3(0), with m(1,0)(x, y) = x. Consequently, the

error order of interpolation is equal to 1.
We notice that the analysis of λ- error order of interpolation is deeper

than the analysis of classical error order of interpolation.

Case 2. The case of Birchoff type functionals

The functional λq,θ(f) = (q(D)f)(θ), q ∈ Πd, θ ∈ R2 is a generalization of
the derivative of f at the point θ, that is why, it is important to study the λq,θ
- error order of interpolation.

Let’s choose q(x, y) = m(1,0)(x, y) = x and θ = (t1, t2) ∈ R2. The generating
function is λνq,θ(x, y) = xet1x+t2y.

Next, we will denote λ = λm(1,0),(t1,t2). The results we have obtained are:
(ενΛ,λ)

[0] = 0
(ενΛ,λ)

[1] = 0

(ενΛ,λ)
[2] = x2

[
b4

a4+b4 t1 + a(a6−a4−a4b2+a2b2)
4(a2+b2)(a4+b4)

]
+ t2xy+

+y2
[
a2b2

a4+b4 t1 + b2(−a6+a4+a4b2−a2b2)
4a(a2+b2)(a4+b4)

]
That means that deg(ενΛ,λ) = 2 and the λ-error order of interpolation is

equal 2. If t2 = 0 and a6 − a4b2 − b6 − b4 = 0 we have deg(ενΛ,λ) > 2 and in this
case the λ-error order is greater then 2.
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Transilvania Braşov, vol.1 (2001) 289-296

7. Simian D. : The λ - remainder in minimal polynomial interpolation of multivari-
ate functions. Proceedings of International Symposium on Numerical Analysis and
Approximation Theory Cluj University Press (2002) 418-429



Computational Aspects in Spaces of Bivariate
Polynomial of w-Degree n

Dana Simian1, Corina Simian2, and Andrei Moiceanu1

1 Universitatea ”Lucian Blaga” din Sibiu, Facultatea de Ştiinţe,
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Abstract. Multivariate ideal interpolation schemes are deeply connected
with H-bases. Both the definition of a H-basis and of an ideal interpo-
lation space depend of the notion of degree used in the grading decom-
position of the polynomial spaces. We studied, in the case of bivariate
polynomials, a generalized degree, introduced by T. Sauer and named
w-degree. This article give some theoretical results that allow us to con-
struct algorithms for calculus of the dimension of the homogeneous spaces
of bivariate polynomials of w - degree n. We implemented these algo-
rithms in C++ language. The analysis of the results obtained, leads us
to another theoretical conjecture which we proved in the end.

1 Introduction

The multivariate polynomial interpolation problem is a subject which is currently
an active area of research, taking into account the importance of multivariate
functions in modelling of real processes and phenomena. It is known that, in the
univariate case, spline functions are more useful for the interpolation of large
data sets, be cause the interpolation polynomials often oscillate up to a point
which renders them useless. This oscillation is caused by the degree of the inter-
polation polynomials. In higher dimensions, the degree of polynomials increases,
related to the number of conditions, lower than in univariate case. Therefore,
multivariate polynomial interpolation may be a reasonable tool for a “moderate”
number of conditions.

Let F ⊃ Πd be a space of functions which includes polynomials in d variables
and letΛ be a set of linear independent functionals. The general problem of polyno-
mial interpolation is to find a polynomial subspace, P, such that, for an arbitrary
function f ∈ F there is an unique polynomial p ∈ P satisfying the conditions

λ(f) = λ(p), ∀λ ∈ Λ. (1)

The space P is called an interpolation space for the conditions Λ. There are
usually more interpolation spaces for a set of conditions. From a practical point
of view we are interested in a such space of minimal degree.
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On the other hand, it is known (see [1], [2]) that, in the case of an ideal
interpolation scheme, that is if ker(Λ) is a polynomial ideal, there is a strong
connection between the minimal interpolation space with respect to conditions
Λ and the space of reduced polynomials modulo a Gröbner basis or a H-basis of
the ideal ker(Λ).

Definition 1. A set of polynomials, H = {h1, . . . , hs} ⊂ Πd \ {0}, is a H-basis
for the ideal I =< H > if any p ∈ I, p �= 0, has an unique representation:

p =
s∑
i=1

higi, gi ∈ Πd and deg(hi) + deg(gi) ≤ deg(p).

Both, in definition of interpolation spaces and in definition of H-bases, the
notion of the polynomial degree is determinative.

2 The Generalized Degree

Let (Γ,+) denote an orderer monoid, with respect to the total ordering ≺, such
that: α ≺ β ⇒ γ + α ≺ γ + β, ∀ α, β, γ ∈ Γ.

Definition 2. ([3]) A direct sum

Π =
⊕
γ∈Γ

P(Γ )
γ (2)

is called a grading induced by Γ , or a Γ -grading, if ∀ α, β ∈ Γ

f ∈ P(Γ )
α , g ∈ P(Γ )

β ⇒ f · g ∈ P(Γ )
α+β (3)

The total ordering induced by Γ gives the notion of degree for the compo-
nents in P(Γ )

γ . Each polynomial f �= 0, has a unique representation

f =
s∑
i=1

fγi
, fγi

∈ P(Γ )
γi

; fγi
�= 0 (4)

The terms fγi
represent the Γ - homogeneous terms of degree γi.

Assuming that γ1 ≺ . . . ≺ γs, the Γ - homogeneous term fγs
is called the

leading term or the maximal part of f , denoted by f (Γ ) ↑.
If Γ = N with the natural total ordering, we obtain the H-grading because

of the homogeneous polynomials. In that case we have:

P(Γ )
k = P(H)

k = Π0
k and Πn =

n⊕
k=0

P(H)
k =

n⊕
k=0

Π0
k

The homogeneous polynomials are: Π0
n = {p(x) =

∑
|α|=n

cαx
α, x = (x1, . . . , xd)}

Different H-gradings can be obtained, by using another total orderings.
In 1994, T. Sauer proposed, in [1], a generalization of the degree by using a

weight w ∈ Nd.

Definition 3. ([1]) The w-degree of the monomial xα is
δw(xα) = w · α = (w,α) =

∑d
i=1 wi · αi, ∀ α ∈ Nd, w = (w1, . . . , wd) ∈

Nd, x ∈ Rd.
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3 The H-Grading Induced by the w-Degree

The aim of this paper is to study, in the case of two variables, the H-grading
induced by the w- degree. We will denote by Πn,w the vector space of all poly-
nomials of w- degree less than or equal to n and we will denote by Π0

n,w the
vector space of all homogeneous polynomials of total w- degree exactly n:

Πn,w =

⎧⎨⎩ ∑
w·α≤n

cαx
α | cα ∈ R, α ∈ Nd

⎫⎬⎭
Π0
n,w =

{ ∑
w·α=n

cαx
α | cα ∈ R, α ∈ Nd

}
Let consider the grading by w-degrees. In that case the polynomials in (2)

are: P(Γ )
k = Π0

k,w

We introduce the following notations:

A0
n,w = {α ∈ Nd | w · α = n}, w ∈ (N∗)d, n ∈ N, and rn,w = #(A0

n,w)

The polynomial homogeneous subspace of w- degree n can be rewritten as:

Π0
n,w =

⎧⎨⎩ ∑
α∈A0

n,w

cαx
α | cα ∈ R, α ∈ Nd

⎫⎬⎭
We observe that rn,w is the dimension of the homogeneous subspace Π0

n,w.
Obviously, δw(xα+β) = (α1 + β1) ∗ w1 + (α2 + β2) ∗ w2 = δw(xα) + δw(xβ)

and, consequently, the equality in (3) holds. Hence

Πn,w =
⊕
k∈Mn

Π0
k,w, with Mn = {k ∈ N | rk,w > 0 and k ≤ n}

The sets of multiindices A0
n,w, is essentially for the calculus in the polynomial

spaces of w- degree. We partially solved the problem of computation of the set
A0
n,w and of the dimension rn,w, in [4], for the case n = 2 and w1, w2 prime one

to another, that is (w1, w2) = 1. We also proved in [4] the following proposition:

Proposition 1. Let be w = (w1, w2) ∈ (N∗)2 a weight and (w1, w2) = p, p ∈ N ,
then δw(xα) = δw′(xα·p), with w′ = (w′

1, w
′
2) and w′

i = wi

p , i = 1, 2.

The theorem 3.6 from [4] allows us to obtain an algorithm which supplies
the dimension of the homogeneous polynomial subspace of w - degree n. We take
again here this theorem, giving a complete proof, for arbitrary w1, w2.

Theorem 1. Let w = (w1, w2) ∈ (N∗)2 and let consider the functions:

r : {0, . . . , w1 − 1} → {0, . . . , w1 − 1}; r(i) = (iw2) mod w1

r̃ : {0, . . . , w2 − 1} → {0, . . . , w2 − 1}; r̃(i′) = (i′w1) mod w2
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Then

1. If j
.
: w1, that is j = cw1, then rj,w =

[
c

w2

]
+ 1, and (α1, α2) ∈ A0

j,w are

given by α2 = kw1, with 0 ≤ k ≤
[
c
w2

]
; α1 = j−w2α2

w1

2. If j
.
: w2, that is j = cw2, then rj,w =

[
c

w1

]
+ 1, and (α1, α2) ∈ A0

j,w are

given by α1 = kw2, with 0 ≤ k ≤
[
c
w1

]
; α2 = j−w1α1

w2

3. If j
.
: w1 and j

.
: w2 then , we can use, equivalently, the results from the

sentences 1 and 2 of the present theorem.
4. For any j, 0 < j < min(w1, w2), rj,w = 0.
5. If j �.: w1 and j �.: w2, with j ≥ min(w1, w2), then

rj,w = #(M1), with M1 =
{[

0,
[
j − iw2

w1w2

]]
∩N

}
, if

j − iw2

w1w2
≥ 0,

where [·] is the integer part function, i = r−1(s), with s = j mod w1, and
(α1, α2) ∈ A0

j,w are given by

α1 =
j − (q1w1 + i)w2

w1
, with q1 ∈M1 and α2 =

i− w1α1

w2

6. If j �.: w1 and j �.: w2, with j ≥ min(w1, w2), then

rj,w = #(M2), with M2 =
{[

0,
[
j − i′w1

w1w2

]]
∩N

}
, if

j − i′w1

w1w2
≥ 0,

where [·] is the integer part function, i′ = r̃−1(p), with p = j mod w2, and
(α1, α2) ∈ A0

j,w are given by

α2 =
j − (q2w2 + i′)w1

w2
, with q2 ∈M2 and α1 =

i− w2α2

w1

7. The sentences from 5 and 6 are equivalent.
8. If j �.: w1 and j �.: w2, with j ≥ min(w1, w2) and min{j − iw1, j − i′w2} < 0,

i, i′ defined in the previous statements of theorem, then rj,w = 0.

The proof needs the following four lemmas:

Lemma 1. Let (w1, w2) ∈ (N∗)2 and ri = (iw2) mod w1, i = 0, . . . , w1 − 1.
Then ri �= rj , ∀ i �= j.

Proof. Let (w1, w2) = d, that is there are p1, p2 ∈ N such that wi = dpi,
i ∈ {1, 2} and (p1, p2) = 1. We suppose that there are i, j ∈ {0, . . . , w1 − 1},
i �= j, such that ri = rj . Then iw2 = ciw1 + ri and jw2 = cjw1 + rj . Hence
(i− j)w2 = (ci−cj)w1, or equivalent (i− j)p2 ≡ 0 mod p1. Therefore (i− j)

.
: p1,

that is i− j = cp1, c ∈ N . Using the fact that i− j ≤ w1 − w2 < w1 we obtain
c = 0, namely i = j.
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Lemma 2. Let
j = k1w1 + k2w2, j �.: w1, j �.: w2, (5)

k1, k2, w1, w2 ∈ N∗, and ri = (iw2) mod w1. Then

1. The function r : {0, . . . , w1 − 1} → {0, . . . , w1 − 1}; r(i) = ri is one to one.
2. There is an unique i ∈ {0, . . . , w1 − 1}, which satisfy (5)

such that j mod w1 = ri, ∀ j ∈ N .
3. If j mod w1 = ri, then k2 from (5) is given by

k2 = q1w1 + i, with q1 ∈M1 = {[0, [a]] ∩N}, if [a] ≥ 0

and there is no k2 ∈ N such that (5) holds, if [a] < 0, where a =
j − iw2

w1w2
and [·] denotes the integer part function.

Lemma 3. Let j ∈ N , given by (5) and r̃i′ = (i′w1) mod w2. Then

1. The function r̃ : {0, . . . , w2 − 1} → {0, . . . , w2 − 1}; r̃(i) = r̃i is one to one.
2. There is an unique i′ ∈ {0, . . . , w2 − 1}, which satisfy (5) such that

j mod w2 = r̃i′ , ∀ j ∈ N .
3. If j mod w2 = r̃i′ , then k1 from (5) is given by

k1 = q2w2 + i′, with q2 ∈M2, q2 ∈M2 = {[0, [a]] ∩N}, if [a] ≥ 0

and there is no k1 ∈ N which satisfy (5) if [a] < 0, where a =
j − i′w1

w1w2
and

[·] is integer part function.

Lemma 4. If M1 and M2 are the sets from lemmas 2 and 3, then M1 = M2.

The proofs of the last three lemmas are similarly with those from [4], given
for the case (w1, w2) = 1.

Corollary 1. r0,w = 1 and (0, 0) ∈ A0
0,w, ∀ w ∈ (N∗)2.

4 Computational Aspects

Using the theorem 1 we obtained an algorithm which allows us to give the
dimension of the w-degree homogeneous spaces and the exponents of the mono-
mials in such a polynomial homogeneous space. The program was written in
C++. It is the intention of this section to report some of the results obtained
given by the implementation of the algorithm. We used both the case in which
w1 and w2 are primes one to another, together with the proposition 1 and the
theorem 1. If k satisfies both the hypothesis 1 and 2 of the theorem 1 or the
hypothesis 5 and 6( like k

.
: w1 and k

.
: w2 or k �.: w1, k �

.
: w2, k ≥ min(w1, w2) )

we take into account the execution time of the algorithm.
The hypothesis 1 and 2 give the same order of the execution time. If the

hypothesis 5 and 6 are verified in the same time, we used the relation given in
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statement 5 when w1 < w2 and the relation given in statement 6 of the theorem
when w2 < w1.

For the case in which w1 and w2 are not primes one to another, we imple-
mented two variants of algorithms: one of them uses the proposition 1 and the
other uses directly the theorem 1

We used various weights and various values of j. The results we obtained,
allow us to make an analysis of the behavior of the w-homogeneous spaces.

We observe that if (w1, w2) = 1 only the homogeneous spaces of w-degree
j, with j < min(w1, w2) are missing. The case in which (w1, w2) = d �= 1 is
more unfavorable that the case in which (w1, w2) = 1, be cause there are more
values of n such that the homogeneous polynomial space of w-degree n has the
dimension equal 0.

Some of the results we obtained are presented in Table 1, Table 2 and in
Graphics1− 6.

We observe that there is a kind of periodicity in the functional dependence

rw : N → N, rw(j) = rw,j (6)

In order to characterize this periodicity, we introduce the following notions
and definitions:

Definition 4. Let f : N → N a function, k ∈ N∗ and

fi : {i · k, i · k + 1, . . . i · k + k − 1} → N, fi(x) = f(x).

The function f : N → N is named k-periodical on levels if

fi(y) = fi−1(x) + 1, (7)

∀y ∈ {i·k, . . . i·k+k−1}, ∀x ∈ {(i−1)·k, . . . (i−1)·k+k−1}, with x ≡ y mod k.

Theorem 2. Let w = (w1, w2) ∈ (N∗)2 a bidimensional weight with (w1, w2) =
1. The function rw which gives the dimension of the homogeneous polynomial
subspace of w - degree is w1 · w2 periodical on levels.

Proof. Let x = j · w1w2 + i, 0 ≤ i ≤ w1w2 − 1 and
y = (j + 1)w1w2 + i = x + w1w2.
Case 1: x

.
: w1, that is x = c1w1. Using the theorem 1 we obtain :

rw(x) =
[
c1
w2

]
+ 1 =

[
x

w1w2

]
+ 1 = j + 1

We observe that y
.
: w1, that is y = c2w1.

rw(y) =
[
c2
w2

]
+ 1 =

[
(j + 1)w1w2 + i

w1w2

]
+ 1 = j + 2

Case 2: x
.
: w2 - the proof is similar with that of the case 1.
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Case 3: x �.: w1 and x �.: w2. From lemma 2 we know that there is an unique
l ∈ {0, . . . , w1 − 1} such that x mod w1 = (lw2) mod w1, that is, there is an
unique c ∈ N such that x− lw2 = cw1.

a) Let x = jw1w2 + i ≥ min(w1, w2) and a =
[
x−lw2
w1w2

]
≥ 0. Hence

rw(x) =
[
x− lw2

w1w2

]
+ 1 =

[
c

w2

]
+ 1

Let y = (j + 1)w1w2 + i = x + w1w2. There is an unique l′ ∈ {0, . . . , w1 − 1}
such that y mod w1 = (lw2) mod w1 or equivalent x ≡ l′w2 mod w1. Thus l′ = l
and

rw(y) =
[
y − lw2

w1w2

]
+ 1 =

[
x− lw2 + w1w2

w1w2

]
+ 1 =

[
c

w2

]
+ 2 = rw(x) + 1

b) Let x < min(w1, w2).
In that case rw(x) = 0 and y = x+w1w2 > min(w1, w2). There exists an unique
l ∈ {0, . . . , w1 − 1} such that y − lw2 ≡ 0 mod w1. Let y − lw2 = cw1, c ∈ N .
We obtain

rw(y) =
[

cw1

w1w2

]
+ 1 = 1 = rw(x) + 1

c)Let x ≥ min(w1, w2) and
[
x−lw2
w1w2

]
< 0.

In this case rw(x) = 0 and x < lw2 < w1w2 − w2.
Let y = x+w1w2. There is an unique l′ ∈ {0, . . . , w+1−1} such that y− l′w2 =
c1w1, that is x + (w1 − l′)w2 = c1w1 and consequently c1 > 0. On the other
hand, c1 < w2. Therefore rw(y) = 1 = rw(x) + 1.

Theorem 3. Let w = (w1, w2) ∈ (N∗)2, (w1, w2) = d > 1 and rw the function
which gives the dimension of the homogeneous polynomial subspace of w - degree.
Then rw(n) = 0, ∀ n ∈ A = {j ∈ N | j �.: d} and the restriction of rw to N \A is
w1 · w2 periodical on levels.

Proof. Let w1 = dp1, w2 = dp2, (p1, p2) = 1. The w-degree of the monomial xα,
α = (α1, α2) is n if and only if w1α1+w2α2 = n, or, equivalent d·(p1α1+p2α2) =
n. Consequently n can be the w-degree of a monomial if and only if n

.
: d. If this

condition is satisfied, then
n

d
is the (p1, p2)-degree of the monomial xα. Using

the theorem 2 the proof is complete.

The theorems 2 and 3 make possible a more efficient implementation of
the algorithm which calculates the dimensions of the homogeneous polynomial
spaces of w - degree. It is sufficient to compute and to store the values of rw(j) for
j ∈ {0, . . . w1w2−1}. For j ≥ w1w2 we need to compute the level, l =

[
j

w1w2

]
and

the value i = j mod w1w2. The theorem 2 allows us to find rw(j) = rw(i) + l. In
that way the efficiency of algorithm increases. Of course, if we want to compute
the monomial basis of a homogeneous polynomial subspace of w - degree, we
need to apply theorem 1.
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Table 1. w1 = 2, w2 = 5 Table 2. w1 = 2, w2 = 3
j 0 1 2 3 4 5 6 7 8 9 j 0 1 2 3 4 5 6 7 8 9 10 11 12

rw(j) 1 0 1 0 1 1 1 1 1 1 rw(j) 1 0 1 1 1 1 2 1 2 2 2 2 3
j 10 11 12 13 14 15 16 17 18 19
rw 2 1 2 1 2 2 2 2 2 2

Graphics 1-6
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Abstract. This paper discusses how to control the accuracy of inexact
matrix-vector products in restarted GMRES. We will show that the GM-
RES iterations can be performed with relatively low accuracy. Further-
more, we will study how to compute the residual at restart and propose
suitable strategies to control the accuracy of the matrix-vector products
in this computation.

1 Introduction

Iterative Krylov subspace solvers are widely used for solving large systems of lin-
ear equations. In recent years Krylov subspace methods have been used more and
more for solving linear systems and eigenvalue problems in applications with full
coefficient matrix where the matrix-vector products can be approximated rea-
sonably effectively with some (iteration) method. Examples include simulations
in quantum chromodynamics [9], electromagnetic applications [5], the solution
of generalized eigenvalue problems [6], and of Schur complement systems [3, 8].
Relaxation strategies for controlling the accuracy of inexact matrix-vector prod-
ucts within Krylov methods have attracted considerable attention in the past
years, see [1, 2, 3, 8, 10, 11]. These strategies allow the error in the matrix-vector
product to grow as the Krylov method converges, without affecting the final
accuracy too much. Relaxation strategies have been proposed for a range of
different Krylov methods, and have shown to be surprisingly effective for the
applications mentioned above.

In this paper we will discuss techniques for controlling the error in the matrix-
vector product in the context of restarted GMRES. We will argue that the GM-
RES iterations at the inner level can be performed with relatively low accuracy

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 494–502, 2005.
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for the matrix-vector products, since only a residual reduction has to be achieved.
Moreover, this low accuracy can be further reduced by applying a relaxation
strategy. At restart, a suitable strategy to control the error in the matrix-vector
product for the computation of the residual depends on the method by which
the residual is updated. We will discuss two different methods and propose cor-
responding strategies to control the accuracy of the matrix-vector products in
this computation. We will illustrate our ideas with two different types of Schur
complement systems.

2 Restarted GMRES with Inexact Matrix-Vector
Products

2.1 Preliminaries

The central problem is to find a vector x′ that approximately satisfies the equa-
tion

Ax = b such that ‖b−Ax′‖2 < ε, (1)

for some user specified, predefined value of ε. For ease of presentation we will
assume that the problem is scaled such that ‖b‖ = 1. We will solve the above
problem with the restarted GMRES-method but assume that the matrix A is
not explicitly available. Instead, vectors of the form Av are replaced with an
approximation Aη(v) that has a precision η:

Aη(v) = Av + f with ‖f‖2 ≤ η‖A‖2‖v‖2. (2)

2.2 Outline of the Algorithm

In restarted GMRES, in every (restart) step a correction to the current approxi-
mation is computed by at most m iterations of the GMRES method. Restarting
the method is very attractive if inexact matrix-vector products are used, since
in the inner loop (the actual GMRES iterations) only a residual reduction has
to be achieved that can be much smaller than the final norm of the residual
‖b −Ax′‖2 < ε we aim for. As a consequence, lower tolerances can be used in
the inner loop for the inexact matrix-vector products [11].

In Figure 1 we have summarized the general structure of the restarted GM-
RES method. The GMRES iterations are terminated after m steps, or if a resid-
ual reduction of εinner has been achieved. In the j + 1-th GMRES iteration of
the k-th step of the method we have to prescribe the tolerance ηj,k for the pre-
cision of the matrix-vector product. Since we allow at most a residual reduction
of εinner between two restarts, we can apply the relaxation strategy that was
proposed in [2] to further reduce the cost of the inexact matrix-vector products.
Translated in our setting, this strategy reads

ηj,k =
‖rk‖2
‖rj,k‖2

εinner. (3)
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a. START:
k = 0, x0 = 0, r0 = b
b. Do m steps of the GMRES method to solve Azk = rk

(inexact matrix-vector products with Aηj,k ).
Terminate early if a relative precision εinner is achieved.

c. Compute update, restart or stop:
Update solution: xk+1 = xk + zk

Update residual: rk+1 (inexact matrix-vector product with Aηk ).
Test: If ‖rk+1‖ < ε STOP else k = k + 1 GOTO b.

Fig. 1. Restarted GMRES with inexact matrix-vector products

Here ‖rj,k‖2 is the norm of the residual computed in the j + 1-th GMRES
iteration of the k-th step. Notice that the limitation on the residual reduction
between restarts to εinner is convenient in our context since it allows us to tune
the accuracy of the matrix-vector multiplications within the GMRES steps using
(3). In the next sections we focus on the computation of the residual at restart.

2.3 Restarting: Directly Computed Residuals

At every restart we need to compute the residual corresponding to the newly
formed iterate xk+1. The usual way to compute it is directly from

rk+1 = b−Aηk
(xk+1). (4)

The question is how to determine a suitable strategy for choosing the precisions
ηk. As was noted in [2] the usual strategy, where the precision is chosen high at
the first restart and then decreased at subsequent restarts, does not work in this
case. A suitable strategy for choosing ηk can be derived by exploiting that after
the GMRES iterations we have for the true residual norm

‖b−Axk+1‖2 = ‖b−A(xk + zk)‖2
≤ ‖rk −Azk‖2 + ‖rk − (b−Axk)‖2.

(5)

The first term in the last expression results from the error that remains after the
last GMRES iterations. The second term is the result of the error that we have
made in the computation of the residual vector by (4) in the previous restart.
Using this expression we find that

‖b−Axk+1‖2 ≤ ‖rk −Azk‖2 + ηk−1‖A‖2‖xk‖2.

This bound suggests to choose ηk−1 = ‖rk − Azk‖2 for the tolerances. This
choice assures us that the second term is of the same order as the first term:

‖b−Axk+1‖2 ≤ (1 + ‖A‖2‖xk‖2)‖rk −Azk‖2.
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As soon as ‖rk−Azk‖2 drops below the precision ε we expect to have a solution
that has a backward error of at most 2ε.

Unfortunately, ‖rk+1 − Azk+1‖2 is not known in advance, but has to be
estimated. Hereto we make two realistic assumptions. The first assumption is
that the residual reduction in iteration k + 1 is at most εinner, which implies
that

εinner‖rk −Azk‖2 ≤ ‖rk+1 −Azk+1‖2.
Secondly, we assume that the residual norm as computed by the inexact GMRES
process is approximately equal to the true residual norm. This means that at
the end of the k-th cycle of GMRES iterations we have that

‖rm,k‖2 ≈ ‖rk −Azk‖2.

With these assumptions it is easy to see that a suitable choice for ηk is given by
ηk = εinner‖rm,k‖2. The analysis of this choice gives rise to complicated formulas
which we do not give here.

Notice that the accuracy with which the residual is computed at restarts is
increased when the process comes closer to the solution. An advantage of the use
of (4) is that the precision ε does not have to be decided a priori. Furthermore,
there is no accumulation of errors (so the number of restarts does not appear
in the expression for the final residual). For this reason, computation of the
residuals at restart using (4) can be necessary in some applications. See e.g.
[7] where the authors discuss the approximate solution of infinite dimensional
systems.

Some problems require the solution of a linear system of equations for each
computation of a matrix-vector products. This is the case, for example, for the
Schur complement problems that we consider in Section 3. We notice that, if the
restarted GMRES method converges, we have that xk ≈ xk+1. We can exploit
this by using the solution of the system that has to be solved for the computation
of the matrix-vector product in step k as starting vector for the system that has
to be solved in step k + 1. If, in addition, the GMRES method is restarted in
every iteration, then the resulting method is related to the much used Uzawa
iteration method, see [4]. Restarting less frequently can be interpreted as an
accelerated Uzawa type method.

2.4 Restarting: Recursively Updated Residuals

As an alternative for the computation of the residual by means of (4), we can
compute the residual at restart by exploiting that xk+1 = xk + zk:

rk+1 = rk −Aηk
(zk). (6)

In this case we find with r0 = b and xk+1 =
∑k
j=0 zk that

‖rk+1 − (b−Axk+1)‖2 ≤ ‖A‖2
k∑
j=0

ηj‖zj‖2 (7)
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Furthermore, with the estimate ‖zj‖2 ≤ ‖A−1‖2(‖rj‖2 + ‖rj −Azj‖2), we find

‖rk+1 − (b−Axk+1)‖2 ≤ 2‖A‖2‖A−1‖2
k∑
j=0

ηj‖rj‖2. (8)

Here, we have assumed that ‖rj − Azj‖2 ≤ ‖rj‖2 which can be shown to be
true (up to a small factor). Given the relation (5) we want to achieve that the
size of ‖rk+1 − (b − Axk+1)‖2 is of the order of ‖rk+1 − Azk+1‖2, as in the
previous section. Therefore we choose the tolerance ηk equal to ε/‖rk‖2. This is
the relaxation strategy proposed in [2].

We have seen that when the residuals at restart are computed recursively
using (6), the precision of the matrix-vector products is decreased during the
process, as opposed to the previous section. The advantage here is that no a
priori knowledge is required about the expected residual reduction between two
restarts. A disadvantage is that at termination, when ‖rk+1‖2 ≤ ε, the upper
bound on the norm of the true residual contains the number of restarts and
furthermore depends on the condition number of the matrix A instead of on
the norm of the computed solution. This means that one must be cautious for
situations where the norm of the solution is much smaller than the inverse of
the smallest singular value of the matrix.

3 Numerical Experiments

3.1 Description of the Test Problem

As a model problem we consider the following set of partial differential equations
on the unit square Ω:

−∇2ψ − ∂ψ

∂x
− α∇2ζ = f, ∇2ψ + ζ = 0 in Ω (9)

plus boundary conditions ψ = ∂ψ
∂n = 0 on Γ , the edge of the domain.

The above model problem is a simplified version of the example from oceanog-
raphy that we considered in [11]. Discretisation yields the following block system(

K αL
−LH M

)(
ψ
ζ

)
=

(
f
0 .

)
(10)

The size of the test problem we use in our experiments is 16642. From (10) we
can eliminate either ζ, which yields the upper Schur complement system

(K + αLM−1LH)ψ = f , (11)

or ψ, which yields the lower Schur complement system

(M + αLHK−1L)ζ = LHK−1f . (12)
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These two systems have very different numerical characteristics. The upper Schur
complement is a fourth order bi-harmonic operator which becomes rapidly ill
conditioned if the mesh size is decreased. The lower Schur complement has the
characteristics of a second order operator and hence is, for fine enough mesh
size, better conditioned than the biharmonic operator. To illustrate this, the
MATLAB-routine condest gives 500 for the condition number of the lower Schur
complement, and a condition number of 106 for the upper Schur complement.
Systems with M, on the other hand, are easier to solve (since the mass matrix is
a discretised unit operator) than systems with the convection-diffusion operator.

3.2 Solution Methods

For each multiplication with one of the Schur complements a linear system has
to be solved, with the matrix K for the upper Schur complement, and with
the matrix M for the lower Schur complement. In our experiments we solve
these systems with preconditioned Bi-CGstab, with as preconditioner ILU of K
resp. of M), using a drop tolerance of 10−2. These systems are solved up to a
precision (residual reduction) η. Note that this does not mean that the matrix-
vector multiplication with the Schur complements is performed with accuracy η
(see also [8]), in theory an extra constant has to be taken into account.

The parameter α is taken rather small in the experiments: α = 10−3. For
this reason we have applied ILU with drop tolerance 10−2 of M (of K) as right
preconditioner for the lower (resp. upper) Schur complement systems.

We consider four different methods to control the accuracy of the matrix-
vector products:

– The systems to evaluate the matrix-vector products with the Schur comple-
ment are all solved to fixed accuracy ε = 10−8.

– Within GMRES the system are solved with reduced accuracy εinner = 10−3.
At restart the accuracy ε = 10−8 is used.

– Within GMRES, relaxation is applied by
ηj,k = 10−3 · (‖rk‖2/‖rj,k‖2). The residuals at restart are computed directly
from xk+1, using precision ηk = max(10−3 · ‖rm,k‖2, 10−8).

– The above relaxation strategy is used within GMRES. The residuals at
restart are computed recursively using precision ηk = 10−8/‖rk‖2.

3.3 The Upper Schur Complement

Table 1 shows the numerical results for the upper Schur complement. The first
column gives the method to control the accuracy. The second column gives the
number of Bi-CGstab iterations. Bi-CGstab allows for two tests of the residual
norm and hence may terminate halfway an iteration, which explains the fractions
of two. The number of Bi-CGstab iterations gives a measure for the work in the
inexact matrix-vector products. The third column gives the number of GMRES-
iterations. In our experiments we restart (at least) every 20 iterations. The fourth
column gives the number of restarts. The true residual norm at the end of the



500 G.L.G. Sleijpen, J. van den Eshof, and M.B. van Gijzen

Table 1. Solution of the upper Schur system: four different ways to control the accuracy
of the matrix-vector products and their effect on the efficiency and on the final accuracy

Method Iterations Iterations Restarts ‖b − Axk‖2 ‖rk‖2

Bi-CGstab GMRES
Full precision 4462.5 1700 85 3.3 · 10−8 8.9 · 10−9

Low accuracy GMRES 2317.5 2060 103 3.3 · 10−8 8.9 · 10−9

Directly computed 2345 2120 106 3.3 · 10−8 9.1 · 10−9

residuals at restart
Recursively computed 1903.5 1800 90 2.1 · 10−6 9.0 · 10−9

residuals at restart

Table 2. Solution of the lower Schur system: four different ways to control the accuracy
of the matrix-vector products and their effect on the efficiency and on the final accuracy

Method Iterations Iterations Restarts ‖b − Axk‖2 ‖rk‖2

Bi-CGstab GMRES
Full precision 2955 160 8 1.0 · 10−8 9.9 · 10−9

Low accuracy GMRES 489.5 180 9 7.2 · 10−9 5.7 · 10−9

Directly computed 464.5 200 10 1.2 · 10−9 4.7 · 10−9

residuals at restart
Recursively computed 372 200 10 2.3 · 10−8 4.4 · 10−9

residuals at restart

iterative process, which is computed using an exact matrix-vector product, is
given in the fifth column. In practice the true residual norm is not available;
one has at its disposal only ‖rk‖2 that is computed using inexact matrix-vector
products. This value is given in the sixth column. Note that this value is used in
the convergence test. The results tabulated in Table 1 show that the most im-
portant saving is obtained by using a lower accuracy for the GMRES iterations.
No extra saving is obtained by applying the error-control strategy for directly
computed residuals. The savings that are achieved in the initial iterations are
lost in the extra few (costly) iterations that are needed due to the extra per-
turbations that are introduced in the process. The relaxation strategy at restart
with recursively updated residuals, on the other hand, yields a small but signif-
icant extra saving in computational cost. Note that on average the tolerances
used in the matrix-vector product are lower than for the strategy with directly
computed residuals. Moreover, the number of restarts (and GMRES iterations)
is less for this example. An important disadvantage of this strategy, however, is
that the true residual norm stagnates at around 10−6. This can be explained by
the fact the Schur complement is ill conditioned, and relatively many restarts are
required to solve the system. Note that both the condition number of the Schur
complement and the number of restarts negatively influence the bound (8). If
residuals are calculated directly, however, the true residual norm decreases close
to the target 10−8.
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3.4 The Lower Schur Complement

The numerical results for the experiments with the lower Schur complement
are tabulated in Table 2. The number of GMRES iterations and restarts are
considerably less than for the upper Schur complement system. This is because
this system is better conditioned. This fact is also reflected in the accuracy
that is achieved using recursively updated residuals plus relaxation: the norm of
the true residual stagnates around the target value 10−8. The savings that are
obtained for this example are very significant.

4 Conclusions

A considerable saving in computational cost can be obtained for restarted GM-
RES with inexact matrix-vector products by using a low accuracy for the GMRES-
iterations, in combination with a high accuracy to compute the residuals at
restart. The accuracy of the matrix-vector products at restart can be reduced
by a strategy that depends on the way the residual is calculated. If the residual is
calculated directly form the latest iterate then the precision of the matrix-vector
product has to be increased as the method comes closer to the solution, whereas
if the residuals are calculated recursively a relaxation strategy can be applied.
This latter strategy, however, has the disadvantage that the achieved accuracy
may be well above the target accuracy for ill-conditioned problems that require
many restarts.

Acknowledgments. We thank Daniel Loghin for providing us with the test
matrices and Françoise Chaitin-Chatelin for valuable comments.
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Abstract. By analogy with the theory of good lattice points for the
numerical integration of rapidly convergent Walsh series, in the present
paper the author use the Price functional system and Haar type func-
tional system, defined in the generalized number system, for numerical
integration. We consider two classes of functions, whose Fourier-Price
and Fourier-Haar coefficients satisfy specific conditions. For this classes
we obtain the exact orders of the error of the quadrature formula with
good lattice points, constructed in the generalized number system.

Keywords: Numerical integration, Good lattice points, Price functions,
Haar type functions, Estimation of the error.

1 Introduction

For the numerical integration the leading role play the properties of the function,
which we integrate and the set, which we use for the integration.

One of the main branches in the theory of numerical integration by number-
theoretical methods is the theory of good lattice points. Good lattice points
methods were introduced by Korobov [4] and are an excellent instrument for the
numerical integration of functions which are represented by rapidly convergent
Fourier series.

Let s ≥ 1 be an arbitrary integer and [0, 1)s is the s−dimensional unit cube.
We denote N0 = N ∪ {0}. Let

T =

{
ek(x) =

s∏
i=1

exp(2πikixi) : k ∈ Zs,k = (k1, . . . , ks),x = (x1, . . . , xs) ∈ Rs

}

be the trigonometric functional system.
For an arbitrary vector k with integer coordinates and an integrable function

f : Rs → R let T f̂(k) =
∫

[0,1)s

f(x)ek(x)dx be the k−th Fourier coefficient

of f. For real constants α > 1 and c > 0 Korobov introduces a functional
class T Eαs (c), composed by continuous periodical with period 1 by each their

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 503–510, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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arguments functions f : Rs → R which Fourier coefficients satisfy the estimation∣∣∣T f̂(k)
∣∣∣ ≤ c

(k1 . . . ks)α
, for all vectors k = (k1, . . . , ks) with integer coordinates

and ki = max(1, |ki|), 1 ≤ i ≤ s. Using the so-called lattice points set L(n) ={(
l1
n
, . . . ,

ls
n

)
: 1 ≤ li ≤ n, 1 ≤ i ≤ s

}
Korobov proves that the error of the

quadrature formula

∫
[0,1)s

f(x)dx− 1
N

n∑
l1=1

. . .

n∑
ls=1

f

(
l1
n
, . . . ,

ls
n

)
−R

satisfies the estimation R ∈ O
(
N− α

s

)
, where N = ns.

The so-called digital nets or (t,m, s)−nets to the base b, b ≥ 2− integer,
are convenient for a numerical integration. Larcher, Niederreiter and Schmid [5]
obtain the order of the numerical integration error for functions, which Fourier-
Walsh coefficients satisfy specific conditions, using the (t,m, s)−nets to the base
b. Another results in this direction are obtained by Larcher and Wolf [8].

Larcher and Pirsic [6] use Walsh functions over finite abelian group for a
numerical integration and they obtain the order of the error of the quadrature
formula by means of these functions.

Chrestenson [1] introduces a generalization of Walsh functions. Let b ≥ 2 be a
fixed integer and ω = exp

( 2πi
b

)
. The Rademacher functions {φk(x)}k≥0, x ∈ R

to base b are defined as: φ0(x) = ωa,
a

b
≤ x <

a + 1
b

, a = 0, 1, . . . , b−1, φ0(x+

1) = φ0(x) and for an arbitrary integer k ≥ 1 φk(x) = φ0(bkx).
The Walsh functions {ψk(x)}k≥0, x ∈ [0, 1) to base b are defined as: ψ0(x) =

1 for every x ∈ [0, 1) and if k ≥ 1 has a b−adic representation k = kmbαm +
. . . + k1b

α1 , where αm > αm−1 > . . . > α1 ≥ 0 and for 1 ≤ j ≤ m kj ∈
{1, 2, . . . , b − 1}, then the k−th Walsh function to base b is defined as ψk(x) =
φkm
αm

(x) . . . φk1α1
(x) for every x ∈ [0, 1).

For a vector k = (k1, . . . , ks) with non-negative integer coordinates the func-

tion ψk(x) is defined as ψk(x) =
s∏
j=1

ψkj
(xj), x = (x1, . . . , xs) ∈ [0, 1)s. We

denote by ψ(b) = {ψk(x)}k∈N0
s , x ∈ [0, 1)s. For an arbitrary vector k with

non-negative integer coordinates and for an integrable function f : Rs → R

let ψ(b)f̂(k) =
∫

[0,1)s

f(x)ψk(x)dx be the k−th Fourier-Walsh coefficient of the

function f.
Larcher and Traunfellner [7] showed that the good lattice points methods

can be used as a means for the numerical integration of functions which are
represented by rapidly convergent Walsh series to base b, b ≥ 2. They consider
functions f : Rs → R for which the estimation |ψ(b)f̂(k)| ≤ c

(k1 . . . ks)α
where

α > 1 and c > 0 are fixed real constants, holds for each vector k = (k1, . . . , ks)
with non-negative integer coordinates and for 1 ≤ i ≤ s ki = max(1, ki). They
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use the net L(bn) =
{(

l1
bn

, . . . ,
ls
bn

)
: 0 ≤ li < bn, 1 ≤ i ≤ s

}
for an arbitrary

integer n ≥ 1 and prove that the error of the quadrature formula satisfies the
inequality RN (f) ∈ O(N− α

s ), where N = bsn.
Here, we will use the good lattice points methods as a means for numerical

integration of functions which are represented by rapidly convergent Fourier-
Price series and Fourier-Haar type series, defined in generalized number system.

Let B = {b1, b2, . . . , bj , . . . , bj ≥ 2, j ≥ 1} be a fixed sequence of integers.
Using the sequence B, we define the sequence of the generalized powers {Bj}j≥0

as B0 = 1 and for j ≥ 1 Bj =
j∏
i=1

bi. For each j ≥ 1 we define ωj = exp
(

2πi
bj

)
.

We will recall the definition of Price [9] functions.

Definition 1. (i) For real x ∈ [0, 1) in the B−adic form x =
∞∑
j=1

xjB
−1
j , xj ∈

{0, 1, . . . , bj − 1} and each integer j ≥ 0 Price define the functions χBj
(x) =

ω
xj+1
j+1 .

(ii) For each integer k ≥ 0 in the B−adic form k =
n∑
j=0

kj+1Bj , kj+1 ∈

{0, 1, . . . , bj+1 − 1}, kn+1 �= 0 and real x ∈ [0, 1) the k−th function of Price
χk(x) is defined as

χk(x) =
n∏
j=0

[
χBj

(x)
]kj+1

.

For a vector k = (k1, . . . , ks) with non-negative integer coordinates the function

χk(x) is defined as χk(x) =
s∏
i=1

χki
(xi), x = (x1, . . . , xs) ∈ [0, 1)s. The system

of functions χ(B) = {χk(x)}k∈Ns
0
, x ∈ [0, 1)s is a complete orthonormal system

in L2([0, 1)s) and it is usually called Price system or Vilenkin [11] system.
A class of Haar type functions is defined in Schipp, Wade, Simon [10]. The

author and Grozdanov [2] use an another class of the so-called Haar type func-
tions for an investigation of the uniform distribution of sequences. We will recall
the definition of this functional system.

Definition 2. We put h0(x) = 1 for every x ∈ [0, 1). Let k ≥ 1 be an arbitrary
integer. We choose the unique integer g ≥ 0 such that Bg ≤ k < Bg+1 and for
k use the B−adic representation k = kgBg + p, with kg ∈ {1, . . . , bg+1 − 1} and
0 ≤ p ≤ Bg − 1. Then the k−th Haar type function hk(x), x ∈ [0, 1) is defined
as

hk(x) =

{√
Bg ω

kga
g+1, if pbg+1+a

Bg+1
≤ x <

pbg+1+a+1
Bg+1

, a = 0, 1, . . . , bg+1 − 1,
0, otherwise.

For a vector k = (k1, . . . , ks) with non-negative integer coordinates the func-

tion hk(x) is defined as hk(x) =
s∏
i=1

hki(xi), x = (x1, . . . , xs) ∈ [0, 1)s. The
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functional system h(B) = {hk(x)}k∈Ns
0
, x ∈ [0, 1)s is complete and orthonor-

mal system in L2([0, 1)s).
When in the sequence B, all bj = 2, then from Definition 2 the original system

of Haar [3] is obtained.
Let the function f : Rs → R be a continuous, periodical function with period

1 of each its arguments. For a vector k with non-negative integer coordinates
we signify by χ(B)f̂(k) and h(B)f̂(k) respectively Fourier-Price and Fourier-Haar
coefficients of this function

χ(B)f̂(k) =
∫

[0,1)s

f(x)χk(x)dx and h(B)f̂(k) =
∫

[0,1)s

f(x)hk(x)dx.

In the next two definitions, we introduce two classes of functions, whose
Fourier-Price and Fourier-Haar coefficients satisfy the conditions respectively.

Definition 3. For fixed real constants α > 1 and c > 0 we will call the function
f : Rs → R belongs to the class χ(B)E

α
s (c), if the estimation |χ(B)f̂(k)| ≤

c

(k1 . . . ks)α
, holds for each vector k = (k1, . . . , ks) with non-negative integer

coordinates and for 1 ≤ i ≤ s ki = max(1, ki).
For an arbitrary integer k ≥ 0 we define k̃ as

k̃ =
{

1, if k = 0
Bg, if Bg ≤ k < Bg+1, g ≥ 0, g ∈ Z.

Definition 4. For fixed real constants α > 1 and c > 0 we will call the func-
tion f : Rs → R belongs to the class h(B)E

α
s (c), if the estimation |h(B)f̂(k)| ≤

c

(k̃1 . . . k̃s)α+ 1
2
, holds for each vector k = (k1, . . . , ks) with non-negative integer

coordinates.
Let N ≥ 1 be an arbitrary integer and ξN = {x1, . . . ,xN} is a set of N points

in [0, 1)s. For an arbitrary integrable in Riemann sense function f(x),x ∈ [0, 1)s

we signify by R(ξN ; f) the error of the quadrature formula

R(ξN ; f) =
1
N

N∑
j=1

f(xj)−
∫

[0,1)s

f(x)dx. (1)

For an arbitrary fixed integer n ≥ 1 using the sequence B, let B(n) =

{b1, . . . , bn}. The set L (B(n)) =
{(

l1
Bn

, . . . ,
ls
Bn

)
: 0 ≤ li < Bn, 1 ≤ i ≤ s

}
,

composed of N = Bsn points in [0, 1)s, we will call a lattice points set.
In the present paper using the lattice points set L (B(n)) , defined in a gen-

eralized number system, we obtain the exact order O
(
N− α

s

)
of the error of the

quadrature formula (1) for the functions from χ(B)E
α
s (c). The obtained result

(see Theorem 1) is a generalization of the result of Larcher and Traunfellner [7,
Theorem 1].

For the introduced class h(B)E
α
s (c) we obtain an order O

(
N− α

s

)
of the error

of the quadrature formula (1), constructed with respect to the lattice point
L (B(n)) , (see Theorem 2).
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2 Statement of the Results

In the next two theorems we will represent the main results.

Theorem 1. For an arbitrary function f ∈ χ(B)E
α
s (c), the error of the quadra-

ture formula (1), constructed for this function with respect to the lattice points
set L (B(n)) satisfies the estimation

|R(L (B(n)) ; f)| ≤ C1(α, c, s)N− α
s +O(N− 2α

s ),

with C1(α, c, s) =
cαs

α− 1
and N = Bsn.

The obtained estimation is exact, in a sense that a function f1(x) ∈ χ(B)E
α
s (c)

exists, such that
|R(L (B(n)) ; f1)| > cN− α

s .

Remark: In the special case when in the sequence B all bases bj = b
j ≥ 1 from Theorem 1, we obtain the result of Larcher and Traunfellner
[7, Theorem 1].

Theorem 2. Let an absolute constant B > 0 exists, so that for all j ≥ 1 bj ≤ B
and b = min{bj : j ≥ 1}. For an arbitrary function f ∈ h(B)E

α
s (c), the error

of the quadrature formula (1), constructed for this function with respect to the
lattice points set L (B(n)) satisfies the estimation

|R(L (B(n)) ; f)| ≤ C2(α, c, s,B)N− α
s +O(N− 2α

s )

with C2(α, c, s,B) =
cs(B − 1)bα−1

bα−1 − 1
, and N = Bsn.

3 Preliminary Statements

To prove the main results, we need some preliminary results.
If the function f ∈ χ(B)E

α
s (c), then Fourier-Price series of this function

is absolutely convergent. Really, for each vector k and each x ∈ [0, 1)s from
|χk(x)| = 1 and Definition 3 we have

∞∑
k=0

∣∣∣χ(B)f̂(k)χk(x)
∣∣∣ =

∞∑
k=0

∣∣∣χ(B)f̂(k)
∣∣∣ ≤ c

∞∑
k1,...,ks=0

1
(k1 . . . ks)α

= c

(
2 +

1
α− 1

)s
.

By analogy we will prove that if the function f ∈ h(B)E
α
s (c), then Fourier-

Haar series of this function is absolutely convergent. For each vector k = (k1, . . . , ks)
and each x = (x1, . . . , xs) ∈ [0, 1)s from definition of the function hk(x), defini-
tion of k̃ and Definition 4 we have
∞∑

k=0

∣∣∣h(B)f̂(k)hk(x)
∣∣∣ = 1+

∞∑
k
=0

∣∣∣h(B)f̂(k)hk(x)
∣∣∣ ≤ 1+c(B−1)s

(
1 +

bα−1

bα−1 − 1

)s
.
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Lemma 1. Let ξN = {x1, . . . ,xN} be a set of N ≥ 1 points in [0, 1)s.
(i) If the function f(x), x ∈ [0, 1)s is given by absolutely convergent series

f(x) =
∞∑

k=0
χ(B)f̂(k)χk(x),

then the error of the quadrature formula (1) R(ξN ; f) for the function f(x),
constructed with respect to the set ξN , satisfies the equation

R(ξN ; f) =
1
N

∑
k
=0

χ(B)f̂(k)S(χ(B); ξN ;k), where S(χ(B); ξN ;k) =
N∑
j=1

χk(xj);

(ii) If the function f(x), x ∈ [0, 1)s is given by absolutely convergent series

f(x) =
∞∑

k=0
h(B)f̂(k)hk(x),

then the error of the quadrature formula (1) R(ξN ; f) for the function f(x),
constructed with respect to the set ξN , satisfies the equation

R(ξN ; f) =
1
N

∑
k
=0

h(B)f̂(k)S(h(B); ξN ;k), where S(h(B); ξN ;k) =
N∑
j=1

hk(xj).

Corollary 1. Let ξN = {x1, . . . ,xN} be a set of N ≥ 1 points in [0, 1)s.
(i) If the function f(x) ∈ χ(B)E

α
s (c), then the error of the quadrature formula

(1) R(ξN ; f) for function f(x), constructed with respect to the set ξN , satisfies
the inequality

|R(ξN ; f)| ≤ c

N

∑
k
=0

|S(χ(B); ξN ;k)|
(k1 . . . ks)α

, k = (k1, . . . , ks);

(ii) If the function f(x) ∈ h(B)E
α
s (c), then the error of the quadrature formula

(1) R(ξN ; f) for function f(x), constructed with respect to the set ξN , satisfies
the inequality

|R(ξN ; f)| ≤ c

N

∑
k
=0

|S(h(B); ξN ;k)|
(k̃1 . . . k̃s)α+ 1

2
, k = (k1, . . . , ks).

For an arbitrary integer k ≥ 0 we define the function δBn
(k) as

δBn(k) =
{

1, if k ≡ 0(mod Bn)
0, if k �≡ 0(mod Bn).

Lemma 2. For each vector k = (k1, . . . , ks) with non-negative integer coordi-
nates the equality holds

Bn−1∑
l1,...,ls=0

χk

(
l1
Bn

, . . . ,
ls
Bn

)
= Bsn

s∏
i=1

δBn(ki).
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Lemma 3. Let k ≥ 1 be an arbitrary integer and g ≥ 0 is the unique integer,
such that Bg ≤ k < Bg+1. Then we have

(i) If g < n, then
Bn−1∑
l=0

hk

(
l

Bn

)
= 0;

(ii) If g = n, then
Bn−1∑
l=0

hk

(
l

Bn

)
=

√
Bg;

(iii) If g > n, then

∣∣∣∣∣
Bn−1∑
l=0

hk

(
l

Bn

)∣∣∣∣∣ ≤√
Bg.

4 Proof of Theorem 1

From Corollary 1 (i) and Lemma 2 for the lattice points set L (B(n)) we obtain

|R(L (B(n)) ; f)| ≤ c

N

∑
k
=0

|S(χ(B);L (B(n)) ;k)|
(k1 . . . ks)α

= c
∑
k
=0

δBn(k1) . . . δBn(ks)
(k1 . . . ks)α

.

(2)
From the definition of δBn

(k), we obtain that when ki ≡ 0(mod Bn), δBn
(ki) =

1 for each i, 1 ≤ i ≤ s. For 1 ≤ i ≤ s we put ki = Bnti, for an integer ti ≥ 0.
From here and (2) we obtain

|R(L (B(n)) ; f)| ≤ c

∞ ′∑
t1,...,ts=0

1
(Bnt1 . . . Bnts)α

, (3)

where
∑′ denotes summing up of all vectors (t1, . . . , ts) �= (0, . . . , 0). From

Definition 3 and (3) we obtain

|R(L (B(n)) ; f)| ≤ c

[(
1 +

1
Bαn

α

α− 1

)s
− 1

]
. (4)

We have that Bαn = N
α
s and from (4) we obtain

|R(L (B(n)) ; f)| ≤ cαs

α− 1
N− α

s +O(N− 2α
s ),

so, the first part of Theorem 1 is proved with the constant C1(α, c, s) =
cαs

α− 1
.

It is easy to prove the second part of Theorem 1.

5 Proof of Theorem 2

According to Corollary 1 (ii) and Lemma 3 we have the inequality

|R(L (B(n)) ; f)| ≤ c

N

∑
k
=0

∣∣∣∑Bn−1
l1=0 hk1

(
l1
Bn

)
. . .

∑Bn−1
ls=0 hks

(
ls
Bn

)∣∣∣
(k̃1 . . . k̃s)α+ 1

2
. (5)
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For each vector k = (k1, . . . , ks) with non-negative integer coordinates and
k �= 0, without restriction to community of consideration, we will propose that
for some integer r, 1 ≤ r ≤ s, k1 �= 0, . . . , kr �= 0, kr+1 = . . . = ks = 0. From
(5) and Definition 4 we obtain

|R(L (B(n)) ; f)| ≤ c
s∑
r=1

B−r
n

(
s

r

) r∏
i=1

⎡⎣ ∞∑
ki=1

∣∣∣∑Bn−1
li=0 hki

(
li
Bn

)∣∣∣
k̃
α+ 1

2
i

⎤⎦ ≤
≤ c

s∑
r=1

B−r
n

(
s

r

)[
(B − 1)bα−1

bα−1 − 1
1

Bα−1
n

]r
=

cs(B − 1)bα−1

bα−1 − 1
1
Bαn

+O
(

1
B2α
n

)
. (6)

Because N = Bsn, then from (6) the next estimation is finally obtained

|R(L (B(n)) ; f)| ≤ C2(α, c, s,B)N− α
s +O(N− 2α

s ),

where C2(α, c, s,B) =
cs(B − 1)bα−1

bα−1 − 1
. The proof of Theorem 2 is completed.
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Numerical Modelling of the Free Film Dynamics
and Heat Transfer Under the van der Waals

Forces Action
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Abstract. In the present work a numerical model of the heat transfer
of a hot free thin viscous film attached on a rectangular colder frame is
proposed. If the film is cooled down to its solidification temperature the
Stefan boundary condition for the heat flux jump is introduced and a part
of the liquid film is transformed into a rigid one. The film is assumed to
be under the action of the capillary forces and attractive intermolecular
van der Waals forces and to be symmetric to a middle plane. Taking
the film thickness as a small parameter, the thermal-dynamic problem
in its one-dimensional form is solved numerically by a conservative finite
difference scheme on a staggered grid.

1 Introduction

Previous investigations on free film dynamics are mainly on periodic or semi-
infinite films [5], while in [2] we focus on the film confined laterally by solid
boundaries. In these works the van der Waals forces action has a profound effect
on film behavior, eventually leading to its rupture. Their influence on the film
we studied in [6], where we found that they destabilize also the temperature
field. The solidification of a free thin film in its thermostatic approach (without
dynamics) is considered in [4] and the interface evolution in time is found for
different boundary temperature regimes and process parameters. The current
work is an extension of [1], [2] and [6] to include the solidification to the the
heat transfer and dynamics of a free thin film attached on a rectangular frame
surrounded by an ambient gas. The film is assumed initially hot and cooling by
conduction with the colder frame, convection due to the film liquid dynamics
and radiation with the colder ambient gas. The one-dimensional form of the
thermal-dynamic problem is solved numerically by a finite difference scheme.
The numerical results for the film shape, longitudinal velocity and temperature
are obtained for different Reynolds numbers, dimensionless Hamaker constants
and radiation numbers.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 511–518, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Formulation of the Problem

The fluid is assumed Newtonian viscous with constant physical properties: den-
sity ρ, dynamic viscosity μ, thermal conductivity κ, heat capacity c and radiation
β. The film is thin enough to be under the action of the intermolecular van der
Waals forces, while the gravity is neglected. It is supposed symmetrically at-
tached on a rectangular horizontal frame with a stable center plane z = 0 in a
Cartesian coordinate system (x, y, z) connected with the frame x = ±a, y = ±a.
The mean film thickness is εa, such that ε << 1. The free symmetrical surfaces
are defined as z = ±h/2, where h(x, y, t) = O(ε) represents the film shape. The
heat transfer is supposed to be due to conduction, convection and radiation on
film interfaces with ambient gas, whose temperature is θa.

The uncoupled thermal-dynamic system for the film thickness, longitudinal
velocity and temperature of order O(ε) is given by [6]:

∂h

∂t
+∇s · (hvs) = 0, (2.1)

ρ{∂vs
∂t

+ vs · ∇svs} =
1
h
∇s · T̂, (2.2)

ρc{∂θ
∂t

+ vs · ∇sθ} =
κ

h
∇s(h∇sθ) +

2β
h

(θ4
a − θ4), (2.3)

where vs = (u, v) is the surface film velocity vector, ∇s is the surface gra-
dient, θ is the temperature, T̂ = −P + T is the surface film stress tensor,
P = −0.5σ

[
h∇2

shIs + 0.5(∇sh)2Is −∇sh⊗∇sh
]
+ 1.5hφ is the pressure tensor

with Is standing for the identical surface tensor, φ = = A
′
h−3/(6πρ) is the po-

tential function of van der Waals forces (A
′

is the Hamaker constant) and the
viscous stress tensor is given as T = 2μh

{
(∇s · vs) Is + 0.5

[
∇sv + (∇sv)T

]}
.

The obtained system (2.1) - (2.3) in dimensionless form is simplified for the
one-dimensional case, when the effects in y direction are negligible, to:

∂h

∂t
+

∂

∂x
(uh) = 0, (2.4)

∂u

∂t
+ u

∂u

∂x
=

ε

We

∂3h

∂x3 +
4

Re h

∂

∂x
(h

∂u

∂x
) +

A

h4

∂h

∂x
, (2.5)

∂T

∂t
+ u

∂T

∂x
=

1
Pe h

∂

∂x
(h

∂T

∂x
) +

Ra

Pe h
(T 4
a − T 4), (2.6)

where Re = ρaU/μ is the Reynolds number, We = ReCa = 2ρaU2/σ – the
Weber number, Ca – the capillary number, A = A

′
/(2πρU2a3ε3) – the dimen-

sionless Hamaker constant, Pe = RePr = ρcaU/κ – the Peclet number and
Ra = 2βaθ3

m/ε κ – the radiation number, θm – the solidification temperature.
The system (2.4) - (2.6) is of order O(ε), then Re ≤ ε−1, We ≤ 1, A ≥ ε,

Pe ≤ ε−1 and Ra ≥ εPe. The boundary and initial conditions for h, u and T
are:

u(0, t) = u(1, t) = 0, (2.7)
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∂T

∂x
(0, t) = 0, T (1, t) = T1, (2.8)

∂h

∂x
(0, t) = 0,

∂h

∂x
(1, t) = tanα, (2.9)

h(x, 0) = 1, u(x, 0) = 0, T (x, 0) = T0, (2.10)

where T1 is the dimensionless frame temperature, π/2 − α is the wetting angle
with the frame and T0 is the dimensionless initial temperature of the film. The
mass conservation condition of the film∫ 1

0
(h− 1)dx = 0 (2.11)

is satisfied directly, if (2.4) is integrated and (2.7) is considered.
If the liquid film is cooled down to its solidification temperature, then the

Stefan boundary condition on the solid/liquid interface point xsl = ξ(t), such
that T (ξ, t) = 1, is added:

c2
∂T
∂x

|s −
∂T
∂x

|l=
Pe
St

.
dξ

dt
, (2.12)

where dξ
dt is the interface normal velocity, c2 = κs

κ , κs is the solid thermal con-
ductivity, St = cθm

Lm
is the Stefan number, with Lm latent heat (indices (l) and

(s) correspond to solid and liquid phase). In the solid phase the velocity u = 0,
the film shape does not modify and remains as that of the liquid film before so-
lidification, while the temperature changes by conduction and radiation similarly
to (2.6):

c1
∂T

∂t
=

c2
Pe h

∂

∂x
(h

∂T

∂x
) +

Ra

Pe h
(T 4
a − T 4), (2.13)

where c1 = ρscs

ρc , ρs is the solid density and cs - the solid heat capacity. We
assume that the solution of the system (2.4) - (2.13) possesses the required
smoothness u, h, T ⊂ C4(Ω) in the problem domain Ω = {0 ≤ x ≤ 1} for t > 0.

3 Numerical Scheme

The control volumes method is applied as it conserves exactly mass, momentum,
heat flux on each group of control volumes and therefore on the whole problem
domain. A temporary grid with a variable time step �tj is used: Ωt = {tj+1 =
tj+ +�tj , �tj > 0, t0 = 0}. A staggered grid is exploited in space, such

that for the functions u and T the grid points are with integer indexes Ωu,T
x =

{xi = (i − 1)Δx, i = 1, ..., N + 1; xN+1 = 1}, while for the function h the
grid points are with half integer indexes Ωh

x = {xi−0.5 = (i − 0.5)Δx, i =
1, ..., N + 1; xN+1 = 1− 0.5Δx}.

Integrating (2.4) on the control volume [xi−1, xi] we have [2]:

ht + (ΔM −ΔM−)/Δx = 0, i = 2, N, (3.1)
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where ΔM = ΔMi =< h >i< u >i . The notation <>, as in [3], means that
the values of h and u are on the current cell border.

For big Re and Pe corresponding to strong convection dominance, we reach
to singular problems, characterized with regions (boundary layers) of strong
changes of solution. Therefore, for such cases particular difference schemes are
developed as in [2] and [6], which we utilize for velocity and temperature in the
liquid film:

ut̄ + 0.5(u+0.5u)x̄ = (μ̃+0.5 ux)x̄ + (ε/We)hx̄xẋ − (A/3)(h−3)x , (3.2)

(hT )t̄ + (h+1u+0.5T )x̄ = (ϕ̃+0.5 Tx)x̄ +
Ra

Pe
(T 4
a − T 4), (3.3)

where μ̃+0.5 = μ+0.5FB(R+0.5), μ+0.5 = 4h+1/(Re h̄), h̄ = 0.5(h+h+1), R+0.5 =
0.125 Re Δx u+0.5h̄/h and the function FB is a piecewise linear approximation
of R/(expR− 1), ϕ̃+0.5 = h+1 FB(S+0.5)/Pe, S+0.5 = Δx u+0.5 Pe.

The boundary condition (2.8) on x = 0 is approximated as:

(hT )t̄,0 + 2h1u0.5T0/Δx = 2ϕ̃0.5 Tx̄,1/Δx +
Ra

Pe
(T 4
a − T 4

0 ). (3.4)

For the solid film in the domain [x1
sl, x

2
sl], in which u = 0, we exploited an implicit

difference scheme:

c1(hT )t̄ =
c2
Pe

(h+1Tx)x̄ +
Ra

Pe
(T 4
a − T 4). (3.5)

The boundaries x1
sl and x2

sl are found from (2.12):

x1
sl = x̌1

sl −
St

Pe
(c2Tx − Tx̄)|x1

sl
, x2
sl = x̌2

sl −
St

Pe
(c2Tx̄ − Tx)|x2

sl
. (3.6)

Iteration procedures based on Thomas algorithm are performed for h, u and
T as described in details in [2] and [6] for the liquid film. If we denote the iteration
number with s, then the iteration process for interface position and solid film
temperature distribution is:

c1(
s+1
h
s+1
T )t̄ =

c2
Pe

(
s+1
h+1

s+1
Tx )x̄ +

Ra

Pe
(T 4
a + 3

s

T
4
− 4

s

T
3 s+1
T ) (3.7)

s+1
x

1

sl = x̌1
sl −

St

Pe
(c2

s

T x −
s

T x̄)|s
x
1

sl

,
s+1
x

2

sl = x̌2
sl −

St

Pe
(c2

s

T x̄ −
s

T x)|s
x
2

sl

. (3.8)

As an initial approximation we take the solution from the preceding time

level:
0
T = Ť

0
x
k

sl = x̌ksl, k = 1, 2. The iteration process is performed
till reaching some convergence criterium.

Since the cooling process starts when the film is fluid, the interface arises
when the the temperature becomes Ti∗ ≤ Tm in some point xi∗ . Depending on
the process parameters, i.e., on Re, the problem can possess 1 or 2 interface
points.

The iteratiion process is finished when we reach steady solutions for u and
T or when the film thickness h→ hcri, where hcri > 0 is a critical thickness, at
which the actual rupture of the film occurs and in its region the problem has a
singularity.

and
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4 Numerical Results

Since in the present work we examine the influence of the inertial and van der
Waals forces on the heat transfer and solidification, we performed our numerical
calculations based on the described numerical scheme for a large range of Re
(1 ≤ Re ≤ 100) and dimensionless Hamaker constant, A (0.1 ≥ A ≥ 0), radiation
numbers Ra (0 ≤ Ra ≤ 100) and constant capillary number Ca, i.e., Weber
number, We depends only on Re (We = CaRe). The presented numerical results
are found at constant values of Ca = ε = 0.01, α = 1.37, Pr = 1, St = 2.8,
c1 = 1.024 and c2 = 1.072 (the data are due to [4]). Then Pe = Re, since
Pe = Re.Pr. In our calculations we used Δx = 0.02, Δt = 10−5 and hcri = 10−5.

In Fig.1 the evolution in space and time of the film thickness h, longitudi-
nal velocity u and temperature T are given at A = 0.1, Re = Pe = 1,We =
0.01, T0 = 1.19, T1 = 1, Ta = 0.9, Ra = 1. The same case has been studied only
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Fig. 1. Evolution of h, u and T at A = 0.1, Re = Pe = 1, We = 0.01, St = 2.8,
T0 = 1.19, T1 = 1, Ta = 0.9, Ra = 1, α = 1, 37: a) h(x,t)
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Fig. 1. b) u(x,t)
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Fig. 1. c) T(x,t)
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Fig. 1. d) T(x,t) only for solid/liquid film

dynamically in [2], where the rupture is observed at x = 0 for a finite time
t = 2.4. As it is seen from Fig.1, the solidification starts at t = 0.4717 and
at t = 0.6 the whole film is solid, but if continues to cool down till reaching
a steady temperature distribution at t = 2.5. For bigger Ra the solidification
mechanism is similar, but more rapid, e.g., for Ra = 10 the solidification starts
at t = 0.051 and at t = 0.079 the whole film is solid, but cools till reaching a
steady temperature distribution at t = 0.5.

For bigger Re (Re > 1) the velocity and thickness solutions have big ampli-
tudes and the rupture point moves from the center x = 0 towards the frame point
x = 1. In the case of Re = 100, We = 1 and A = 0.1 the rupture is achieved for
time t = 1.757 in the point x = 0.53 [2]. As in the previous case, the solidifica-
tion starts before film rupture and for example at T0 = 1.19, T1 = 1, Ta = 0.9
and Ra = 100, this is at t = 0.65 and finishes at t = 0.9, while the steady
temperature regime is achieved at t = 1.33.
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Fig. 2. Evolution of h, u and T at A = 0.1, α = 1.37, Re = Pe = 100, We = 1.,
St = 2.8, T0 = 1.19, T1 = 1, Ta = 0.9, Ra = 1: a) h(x,t); b) u(x,t) and c) T(x,t)

5 Conclusions

This work is a continuation of authors series of papers [1], [2] and [6], dealing
with the dynamics and heat transfer of a free thin film attached on a rectangular
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frame, and take into the account the solidification problem, i.e., Stefan problem.
The film dynamics is significantly influenced by the van der Waals forces, which
make the problem singular when the film is near to rupture. The 1D nonlinear
thermal - dynamic problem is solved numerically by a conservative difference
scheme on a staggered space grid.

Numerical results for the film thickness, velocity and temperature evolution
are obtained for different Reynolds numbers, Re (1 ≤ Re ≤ 100), dimensionless
Hamaker constant, A (0 ≤ A ≤ 0.1) and radiation numbers, Ra (1 ≤ Ra ≤ 10).
At Re = O(1) only one interface point is observed that moves in time from the
frame towards center. However, at higher Re, since the solidification is affected
highly by the film dynamics, two interface points are observed.
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Abstract. In this paper we develop two resultant based methods for the
computation of the Greatest Common Divisor (GCD) of two polynomi-
als. Let S be the resultant Sylvester matrix of the two polynomials. We
modified matrix S to S∗, such that the rows with non-zero elements under
the main diagonal, at every column, to be gathered together. We con-
structed modified versions of the LU and QR procedures which require
only the 1

3 of floating point operations than the operations performed
in the general LU and QR algorithms. Finally, we give a bound for the
error matrix which arises if we perform Gaussian elimination with partial
pivoting to S∗. Both methods are tested for several sets of polynomials
and tables summarizing all the achieved results are given.

Keywords: Greater Common Divisor, Sylvester matrix, Gaussian elim-
ination, QR factorization.

1 Introduction

The computation of the greatest common divisor (GCD) of two or more poly-
nomials is one of the most frequent problems in several fields such as numeri-
cal analysis, linear and numerical linear algebra, control theory, matrix theory,
statistics etc. Many numerical algorithms have been created to solve this prob-
lem [1],[5]. We can classify these algorithms in two categories [4] :

- Numerical methods that are based on Euclid’s algorithm.
- Numerical methods that are based on procedures involving matrices.

A resultant based computation of the greatest common divisor of two poly-
nomials belongs to the second of the above categories. We can use either non-
orthogonal or orthogonal algorithms in order to find the GCD. Non-orthogonal
algorithms are faster but we can not prove their stability in contrast to orthog-
onal algorithms that are slower but stable. In practice there are only few cases
in which non-orthogonal algorithms give wrong results. Except for the previous
dilemma there is another one : We know that during numerical operations on
a floating point arithmetic rounding off errors (catastrophic cancellation) are

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 519–526, 2005.
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caused. On this account we introduce a numerical accuracy as we will see below.
Finally there are also methods which compute the approximate GCD.

Let R[s] be the ring of real polynomials [3], 3m×n the set of all mxn real
matrices, r(A) the rank of the matrix Aε3m×n and ϑ{f(s)} the degree of a
polynomial. Consider two polynomials a(s),b(s)εR[s], ϑ{a(s)}=m, where a(s) is
a monic polynomial and ϑ{b(s)}=n, with n ≤m,where [1]

a(s) = sm + am−1s
m−1 + ... + a1s + a0

b(s) = bns
n + bn−1s

n−1 + ... + b1s + b0

We define the resultant S(a,b) of the two polynomials by

S(a, b) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 am−1 am−2 ... ... ... ... a0 0 ... ... 0 0
0 1 am−1 am−2 ... ... ... ... a0 0 ... 0 0
. . . ... ... ... ... ... . ... ... . .
0 0 0 ... 1 am−1 . . . . ... a1 a0
− − − − − − − − − − − − −
bn bn−1 bn−2 ... ... b0 0 ... ... ... ... 0 0
0 bn bn−1 ... ... ... b0 0 ... ... ... 0 0
. . . ... ... ... ... ... ... ... ... . .
0 0 0 ... ... ... ... bn bn−1 ... ... b1 b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Obviously S(a, b)ε3(n+m)×(n+m). Applying elementary row operations with
scalars from 3 to matrix S(a,b) we transform it to an upper triangular form
(this can be managed to using e.g. gaussian or orthogonal transformations).
The existence, the degree and the coefficients of the GCD are arising from the
following theorem :

Theorem 1. [3] Let a(s),b(s)∈R[s], ϑ{a(s)}=m, ϑ{b(s)}=n,m ≥n and let z(s) =
sr + zr−1s

r−1 + ... + z1s + z0 be the GCD. The following properties hold true:

(i) (a(s),b(s)) are coprime, if and only if rank(S(a,b))=n+m.
(ii) r=ϑ{z(s)}=m+n-rank(S(a,b)).
(iii) If SH(a,b) is the row echelon form of S(a,b), then the last non-vanishing
row gives the coefficients of GCD of (a(s),b(s)). � 

In the previous matrix S we observe that its first column has only two non-
zero elements. We interchange the second and the (n+1)-th row in order to
collect the two non-zero elements of the first column in the two first rows of
S. Afterwards only three elements of the second column of S are non-zero. In-
terchanging the corresponding rows, we collect them to the three first rows of
S. The number of non-zero elements under the diagonal will be increasing per
one at every column until the deg{b(x)}-1 column. From the next column and
until the m+n-deg{b(x)} column the number of non-zero elements is constant
and equal to deg{b(x)}+1. Finally at the remaining deg{b(x)}-1 columns the
number of non-zero elements will be decreasing per one. With the corresponding
row interchanges we collect at every column all those rows that have non-zero
entries under the diagonal.
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The modified Sylvester matrix will have the following form:

S
∗(a, b) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 am−1 am−2 am−3 . . . am−n am−n−1 am−n−2 . . . a0 0 0 . . . 0
bn bn−1 bn−2 bn−3 . . . b0 0 0 . . . 0 0 0 . . . 0
0 1 am−1 am−2 . . . am−n+1 am−n am−n−1 . . . a1 a0 0 . . . 0
0 bn bn−1 bn−2 . . . b1 b0 0 . . . 0 0 0 . . . 0
0 0 1 am−1 . . . am−n+2 am−n+1 am−n . . . a2 a1 a0 . . . 0
0 0 bn bn−1 . . . b2 b1 b0 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1 am−1 . . . am−n+1 am−n am−n−1 . . . a0
0 0 0 0 . . . 0 bn bn−1 . . . b1 b0 0 . . . 0
0 0 0 0 . . . 0 0 bn . . . b2 b1 b0 . . . 0
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 0 0 . . . 0 0 bn . . . b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 The Resultant LU Method

Corollary 1. Let S(a,b) be the resultant matrix of the pair of polynomials (a(s),
b(s)), ρ=rank(S(a,b)) and let S1(a,b) denote the upper triangular form of S(a,b)
obtained under the Gauss row transformations [3], i.e.

S1(a, b) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x ... ... x ... ... x
0 x ... ... x ... ... x
. . ... ... . ... ... .
. . ... ... . ... ... .
. . ... ... . ... ... .
0 0 ... ... x ... ... x
0 0 ... ... 0 ... ... 0
. . ... ... . ... ... .
. . ... ... . ... ... .
0 0 ... ... 0 ... ... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the x leading element of each nonzero row is also nonzero. The nonzero
elements of the last nonzero row of S1(a,b) define the coefficients of GCD in
reverse order. � 

These results hold for the modified matrix S∗ too.
As we have seen, the Sylvester matrix S has a specific form. We can take

advantage of this form, during the procedure of triangulation. More particular,
because the Sylvester matrix has many zeros in many columns, we can zero only
the non-zero elements of S. After we produce the Sylvester matrix, we know
exactly how many non-zero elements has each column of S. So, we transform
the Sylvester matrix S to the modified matrix S∗. Then the nullification of the
elements at k step in column k, is not necessary to take place to the whole
sub-column (i=k+1:m+n), but only to the first s elements (i=k+1:k+s) since
the other elements are already zero (where s is the number of non-zero elements
under the diagonal)(i=r:s denotes i=r,. . . , s). The required row interchanges do
not affect the final result, the greater common divisor. After we zero the ele-
ments under the diagonal at stage k, we must update the elements in submatrix
S∗
k+1:m+n,k+1:m+n. But the big advantage is that at row k the non-zero elements

are until the column [k+1
2 ]+deg{a(x)} for the first 2·deg{b(x)} rows and until

the deg{a(x)}+deg{b(x)} column for the last ones. So the part of the matrix
that we must update is only the submatrix k+1:s,k+1:Pk at k-stage, where the
element Pk of matrix P is the number of the column, that after it we have only
zeros at row k.
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The number of non-zero elements under the diagonal will be increasing per
one at every step until the deg{b(x)}-1 step. From the next step and until
deg{a(x)} step the number of non-zero elements is constant and equal to deg{b(x)}.
Finally at the remaining deg{b(x)}-1 steps the number of non-zero elements will
be decreasing per one at every step. We mention that because of the special form
of S∗ only few elements (which are adjoining) are needed to be zero at every
step. Also not the entire (m+n-k+1)x(m+n-k+1) submatrix at stage k must be
updated. These two observations will decrease a lot the complexity.

So, we can also modify the LU Factorization with considerable reduction of
flops. It follows a non-orthogonal algorithm using Gaussian transformation (with
partial pivoting to improve numerical stability) :

Algorithm Modified LU Factorization

m=deg{a(x)}+1
n=deg{b(x)}+1
Construct matrix P
Comment : S is of order m+n
Comment : p is the number of non zero elements which are under the diagonal
and which we will zero
p=0
for k=1:deg{b(x)}-1

p=p+1
Find r : |Sr,k| = maxk+1≤i≤k+p{|Si,k|}
Interchange rows k and r
mik = sik/skk, i=k+1:k+p
sij = sij −mikskj , i=k+1:k+p, j=k+1:Pk
Set si,j = 0 if |si,j | ≤ accuracy , i=k:m+n , j=k:m+n

Repeat the previous procedure for k=deg{b(x)} : deg{a(x)} and for constant
elements p=deg{b(x)} (under the diagonal which we must zero).

Repeat the previous procedure for k=deg{a(x)}+1:deg{a(x)}+deg{b(x)}-1 and
for decreasing per one in every step elements p, starting from p=deg{b(x)} (the
elements under the diagonal which we must zero).

Complexity
The complexity of the previous algorithm is O ( 5

6n
3) flops which is much fewer

than the O ( 8
3n

3) flops [2] of the general case for a 2n × 2n matrix (we have
taken the worse case : m=n=max{m,n}.

Error Analysis
As we have mentioned we could have catastrophical results during the numerical
operations in a floating point arithmetic. Is the previous algorithm stable? The
following theorem refers to the stability of this method.
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Theorem 2. Let S(a,b) be a given matrix of order k. If we perform Gaussian
elimination with partial pivoting using floating point arithmetic with unit round
off u and S

′
(a,b) is the resultant upper triangular matrix, the following relation

holds :

L · S′
(a,b)=S(a,b)+E, ‖E‖∞≤ (n2 + 2n) · ρu· ‖S(a,b)‖∞ +(n

2

2 + n
2 )εG

where L a lower triangular matrix with units on the diagonal, ρ =
maxi,j,k|s(k)

ij |
maxi,j |sij | is

the growth factor of the Gaussian elimination and εG is the accuracy of gaussian
elimination (elements with absolute value less than εG will be set equal to zero
during the gaussian elimination). � 

So, L·S′
=S+E, where E = E(1) +E(2) + . . . E(2n−1) is the sum of the errors

at every stage and it is bounded from the previous quantity.
We can use B-scaling at every stage after the first step of the LU factorization

in order to keep the absolute values of the elements less or equal to 1, to avoid
numerical errors. So the growth factor ρ will be less or equal to 1 and the final
error will be :

‖E‖∞≤ (n2 + 2n)u‖S‖∞+ (n
2

2 + n
2 )εG.

Remark1
Adjusting the error analysis of Gauss to the specific form of matrix S(a,b) we
attain as error bound n2 instead of 4n2 that appear if we directly applied the
formulas of the general error analysis to an 2n×2n matrix. � 

Remark2
Using the above error analysis it can be proved that instead of computing the
GCD of a(x) and b(x) we compute the GCD of a(x)

′
and b(x)

′
, where

a(x)
′
= xn + a

′
n−1x

n−1 + a
′
n−2x

n−2 + . . . + a
′
3x

3 + a
′
2x

2 + a
′
1x + a

′
0

b(x)
′
= b

′
nx

n + b
′
n−1x

n−1 + b
′
n−2x

n−2 + . . . + b
′
3x

3 + b
′
2x

2 + b
′
1x + b

′
0

where a
′
i = ai + εi, with |εi| ≤(2n-2)gu+(n-1)εG , b

′
i = bi + ε

′
i, with |ε′

i| ≤2ngu
+nεG. � 

3 The Resultant QR-Method

We can accommodate the QR factorization to the previous special form of S∗,
reducing thereby the number of the needed flops sufficiently. Every row has
some nonzero elements after the diagonal. After these elements there are only
zeros. Therefore we can update only the nonzero elements, which are less or
equal to m+1 or n+1 in every row. The number of the elements which we must
zero at every stage is the same as in the LU-case. After these observations the
complexity of the triangulation of S is decreasing a lot. It follows the algorithm
of the modified QR factorization:
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Algorithm Modified QR Factorization

m=deg{a(x)}+1 , n=deg{b(x)}+1
Construct matrix P
Comment : S is of order m+n and q is the number of non zero elements which
are under the diagonal and which we will zero
q=0
for k=1:deg{b(x)}-1

q=q+1
uk:m+n = zeros1,m+n−k+1
[u,t]=house1(Sk:k+q−1,k)
w=uk:m+n
skk=t
r =

∑q
i=1 w

2
i

b = 2
r

sum=
∑k+q−1
i=k ui · si,j , j=k+1:k+Pk

r=b*sum
si,j = si,j − r · ui , i=k:k+q-1, j=k+1:k+Pk
Set si,j = 0 if |si,j | ≤ accuracy , i=k:m+n , j=k:m+n

Repeat the previous procedure for k=deg{b(x)}:n-deg{v(x)} and for constant
elements q=deg{b(x)}+1 (under the diagonal which we must zero).

Repeat the previous procedure for k=n-deg{b(x)}+1:n-1 and for decreasing
per 1 elements in every step, starting from q=deg{b(x)}+1 (the elements under
the diagonal which we must zero).

where house1 [2] zeros the entries of the vector x after the first element :

m=max|xi|, i=1,. . .,n
xi ≡ ui = xi

m , i=1,. . .,n
t=sign(u1)

√
u2

1 + u2
2 + . . . + u2

n

x1 ≡ u1 = u1 + t
t=-m·t

Complexity
The previous algorithm consists of three QR-parts. The only difference of each
one is the number of elements that is needed to zero. In first part, the number of
non-zero elements under the diagonal at step 1 is equal to 1 and it increases until
it catches the deg{b(x)}-1. In second part, the number of non-zero elements un-
der the diagonal is constant and equal to deg{b(x)}-1 for n-2deg{b(x)}+1 steps
and in third part, the number of non-zero elements under the diagonal is equal
to deg{b(x)}-1 and decreases until the triangulation has been completed.

Finally : flops(part1)+flops(part2)+flops(part3)=O ( 5
3n

3) flops, which is less
enough than the O( 16

3 (n)3) flops that requires the classical QR factorization
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of an 2n × 2n (we have taken the worse case : m=n=max{m,n}). The house1
algorithm requires only O(4(n+1)) flops.

4 Numerical Results

Numerical results, which were arised applying the classical LU and QR factor-
ization and the modified versions of them to polynomials, are given next. In the
tables we compare the four methods. Let εac be the accuracy of the Gaussian
or QR factorization. This means that values less than εac are supposed to be zero.

Example 1

a(x) = x7 − 28x6 + 322x5 − 1960x4 + 6769x3 − 13132x2 + 13068x− 5040
b(x) = x4 − 28x3 + 269x2 − 962x + 720
GCD = x− 1

Method Relative Error εac flops
LU 0 10−12 1321

modified LU 0 10−12 561
QR 0 10−10 2298

modified QR 0 10−10 1218

Example 2 [5]

a(x) = x16 − 30x15 + 435x14 − 4060x13 + 27337x12 − 140790x11 + 573105x10 −
1877980x9+4997798x8−10819380x7+18959460x6−26570960x5+29153864x4−
24178800x3 + 14280000x2 − 5360000x + 960000
b(x) = x14−140x12+7462x10−191620x8+2475473x6−15291640x4+38402064x2−
25401600
GCD = x4 − 10x3 + 35x2 − 50x + 24

Method Relative Error εac flops
LU 7.6194·10−9 10−1 26341

modified LU 7.6194·10−9 10−1 6797
QR 8.0689 ·10−7 10−3 39278

modified QR 8.0689 ·10−7 10−3 17235

Example 3

a(x) = x16−13.6x15+85x14−323.68x13+839.402x12−1569.52x11+2185.03x10−
2305.72x9+1859.53x8−1146.9x7+537.452x6−188.616x5+48.366x4−8.70777x3+
1.02992x2 − 0.0707343x + 0.00209228
b(x) = x− 0.1
GCD = x− 0.1
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Method Relative Error εac flops
LU 0 10−4 4801

modified LU 0 10−4 496
QR 0 10−4 7724

modified QR 0 10−4 1568

Example 4

a(x) = x16−13.6x15+85x14−323.68x13+839.402x12−1569.52x11+2185.03x10−
2305.72x9+1859.53x8−1146.9x7+537.452x6−188.616x5+48.366x4−8.70777x3+
1.02992x2 − 0.0707343x + 0.00209228
b(x) = x4 − 2.6x3 + 1.31x2 − 0.226x + 0.012
GCD = x3 − 0.6x2 + 0.11x + 0.006

Method Relative Error εac flops
LU 2.5663 ·10−6 10−6 7772

modified LU 2.5663 ·10−6 10−6 2096
QR 2.8106 ·10−6 10−6 12237

modified QR 2.9524 ·10−6 10−6 4078
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Abstract. A Conservative difference scheme is proposed for a problem
of three femtosecond pulses interaction in medium with quadratic non-
linearity. Second order dispersion and dispersion of nonlinear response
are taking into account under the consideration of femtosecond pulses
propagation in nonlinear optical fiber.

1 Introduction

An analysis of femtosecond pulse propagation in nonlinear medium represents
the great interest for various scientific and applied problems [1-3] in connection
with unique properties of such pulse: extremely short duration and possibility
to achieve laser light intensity, which on some orders greater than intensity of
intrinsic electric field of atom. As it is known, nonlinear propagation of femtosec-
ond pulses is described by so-called combined nonlinear Schrodinger equation
(CNLSE). It differs from usual nonlinear Schrodinger equation (NLSE) by pres-
ence of derivative on time from nonlinear response of medium (dispersion of the
nonlinear response). Presence of this derivative leads, in particular, to formation
of optical shock waves, restriction of maximal intensity, light pulse compression
under the propagation in medium with Kerr nonlinearity [4].

It is necessary to emphasize, that the proved difference schemes for the con-
sidering problem are practically absent in the literature . It has been caused,
in particular, by absence of invariants (conservation laws) for CNLSE till re-
cent time. The given blank in consideration of the equation has been filled in
[4-6]. Obtained invariants allow to use a principle of conservatism [7] for con-
struction of difference schemes with reference to this class of problems. So, in
[8-9] comparison of various approaches to description of three pulses interaction
without consideration into account a second order dispersion is carried out. In
the present report we consider the similar problem, but taking into account the
second derivative on time from complex amplitudes of interacting pulses.

2 Basic Equations

Light pulse propagation in optical fiber is described by the following wave
equation [1− 3]

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 527–534, 2005.
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∂2E(x, t)
∂x2 − 1

c2
∂2E(x, t)

∂t2
=

4π
c2

∂2P (x, t)
∂t2

, 0 < t < Lt, 0 < x < Lx, (1)

with corresponding initial and boundary conditions. Here E(x, t) is an electric
field strength, x−coordinate along which the light pulse is propagated, t−time,
Lt and Lx are the time interval and medium length correspondingly on which
the propagation of waves is investigated, c - light velocity, P describes medium
polarization. For the medium with quadratic nonlinear response its polarization
can be written as:

P = χ(ω)E + χ(2)(ω, ω)E2.

Above χ(ω) and χ(2)(ω, ω) are correspondingly linear and quadratic susceptibil-
ities of medium on frequency ω.

To write the equation for slowly varying amplitude we’ll represent electric
field strength in the following way

E(x, t) =
1
2
[A1e

i(ω1t−k1x) + A2e
i(ω2t−k2x) + A3e

i(ω3t−k3x)] + c.c., (2)

where kj , ωj (j = 1, 2, 3) accordingly wave number and wave frequency, Aj-
slowly varying complex amplitude. Letters c.c. mean a complex conjugation. Sub-
stituting (2) in (1), without consideration the second derivatives on longitudinal
coordinate and carrying out averaging on the period of each from interacting
waves, one can write down the following dimensionless system of equations

∂Aj
∂x

+ νj
∂Aj
∂t

+ iDj
∂2Aj
∂t2

+ Fj = 0, 0 < x, 0 < t < Lt, j = 1, 2, 3 (3)

with initial and boundary conditions

Aj |x=0 = Aj0(t), Aj |t=0,Lt =
∂Aj
∂t

|t=0,Lt = 0, j = 1, 2, 3. (4)

It should be stressed, for simplicity we don’t introduce new notations of
variables. Here Aj(x, t)- complex amplitude that is normalized on the maximal
value of one from interacting waves, x is normalized on medium length Lx,
t−time is normalized on characteristic pulse duration, coefficient Dj describes
second order dispersion, νj = u−1

j − u−1
1 characterizes group velocity mismatch,

i−imaginary unit, uj product of pulse group velocity for characteristic time in
units of which it is measured. Lt−dimensionless time interval during which the
problem is analyzed.

Taking into account an exchanging of energy between waves, the relation
between frequencies of interacting waves ω3 = ω1 + ω2 and phase mismatching
Δk̄ = k1 + k2 − k3, one can write functions Fj in the form

Fj =

⎧⎨⎩
γ1(iA3A

∗
2 + 1

ω̄1

∂
∂t (A3A

∗
2))e

iΔkx, j = 1,
γ2(iA3A

∗
1 + 1

ω̄2

∂
∂t (A3A

∗
1)e

iΔkx, j = 2,
γ3(iA1A2 + 1

ω̄3

∂
∂t (A1A2))e−iΔkx, j = 3,
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where ω̄j - product of the half frequency of light pulse for characteristic pulse
duration, ω̄3 = ω̄1 + ω̄2, γj - dimensionless factors of nonlinear coupling of inter-
acting waves, Δk = Δk̄Lx.

3 Transformation of the Equations and Invariants of
Problem

During the interaction an energy of three waves preserves

I(x) =
3∑
j=1

ω̄j
γj

Lt∫
0

|Aj |2dη = const. (5)

To write others invariants, it is necessary to transform the equations (1) to
ones which are more convenient for numerical modelling [5]. With this purpose
we’ll introduce new functions by a rule

Ej =

t∫
0

Aje
iω̄j(η−t)dη, j = 1,2,3,

which as well satisfy to relaxation equations

∂Ej
∂t

+ iω̄jEj = Aj , j = 1,2,3. (6)

In new variables, the equations (1) are transformed to form being not to contain
derivatives on time from the nonlinear response

∂Ej
∂x

+ vj
∂Ej
∂t

+ iDj
∂2Ej
∂t2

+ Fj = 0, 0 < x, 0 < t < Lt, j = 1, 2, 3 (7)

and functions Fj look as follows

Fj =

⎧⎨⎩
γ1
ω̄1

A3A
∗
2e
iΔkx, j = 1,

γ2
ω̄2

A3A
∗
1e
iΔkx, j = 2,

γ3
ω̄3

A1A2e
−iΔkx, j = 3.

Initial and boundary conditions for new functions are

Ej |x=0 = Ej0(t), j = 1, 2, 3,

Ej |t=0 =
∂Ej
∂t

|t=0 = (
∂Ej
∂t

+ iω̄jEj)|t=Lt = (
∂Ej
∂x

− i(ω̄2
jDj + ω̄jνj)Ej)|t=Lt = 0.

It is necessary to note the initial distribution of functions Ej , corresponding
to input complex amplitudes, is calculated using the formula (5).
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Conservation laws for problem under the consideration are written as

I1(x) =

Lt∫
0

3∑
j=1

ω̄j(iω̄j |Ej |2 − Ej
∂E∗

j

∂t
)dt = const, (8)

I2(x) =

Lt∫
0

3∑
j=1

ω̄jEjA
∗
jdt = const , (9)

I3(x) =

Lt∫
0

3∑
j=1

(Ej
∂A∗

j

∂t
+ E∗

j

∂Aj
∂t

)dt = const. (10)

It should be noticed that invariants (8) - (10) haven’t physical meaning with
regard to well known concepts (mass, energy, impulse).

4 Construction and Realization of a Conservative
Scheme

Let’s introduce into area G = {(x, t) : 0 ≤ x ≤ Lx, 0 ≤ t ≤ Lt} uniform grids on
x and t coordinates

ωx = {xn = nh, n = 0, 1, ..., Nx, h = Lx/Nx},
ωt = {tk = kτ, k = 0, 1, ..., Nt, τ = Lt/Nt}, ω = ωx × ωt.

Let’s define mesh functions Ah, Eh on ω using without-index notations

Aj = Aj(xn, tk), Âj = Aj(xn + h, tk), (Aj)±l = Aj(xn, tk ± lτ),
0.5
Aj = 0.5(Âj + Aj), Êj = Ej(xn + h, tk), (Êj)±l = Ej(xn + h, tk ± lτ),

Ej = Ej(xn, tk), (Ej)±l = Ej(xn, tk ± lτ),
0.5
Ej = 0.5(Êj + Ej).

(11)

Further for simplicity an index h at mesh functions we’ll omit. For the problem
(5), (6) we propose the following nonlinear two-layer difference scheme which is
written below in internal units of the grid

(Êj−Ej)/h+vj((
0.5
Ej)+1−(

0.5
Ej)−1)/τ + iDj((

0.5
Ej)+1−2

0.5
Ej +(

0.5
Ej)−1)/τ2 +Fj = 0,

Fj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ1
2ω̄1

0.5
A3

0.5
A∗

2(e
iΔk(x+h) + eiΔkx), j = 1,

γ2
2ω̄2

0.5
A3

0.5
A∗

1(e
iΔk(x+h) + eiΔkx), j = 2,

γ3
2ω̄3

0.5
A1

0.5
A2(e−iΔk(x+h) + e−iΔkx), j = 3.

(12)
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The complex amplitude Aj is defined in the same mesh points as a solution of
equation

0.5
Aj = ((

0.5
Ej)+1 − (

0.5
Ej)−1)/(2τ) + iω̄j

0.5
Ej , j = 1, 2, 3. (13)

At boundary mesh points there are conditions

0.5
Ej0 =

0.5
Ej1 = 0, (14)

τ(ÊjNt
−EjNt

)/h−i(Dj+vj/ω̄j)((
0.5

EjNt
−

0.5
EjNt−1)/τ+iω̄j

0.5
EjNt

) = 0, j = 1, 2, 3.

It is necessary to emphasize, that only the suggested approximation of the right
domain condition guarantees a validity of conservation laws for the constructed
difference scheme.

Since the constructed difference scheme is nonlinear, for it’s removability we
use an iterative process

(
s+1

Êj −Ej)/h+vj((

s+1
0.5
Ej )+1−(

s+1
0.5
Ej )−1)/τ+iDj((

s+1
0.5
Ej )+1−2

s+1
0.5
Ej +(

s+1
0.5
Ej )−1)/τ2+Fj = 0,

s+1
0.5
Aj = ((

s+1
0.5
Ej )+1 − (

s+1
0.5
Ej )−1)/(2τ) + iω̄j

s+1
0.5
Ej , j = 1, 2, 3, (15)

Fj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ1
2ω̄1

s
0.5
A3

s
0.5
A∗

2(e
iΔk(x+h) + eiΔkx), j = 1,

γ2
2ω̄2

s
0.5
A3

s
0.5
A∗

1(e
iΔk(x+h) + eiΔkx), j = 2,

γ3
2ω̄3

s
0.5
A1

s
0.5
A2(e−iΔk(x+h) + e−iΔkx), j = 3.

In boundary points accordingly we have the equations

s+1
0.5
Ej0 =

s+1
0.5
Ej1 = 0, (16)

τ(
s+1

ÊjNt
−EjNt

)/h−i(Dj+vj/ω̄j)((

s+1
0.5

EjNt
−

s+1
0.5

EjNt−1)/τ+iω̄j

s+1
0.5

EjNt
) = 0, j = 1, 2, 3.

Above index s=0,1,2,3. . . denotes iteration number. As initial approach for
iteration procedure (values of mesh functions on the high layer on zero iteration)
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the values of mesh functions from the previous layer on longitudinal coordinate
are chose

s=0

Âj = Aj ,
s=0

Êj = Ej , j = 1, 2, 3.

The iterative process stops, if the following conditions are executed

max
tk

|
s+1

Êj −
s

Êj | < ε1 max
tk

|
s

Êj |+ ε2, ε1, ε2 > 0, j = 1, 2, 3.

Constructed difference scheme approximates difference equations with second
order on time and spatial coordinate with regard to a point (x+h/2, t). However,
the right domain condition in point Lt is approximated with the first order on
time.

5 Computer Simulation

For instance on Fig. 1 we present shape of pulses which computed using the
conservative difference scheme (12)-(14) and nonconservative one. Computing
was made for initial Gaussian shape of first and second pulses

A1,0(t) = A2,0(t) = exp(−(t− Lt/2)2)

A30(t) = 0,

and parameters:

D1,2,3 = 0.5, ν1,2,3 = 0, Δk = 0, γ1 = 5, γ2 = 10, ω1 = 1, ω2 = 2

and mesh steps:

τ = 0.005, h = 0.0002.

The nonconservative difference scheme preserves only the energy of interact-
ing waves but other invariants (8)-(10) are changeable and their values depends
on longitudinal coordinate. We can see with increasing of longitudinal coordi-
nate the shape of pulses distinguishes (Fig.1). The biggest distinguishing takes
place between intensities distributions of second and third waves. It increases,
dramatically for our case of the interaction parameters after section z=0,1. It
should be emphasized that invariant of energy (5) is constant for both schemes.
But invariant (8) varies not constant for nonconservative scheme (Fig. 2).

The other advantage of conservative difference scheme concludes in possibility
of an essential increasing of the mesh steeps in comparison with nonconservative
method to obtain a solution with requiring accuracy on given distance.
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a) d)

b) e)

c) f)

Fig. 1. Shape of pulses for three interacting waves, which is computed on the base of
conservative difference scheme (a,b,c) and nonconservative one (d,e,f)

Fig. 2. Evolution of I1(z) for conservative (solid) and nonconservative (dash line) dif-
ference schemes
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6 Conclusions

Thus, in the present paper the conservative difference scheme for system of
CNLSE describing three femtosecond pulses interaction in medium with quadratic
nonlinearity in view of derivative on time from the nonlinear medium response
is proposed. For its realization the method of simplest iteration in combination
with matrix running algorithm for the solution of corresponding system of linear
equations can be used.

Aknowledgement. This paper was supported partly by RFBR (grant N 02-
01-727).
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Comparison of Some Difference Schemes for
Problem of Femtosecond Pulse Interaction with

Semiconductor in the Case of Nonlinear
Mobility Coefficient
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Abstract. A difference scheme for problem of femtosecond pulse inter-
action with semiconductor is proposed in the case of nonlinear dependen-
cies of light energy absorption coefficient and mobility of free electrons
from electric field strength. Comparison of some difference schemes effi-
ciency for computation of various regimes of laser pulse interaction with
semiconductor is carried out. It is shown that approach developed by us
allows to analyze regimes for which difference schemes known earlier are
unsuitable.

1 Introduction

As is known, interaction of high-intensity femtosecond pulse with semiconductor
is accompanied by various nonlinear effects [1]. Among them we’ll note the phe-
nomenon of power levels shift under the action of such pulse [1,2]. On the basis
of this phenomenon in [3] the optical bistability scheme is proposed. It takes into
account the change of band gap owing to shift of power levels under the action of
high-intensity laser femtosecond pulse. However at carrying out of computer sim-
ulation it was revealed that conservative scheme [3], known in the literature, for
some sets of parameters prove to be inapplicable: iterative process doesn’t converge
or the difference scheme loses property of conservatism. In this connection in [4] the
difference scheme based on transformation of initial equations has been created. It
allowed to remove the difficulties described above for the case of constant electrons
mobility. It is necessary to emphasize, that application of this scheme in the case
of nonlinear dependence of electrons mobility on electric field strength prove to be
not effective. In the present work the generalization of this difference scheme for
the case of nonlinear electrons mobility is executed.

2 Problem Statement

Femtosecond laser pulse interaction with semiconductor within the framework
of optical thin layer is described by the following system of dimensionless differ-
ential equations [5,6]:

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 535–542, 2005.
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∂2ϕ

∂ x2 = γ(n−N), (1)

∂n

∂t
= D

∂

∂x
(
∂n

∂x
− μn

∂ϕ

∂x
) + G(n,N, ϕ)−R(n,N),

∂N

∂t
= G(n,N, ϕ)−R(n,N), 0 < x < Lx = 1, t > 0

with boundary and initial conditions

∂ϕ

∂x

∣∣∣∣
x=0,Lx

= 0,
∂n

∂x

∣∣∣∣
x=0,Lx

= 0, n|t=0 = N |t=0 = n0 (2)

which correspond to absence of external electric field and current through semi-
conductor surface. It is supposed, that at the initial time moment semiconduc-
tor is electrically neutral. Above functions G and R, describing generation and
recombination of semiconductor free charges particles correspondingly, we’ll de-
termine as follows:

G = q0q1(x)q2(t)δ(n,N, ϕ), R =
nN − n2

0

τp
. (3)

Electrons mobility is set by function

μ(x, t) =
μ0

1 + |E| /Ek
, (4)

where μ0 non-negative constant, Ek > 0 characterizes nonlinearity of mobility.
Light energy absorption coefficient δ(n,N, ϕ) is approximated by one of the
following functions

δ(n,N, ϕ) = (1−N)
{
e−(α−β|ϕ|), ch(βE), e−ψ(1−ξn)e−(α−β|ϕ|)

}
, (5)

E = −∂ϕ

∂x
.

In the system of equations (1) - (5) the following variables are introduced: x
- dimensionless cross-section coordinate normalized on the input optical beam
radius, t - time, that is measured in units of relaxation time, n(x, t) and N(x, t)
- concentrations of free electrons in conductivity zone of semiconductor and ion-
ized donors , which are normalized on their maximum possible value in the given
conditions. Function ϕ(x,t) - dimensionless electric field potential, D - coefficient
of electrons diffusion. Parameter γ depends, in particular, on the maximum pos-
sible concentration of free charge carriers, n0 - equilibrium value of free electrons
concentration and the ionized donors one, τp characterizes recombination time.
Parameters α, β, ψ, ξ - non-negative constants. Functions q1(x), q2(t) describe
intensity profile and time shape of optical pulse correspondingly, q0 - maximum
light intensity.
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Under the computer simulation experiments the action of gauss beam on
semiconductor is considered

q1(x)q2(t) = exp{−(
1− 0.5Lx

0.1Lx
)2}(1− e−10t). (6)

As is known, for interaction of optical radiation with semiconductor the law
of charge preservation takes place

Q(t) =

Lx∫
0

(n(t, ς)−N(t, ς)) dς = 0. (7)

This is necessary to taking into account at computer simulation of light beam
interaction with semiconductor as conservation law.

3 Construction of Differences Schemes

For definiteness we’ll consider absorption coefficient dependence on electric field
potential of a kind as δ(n,N, ϕ) = (1 −N)e−(α−β|ϕ|). Differences schemes con-
struction for its other dependencies is similarly. With the purpose of differences
schemes creation we introduce into area Ḡ = {0 ≤ x ≤ Lx} × {0 ≤ t ≤ Lt} an
uniform grid Ω = ωx × ωt :

ωx =
{
xi = ih, i = 0, Nx, h = Lx/Nx

}
, (8)

ωt =
{
tj = jτ, j = 0, Nt, τ = Lt/Nt

}
.

On this grid let define mesh functions nh, Nh, ϕh, Eh as follows:

n = nh(xi, tj), N = Nh(xi, tj), ϕ = ϕh(xi, tj), E = Eh(xi, tj), (9)

n̂ = nh(xi, tj+1), N̂ = Nh(xi, tj+1), ϕ̂ = ϕh(xi, tj+1), Ê = Eh(xi, tj+1).

Below for briefly index h at functions we’ll lower.One of the possible conser-
vative difference scheme for problem (1) - (3) is described in [4] (we entitle it
as the Scheme 1). It approximates initial system of differential equations with
accuracy O

(
h2 + τ2

)
. Boundary conditions are approximated with the first or-

der on x-coordinate. It is caused by necessity of scheme conservatism realization.
However, in some cases this scheme loses convergence in view of nonlinear de-
pendence of electrons mobility on electric field induced by laser light. Therefore
below new Scheme 2 is considered.

Scheme 2. Let introduce new function n(x, t) as follows

n(x, t) = n(x, t)eμ0F (x,t). (10)

In the case of constant mobility F = ϕ and similar transformation was made,
for example, in [7]. So initial system of equations (1) can be written down as
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∂E

∂t
= −γDeμ0F

∂n

∂x
,

∂ϕ

∂x
= −E,

∂N

∂t
= G−R, (11)

n =
1
γ

∂2ϕ

∂x2 + N,
∂F

∂x
= − E

1 + |E| /Ek
, 0 < x < Lx, t > 0

with boundary and initial conditions

E|x=0,Lx
=

∂n

∂x

∣∣∣∣
x=0,Lx

= 0, n|t=0 = N |t=0 = n0, E|t=0 = 0. (12)

Let’s construct the difference scheme for problem (10) - (12). With this aim
we define on the grid Ω mesh function n̄ = n̄h(xi, tj).This difference scheme is
nonlinear so for its solvability the iteration method is used. Proposed scheme
with iteration method is written in following manner

s+1

Ê −E
τ

= −1
4
γD

(
s

ˆ̄n0
x
+n̄0

x

)(
eμ0

s

F̂ + eμ0F

)
,

s+1
ϕ̂x = −

s+1

Ê , (13)

s+1

F̂x = −

s+1

Ê

1 +

∣∣∣∣∣s+1

Ê

∣∣∣∣∣ /Ek
,

s+1
n̂ =

s+1

N̂ − 1
γ

s+1

Êx ,
s+1
ˆ̄n =

s+1
n̂

eμ0

s+1

F̂

,

s+1

N̂ −N
τ

=
1
2
q(x)

(
e
−

(
α−β

∣∣∣∣s+1
ϕ̂

∣∣∣∣
)
(1−

s+1

N̂ ) + e−(α−β|ϕ|)(1−N)

)
−

−1
2

⎛⎜⎝ s

n̂
s+1

N̂ −n2
0

τp
+

nN − n2
0

τp

⎞⎟⎠ ,

s+1
0.5
n x,0 =

s+1
0.5
n x̄,Nx = 0,

s+1

Ê 0 =
s+1

Ê Nx = 0,

ni|j=0 = Ni|j=0 = n0, Ei|j=0 = 0, i = 0, Nx.

The difference scheme (13) approximates initial system of differential equa-
tions with accuracy O

(
h2 + τ2

)
. Boundary conditions are approximated with

the first order on spatial coordinate. As initial approach for iterative process
values of functions on the previous time layer is chosen:

s=0
n̂ (xi, tj+1) = n(xi, tj),

s=0

N̂ (xi, tj+1) = N(xi, tj), (14)

s=0
ϕ̂ (xi, tj+1) = ϕ(xi, tj),

s=0

Ê (xi, tj+1) = E(xi, tj).

Iteration process terminates when the following conditions are satisfied∣∣∣∣s+1
n̂ −

s

n̂

∣∣∣∣ ≤ ε1

∣∣∣∣sn̂∣∣∣∣ + ε2,

∣∣∣∣∣s+1

N̂ −
s

N̂

∣∣∣∣∣ ≤ ε1

∣∣∣∣ sN̂ ∣∣∣∣ + ε2, (15)
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ϕ̂ −

s

ϕ̂

∣∣∣∣ ≤ ε1

∣∣∣∣ sϕ̂∣∣∣∣ + ε2, ε1, ε2 > 0.

It is necessary to emphasize, that constructed difference Scheme 2 is
monotonous. Disadvantage of the given scheme is necessity of finding of func-
tion F and calculations of exponents from it on each iteration. That leads to
increasing of operations number. To increase an accuracy and on the big time
intervals the Fourier fast discrete transformation method is used for computation
function F , potential of electric field and function E derivation. We found out
some regimes of femtosecond pulse interaction with semiconductor, for which
computation using the Scheme 1 is unsuitable.

4 Comparison of Difference Schemes Efficiency

For comparison of the Scheme 1 and the Scheme 2 efficiency the computer
simulations of various regimes, determined by parameters and absorption coef-
ficient, were carried out.

As an example on Fig. 1 distributions of electrons concentration, computed
using the Scheme 1 (Fig. 1a, c, e) and the Scheme 2 (Fig. 1b, d, f) with
the same steps of difference grid are represented. It is necessary to emphasize,
that using of the Scheme 1 for this regime the computation is possible only
till some time moment (t≤64) as further the iterations number quickly increases

a) c) e)

b) d) f)

Fig. 1. Distributions of free electrons concentration (a, b), potential of electric field
(c, d) and electrons mobility (e, f) realized under the interaction of light beam with
semiconductor for absorption coefficient (1 − N)e−(α−β|ϕ|), D = 10−5, γ = 104, α =
0, β = 10, μ0 = 1, Ek = 1, n0 = 0.1, τp = 1, q0 = 1 at time moment t = 60, grid steps
τ = 10−3, h = 1/1024 using the Scheme 1 (a, c, e) and the Scheme 2 (b, d, f)
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Table 1. Comparison of accuracy of invariant Q(t) preservation by difference schemes.
D = 10−3, γ = 103, α = 0, n0 = 0.1, τp = 1

Scheme 1 Scheme 2

h = 1/256,
τ = 10−2

h = 1/1024,
τ = 10−3

h = 1/256,
τ = 10−2

h = 1/1024,
τ = 10−3

Absorption coef-
ficient

δ(n, N, ϕ) = (1 − N)e−(α−β|ϕ|)

Parameters β = 1, μ0 = 1, Ek = 2, q0 = 10
Q(25) 0.00105166 0.00025889 0.00012645 0.00001136
Q(250) 0.11952817 0.02929271 0.00049349 0.00004645
Q(500) 0.26601535 0.06430590 0.00049349 0.00004645
Absorption coef-
ficient

δ(n, N, ϕ) = (1 − N)chβE

Parameters β = 1, μ0 = 1, Ek = 1, q0 = 2
Q(25) 0.00004463 0.00001037 0.00001019 0.00000236
Q(50) 0.03870489 0.00930603 0.00023420 0.00004869
Q(100) 0.08324952 0.02005396 0.00025810 0.00007989
Absorption coef-
ficient

δ(n, N, ϕ) = (1 − N)e−ψ(1−ξn)e−(α−β|ϕ|)

Parameters β = 10, ψ = 2.553, ξ = 5/ψ, μ0 = 10, Ek =
1, q0 = 1

Q(25) -0.00000001 0 -0.00000040 0
Q(50) -0.01883673 -0.00378525 -0.00003634 0
Q(100) -0.06697757 -0.01330692 -0.00002418 -0.00000868

up to several thousand. At use the Scheme 2 it doesn’t occur: computations
can be carried out with large grid steps and on unlimited time interval. Also
it is important to note, that the results got on the base of the Scheme 1 till
moment of abrupt increase of iterations number, qualitatively differ from the
corresponding ones got under using the Scheme 2. It is necessary to pay an
attention as well that similar properties of the schemes were observed with zero
electrons mobility (Fig. 2).

One more difference of analyzed schemes consists in existence of regimes
of femtosecond pulse interaction with semiconductor which computations using
the Scheme 1 doesn’t cause the difficulties described above (iterative process
converges quickly), but because of mistakes summation and boundary conditions
of the second type it loses conservatism: invariant (8) doesn’t hold out (Fig. 3).
At use of the Scheme 2 it doesn’t occur (Table). As example on Fig. 3a we
can see uniform growth of electrons concentration n in time under preservation
of high concentration domain form. Using the Scheme 2 similar effects are not
observed: the system reaches the steady state (Fig. 3c).

It is important to emphasize, that the specified growth of free electrons con-
centration is slowed down at decreasing of grid steps in computations using the



Comparison of Some Difference Schemes 541

Fig. 2. Distributions of electrons concentration, realized under the interaction of light
beam with semiconductor for absorption coefficient (1 − N)e−(α−β|ϕ|)e−ψ(1−ξn), D =
10−3, γ = 103, α = 0, β = 5, ψ = 2.553, ξ = 5/ψ, μ0 = 0, Ek = 1, n0 = 0.1, τp =
1, q0 = 1, grid steps τ = 10−3, h = 1/1024 using the Scheme 1 (solid fat line) and the
Scheme 2 (solid thin, dot-dash and dot lines) at the time moment t = 5 (solid lines),
t = 25 (dot-dash line), 100 (dot line). The dash line represents initial distribution of
entrance intensity

a) b) c)

Fig. 3. Distributions of electrons concentration, realized under the interaction of light
beam with semiconductor for absorption coefficient (1 − N)e−(α−β|ϕ|)e−ψ(1−ξn), D =
10−3, γ = 103, α = 0, β = 10, ψ = 2.553, ξ = 5/ψ, μ0 = 10, Ek = 1, n0 = 0.1, τp =
1, q0 = 1, grid steps τ = 10−2, h = 1/256 (a, c), τ = 10−3, h = 1/1024 (b) at the
time moment t = 5 (dot-dash line), 50 (dash line), 100 (solid line) computed using the
Scheme 1 (a, b), Scheme 2 (c)

Scheme 1 (Fig. 3b). In this case the results of computations come nearer to
ones received using the Scheme 2.

5 Conclusions

The monotonous scheme constructed in the present work allows to simulate
regimes of femtosecond pulse interaction with semiconductor for which known
before deference schemes are unsuitable because of iterations number fast growth
at transition to following time layer or because of the loosing conservatism prop-
erty. Nevertheless, it is necessary to emphasize, that on the certain time interval
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and at using grids with small steps both schemes one can receive identical results.
Regimes of optical radiation interaction with semiconductor when monotonous
Scheme 2 proves to be inefficient weren’t revealed.

Acknowledgment

This paper was supported partly by RFBR (grant N 02-01-727).

References

1. Delone N.B., Kraynov V.P.: Nonlinear ionization of atoms by laser radiation.
Moscow: Phismatlit. (2001) 310 (in Russian)

2. Varentsova S.A., Trofimov V.A.: Influence of strong light field on the shift of
hydrogen-like atom spectrum. In Book ”Numerical methods of mathematical
physics.” Proceeding of department CMC MSU. Editors Kostomarov D.P., Dmitriev
V.I. Moscow: Pub. MSU. (1998) 67–75 (in Russian)

3. Varentsova S.A., Loginova M.M., Trofimov V.A. Mathematical model and the dif-
ference scheme for the optical bistability problem on the base of dependence of
semiconductor band gap from electric field. Vestnik moskovskogo universiteta. Ser.
calculation mathematics and cybernetics. 1 (2003) 20–27 (in Russian)

4. Loginova M.M., Trofimov V.A.: Comparison of some difference schemes for a prob-
lem of femtosecond pulse action on the semiconductor. Vestnik moskovskogo uni-
versiteta. Ser. computation mathematics and cybernetics. 1 (2004) (in Russian)

5. Smith R. Semiconductors.: Transl. from English. Moscow: Mir. (1982)560 (in Rus-
sian)

6. Bonch-Bruevich V.L., Kalashnikov S.G.: Physics of semiconductors. Moscow:
Nauka. (1990) 685 (in Russian)

7. Il’in V.P.: Difference methods for electrophysics problems. Novosibirsk: Nauka.
(1985) 335 (in Russian)



Soliton-Like Regime of Femtosecond Laser Pulse
Propogation in Bulk Media Under the

Conditions of SHG

Vyacheslav A. Trofimov and Tatiana M. Lysak

Lomonosov Moscow State University,
Department of Computational Mathematics and Cybernetics,

Leninskye Gory, Moscow 119992, Russia
Fax: +7 (095) 939-2596; phone: +7 (095) 939-5255;

vatro@cs.msu.su

Abstract. Results of numerical simulation of soliton-like propagation
of two interacting femtosecond laser pulses in bulk media with radial
symmetry are presented. Propagation is analysed under conditions of
SHG with strong self-action and remarkable phase mismatch for nonzero
input amplitudes of both waves. Two NLSE in two spatial coordinates
and time with quadratic and cubic nonlinearities govern the process.
Numerical simulation was made on the base of conservative difference
scheme, taking into account the conservation laws of the problem. Long-
time approximation of flat beam profiles was used to reveal the conditions
of soliton-like propagation.

1 Introduction

Investigation of various regimes of SHG by high intensive laser femtosecond
pulses is still a very important task, which attracts attention of many authors
[1-11]. Some investigators concentrate their efforts at the achievement of high
generation efficiency [10,11]. Others are interested in the formation of special
regimes of propagation, e.g. solitons and spatiotemporal solitons – solutions that
are localized in space and time [7-9].

Formation of solitons and soliton-like regimes of high intense femtosecond
pulses under the SHG is promoted by self-action (cubic non-linearity) that under
certain conditions becomes comparable with quadratic non-linearity for pulses
in femtosecond diapason. The influence of self-action on laser light propagation
increases dramatically with the pulse intensity growth. As a result, violation of
the optimal phase conditions due to cubic non-linearity causes dramatic distor-
tion of pulses’ shapes. The pulse is divided into several narrow pulses, number of
which grows with propagation length, and the intensities in the center of pulses
grow, causing the destruction of the media. To avoid these problems special con-
ditions of propagation should be set, that could guarantee the preservation of
the main characteristics of pulse.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 543–550, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



544 V.A. Trofimov and T.M. Lysak

In this paper, using numerical stimulation, we offer possibility of soliton-like
regime propagation of laser beam in bulk media, which is characterized by con-
stant intensity in the central part of the high intense femtosecond pulses. For
simplicity we assume the radial symmetry of media and input beams. Both pulses
preserve their width. The pulse of the basic wave propagates without any notice-
able distortions, while the pulse on doubling frequency propagates with constant
central part and oscillating front at both radial and time coordinates. Conditions
of appearence of such regime are derived in the framework of long-time approx-
imation for flat beam profiles. We conducted our numerical simulation on the
base of conservative difference scheme, taking into account the conservation laws
of the problem.

2 Basic Equations

The process of SHG by femtosecond pulses in the framework of slowly varying
envelope and under the condition of pulse self-action is governed by the pair of
dimensionless nonlinear Shrodinger equarions (NLSE)

∂A1

∂z
+ iD1

∂2A1

∂η2 + iD⊥Δ⊥A1 + iγA∗
1A2e

−iΔkz + iα1A1

(
|A1|2 + 2 |A2|2

)
= 0,

∂A2

∂ z
+ν

∂A2

∂η
+iD2

∂2A2

∂ η2 +i
D⊥
2

Δ⊥A2+iγA2
1e
iΔkz+iα2A2

(
2 |A1|2 + |A2|2

)
= 0,

(1)

0 < z ≤ Lz, Δ⊥ =
1
r

∂

∂r

(
r
∂

∂r

)
, α2 = 2α1 = 2α.

Here η - dimensionless time in the system of coordinates moving with the basic
wave pulse, z - normalized longitudinal coordinate, r - radial coordinate nor-
malized on initial beam radius of the first wave , Dj ∼ −0.5∂

2k̄j

∂ ω̄2
j

- coefficients

that characterize dispersion of group velosity, k̄j , ω̄j - scaled wave number and
frequency of j-th wave correspondingly, D⊥ - diffraction coefficient, γ - coeffi-
cient of nonlinear coupling of interaction waves, Δk = k2 − 2k1 - dimensionless
mismatching of their wave numbers, αj - coefficients of self-action of waves, Aj
- complex amplitudes (j = 1, 2), normalized on the maximal amplitude of first
harmonic in the input section of medium (z = 0). Parameter ν is proportional to
the difference between inverse values of group velocities of the second harmonic
wave and the basic wave, L z - nonlinear medium length.

At the input section the initial distributions of FH (fundamental harmonic)
basic pulse and SH (second harmonic) pulse are defined

A 1(z = 0, η, r) = A0
1(η, r) exp(is10),

A 2(z = 0, η, r) = A0
2(η, r) exp(is20) 0 ≤ η ≤ L t , 0 ≤ r ≤ L r (2)
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A0
i (η, r) = Ai0 exp (−((η − Lt)/τ)mt/2) exp (− (r/R))mr /2) , (3)

where Ai0 - dimensionless amplitudes, L t - dimensionless time, L r - dimension-
less domain on transverse coordinate. Maximum input intensities of interacting
waves are normalized at the sum of their intensities:

|A 10|2 + |A 20|2 = 1.

SHG process has the following invariants

I1 =

Lt∫
0

Lr∫
0

r(|A1|2 + |A2|2)drdη I2 =

Lt∫
0

Lr∫
0

r(A1
∂A∗

1

∂η
+ A2

∂A∗
2

∂η
)drdη,

I3 =

Lt∫
0

Lr∫
0

r

[
−2D1

∣∣∣∣∂A1

∂η

∣∣∣∣2 −D2

∣∣∣∣∂A2

∂η

∣∣∣∣2 − 2D⊥

∣∣∣∣∂A1

∂r

∣∣∣∣2 − D⊥
2

∣∣∣∣∂A2

∂r

∣∣∣∣2

− ν

(
A2

∂A∗
2

∂η

)]
drdη +

Lt∫
0

Lr∫
0

rγ
[
A2A

∗2
1 e−iΔkz + A∗

2A
2
1e
iΔkz

]
drdη−

−
Lt∫
0

Lr∫
0

r
[
Δk

(
2 |A1|2 + |A2|2

)
+ α

(
|A1|4 + |A2|4 + 4 |A1|2 |A2|2

)]
drdη. (4)

Conservative difference schemes that preserve difference analog of these in-
variants were used with the aim of controlling of computer simulation results.
Below we supposed group velocities matching for numerical calculation. It results
in zero value of parameter ν (group synchronism).

3 Conditions for Soliton-Like Regime Formation

Formation of soliton-like regime depends on the problem parameters, particularly
on the ratio of quadratic and cubic nonlinearities, phase mismatch and input
characteristics of both waves. Conditions of soliton-like regime appearance can
be written in the framework of long-time approximation for flat beam profiles.

Using standard writing for complex amplitudes of FH and SH waves

Aj = aje
iϕj , j = 1, 2

equations (1) can be rewritten in the form

da1

dz
= γ a1a2 sinϕ,

da2

dz
= −γ a2

1 sinϕ ,
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dϕ

dz
= 2α

(
a2
2 − a2

1
)
− γ cosϕ

(
a2
1

a2
− 2a2

)
+ Δk, ϕ = ϕ2 − 2ϕ1 (5)

with the initial conditions

a2|z=0 = a20, a1|z=0 = a10, ϕ|z=0 = ϕ0.

Invariants (4) in this case are the following

I1 = a2
1 + a2

2, I3 = 2γ a2a
2
1 cosϕ + α

(
|a1|4 + |a2|4 + 4 |a1|2 |a2|2

)
−Δka2

1.

For the further analysis is useful to introduce modified third integral Ī3

Ī3 =
(
I3 − α I2

1
)/

2α =
(
1− a2

2
) (

a2
2 + a2q cosϕ− p

)
.

Here we have denoted q = α/γ, p = Δk/(2α) and used relation

I1 = a2
1 + a2

2 = 1.

Fig. 1. Areas of χ - stability in the plain (q = α/γ, p = Δk/(2α)) for a20 = 0.2,a10 =√
1 − a2

20 and ϕ0 = π (area 1), ϕ0 = 0 (area 2). Lines 3 and 3′ correspond to soliton-like
regimes for ϕ0 = π (3), ϕ0 = 0 (3′)

Amplitudes a1 and a2, such as phase difference ϕ, remain constant during
propagation if the following conditions take place:

∂Ī3
∂a2

∣∣∣∣
a2=a20,ϕ=ϕ0

= 0 ,
∂Ī3
∂ϕ

∣∣∣∣
a2=a20,ϕ=ϕ0

= 0

for input amplitudes and phase. This gives the following equation for param-
eters p and q

− 4a3
20 − 3a2

20q cosϕ0 + 2a20(1 + p) + q cosϕ0 = 0, (6)

where input phase difference ϕ0 can take values 0 or π. For the given values
of input amplitudes equation (6) determines values of parameters p and q for
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which amplitudes of FH and SH waves remain constant. Fig. 1 shows lines on the
plain (p, q), determined by equation (6) for a20 = 0.2 and ϕ0 = 0 (line 3’) and
ϕ0 = π (line 3). Areas 1 and 2 are the ones of χ – stability of such solutions for
χ = 0.1. For values (p, q) from these areas the relative change of SH amplitude
does not exceed χ:

|a2 − a20|
a20

< χ.

Propagation of flat beams of FH and SH waves under conditions (6) was
numerically investigated in [12] for Gaussian (mt=2) and hyper Gaussian (mt=6)
shapes of input pulses and various values of dispersion coefficients under their
interaction in optical fiber. It was shown that hyper Gaussian pulses leads to its
better preservation. Strong self-action results in considerable change of SH pulse
shape at the front and the back of the pulse, where essential generation of SH
takes place. Increasing of second order dispersion influence results in reduction
of the medium length for which undistorted propagation of pulses takes place.

Here we present the results of numerical simulation of SH and FH pulses
propagation in the bulk media under conditions (6).

4 Results of Modelling

At our numerical simulations we have chosen the following parameters: α = 10,
γ = 3, Δk = −5.2, A20 = 0.2, A10 =

√
1−A2

20, s10 = 0, s20 = π. Corresponding
values of parameters pand q are shown in Fig.1 by the cross. Input pulses had
hyper Gaussian shape and profile (mt = 6, mr = 6). Hyper Gaussian shape
has been chosen because unchanging of intensity in the pulse center are better
pronounced for this shape. Results of numerical simulation are shown in Fig.
2-4.

It should be noted that propagation length, at which pulses have soliton-like
shape and profile, depends on dispersion and diffraction coefficients. Numeri-
cal calculations have shown that for small dispersion and diffraction (∼ 10−6)
this length exceeds 4 dimensionless units. For dispersion and diffraction 10 times
larger (∼ 10−5) it declines to 2 dimensionless units. Dispersion ∼ 10−1 reduces
the length of soliton-like propagation up to 0.5 dimensionless units, while anoma-
lous dispersion ∼ −10−1supports soliton-like propagation so that the length
exceeds 1 dimensionless unit in our notation.

While propagating as soliton-like solution, FH pulse preserves its shape
(Fig.2) with slight disturbances out the central part of pulse (Fig3a) far from
beam axis (Fig. 3b). Slight oscillating of the central plateau part of both pulses
is due to the perturbation in setting of input amplitudes – corresponding point
in the plain (p, q)(Fig.1) is not precisely in the line 3, though it is in the area 1
of χ-stability.

Propagation of soliton-like SH pulse differs from FH pulse propagation
(Fig.2). While the central plateau part remains constant, intensity out of this
part of pulse undergoes high amplitude oscillations (Fig.3c,d). Maximum of such
oscillations is 10 times greater than intensity at the plateau part of profile. As a
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Fig. 2. Spatio-temporal distributions of intensities at various cross sections along the
longitudinal coordinate for FH (left column) and SH (right column). Lt = 30, α = 10,
γ = 3, Δk = −5.2, D1 = D2 = D⊥ = 10−6

Fig. 3. Evolution of the central cross sections of the FH pulse (a,b) and SH pulse (c,d).
Pictures a, c correspond to the radial cross section at r = 0, pictures b,d - to the time
cross sections at η = Lt/2. Lt = 30, α = 10 ,γ = 3, Δk = −5.2, D1 = D2 = D⊥ = 10−6

result transvers distribution in the center of SH pulse consists of circle plateau
of input intensity surrounded by the narrow ring of higher intensity (Fig.4). The
intensity of the surrounding can be 2 to 10 times higher than the intensity of
plateau part of the beam, depending on output section. So effective SH takes
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Fig. 4. A sequence of time snapshots for FH (upper set) and SH (lower set)pulses at
z = 1. Higher intensities correspond to darker areas. Values of η given in pictures should
be added to η = Lt/2 to get instances of time. Lt = 30, α = 10, γ = 3, Δk = −5.2,
D1 = D2 = D⊥ = 10−6

place in the narrow ring around the plateau intensity domain, thus increasing
total efficiency of generation up to 6 times.

5 Conclusions

Nonlinear interaction between the basic and doubling frequency waves can result
in soliton-like propagation regime of both waves, even when self-action is strong.
The shape and profile intensity of basic wave during soliton-like regime remains
constant with slight disturbances at the pulse fronts. The doubling frequency
pulse undergoes stronger distortion at the fronts, though central part of the pulse
propagates without any changes. Pulse distortions increase with the growth of
strong-action and results in oscillation of intensity of SH wave in the narrow ring
around center plateau part of pulse. Effective SHG takes place in this ring. Its
efficiency depends on the cross section.

Special conditions have to be fulfilled to get such behavior. In particular,
input waves amplitudes should be nonzero and remarkable phase mismatch is
required under the self-focusing. The length of soliton-like propagation depends
on dispersion and diffraction of the beam. So that the stronger are dispersion
and diffraction, the shorter is this length. At the same time, anomalous disper-
sion strongly promotes soliton-like regime. As numerical simulation has shown,
anomalous dispersion increases the length by several times compared to normal
dispersion of the same order.
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Abstract. An effective difference method is proposed for finding of
eigenvalues and eigenfunctions of a nonlinear Shrödinger equation (NLSE)
with a cubic nonlinearity, describing the light beam propagation in an
optical fiber. The methodical recommendations are given for the NLSE
eigenfunctions construction depending on the nonlinearity coefficient and
the transverse size of a waveguide.

1 Introduction

The problem of finding of spatial or temporal or spatiotemporal solitons of a light
propagation in the nonlinear medium is very important for many applications.
This fact causes the great interest to such problems [1]–[11]. It is well-known, the
soliton solution of the corresponding nonlinear optics equation doesn’t change
either in time or along the coordinate of an optical radiation propagation in the
nonlinear medium. If the medium is an optical fiber then the soliton preserves
its shape in time. In this case the problem of information transmission by optical
methods is the most essential application of solitons.

Let’s note, there isn’t a general method for finding of soliton solutions of
corresponding nonlinear equations. We can mention the method of inverse scat-
tering problem [1], allowing to calculate the spectrum of NLSE in the case of
a weak nonlinearity. However it is very difficult to find the soliton shape (or
profile) on its base. Another shortcoming of this method — it is impossible
to generalize it on n-dimension problems. From our point of view there aren’t
other sufficiently effective and universal methods for constructing of finite on
space (or time) solitons with limited energy. For this reason the soliton, which
is well-known in the literature, is one that has a cosh−2(t)–shape, where t is,
for example, a normalized time. Finite solitons of a higher order (with a more
complicated shape) are practically unknown. We don’t discuss below the trivial
case of a cosh−2(t)–shape solitons composition.

Let’s emphasize that in contrast to papers mentioned above we consider the
problem of finding of NLSE solitons on a limited domain along the transverse
coordinate. From the mathematical point of view in this case the solitons are
the eigenfunctions of the corresponding NLSE with given boundary conditions.
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c© Springer-Verlag Berlin Heidelberg 2005



552 V.A. Trofimov and S.A. Varentsova

Thus, it is evident to try to generalize the well-known computational methods
for solving of the linear eigenvalue problem on this class of nonlinear equations.
However, it turned out that many recommendations for finding of eigenfunc-
tions and eigenvalues in the linear case aren’t applied for this nonlinear case. In
particular, for linear eigenvalue problems considered on the unlimited (or semi-
unlimited) interval, under the computer simulation it is necessary to increase the
interval on which the computational solution is looking for in order to calculate
the eigenvalues more exactly. But in the case of NLSE this way isn’t effective
even for little values of a nonlinearity coefficient α. Therefore, the main aim of
the present paper consists in finding the rule of constructing of arbitrary k-order
eigenfunctions for NLSE depending on a nonlinearity coefficient not only for a
weak nonlinearity but for α >> 1 as well.

It should be noticed the difference between the eigenfunctions and the cor-
responding NLSE solitons. The eigenfunction hasn’t to preserve the property
of being the NLSE soliton in general. The reason consists in the formulation of
the problem: we look for the finite solutions on a limited in time or space area.
When we use the eigenfunction as the initial condition of NLSE, it can change
along the propagation coordinate, if the transverse coordinate is enlarged (or
shortened). However we don’t consider the case of enlargement in the present
paper.

2 Basic Equations

The optical beam propagation in a plane optical waveguide with a cubic nonlin-
ear medium response can be described by a dimensionless NLSE:

∂A

∂z
+ i

∂2A

∂x2 + iα|A|2A = 0, z > 0, 0 < x < L (1)

with initial and boundary conditions

A

∣∣∣∣
z=0

= A0(x), A

∣∣∣∣
x=0,L

= 0.

Above A(x, z) is a complex amplitude, normalized to its maximum, x is a di-
mensionless transverse coordinate, z is a longitudinal coordinate along which
an optical beam propagates, α is a coefficient characterizing the propagation
nonlinearity, L is a transverse size of a plane waveguide. The meaning α > 0
corresponds to the process of beam self-focusing, α < 0 — to its defocusing.

Soliton solutions of (1) are given by

A(x, z) = ψ(x) e−iλz,

with real functions ψ(x) and real eigenvalues λ. Let’s reduce (1) to the problem
which is nonlinear on the eigenfunction:

d2ψ(x)
dx2 + αψ3(x) = λψ(x), 0 < x < L, (2)
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ψ(0) = ψ(L) = 0.

It is easy to see that for α = 0 the problem (2) is linear with a well-known
solution:

ψdk(x) = sin
(
πkx

L

)
, λdk = −

(
πk

L

)2

, k = 1, 2, . . . (3)

In some papers (see for example [9]) the authors propose to find the soliton
solutions in the form:

A(x, z) =
1√
α
ψ(x) e−iλz,

with a fixed coefficient at the nonlinear term in (2). From our point of view, it
isn’t always suitable because such substitution doesn’t allow to study how the
properties and the behavior of eigenfunctions and eigenvalues of (2) depends on
α if, for example, α is close to zero.

3 Difference Scheme

For a numerical calculation of the problem (2) we introduce the regular grid on
the segment [0, L]:

ωh =
{
xi = ih, i = 0, . . . , N, h = L/N

}
and write a difference scheme for (2) with the following iterative process:

ψs+1
xx,i + α(ψsi )

2ψs+1
i = λs+1ψs+1

i , i = 1, . . . , N − 1, (4)

ψs+1
0 = ψs+1

N = 0, s = 0, 1, . . .

It easy to show the scheme (4) is of second-order accuracy: Ψ = O(h2). At each
iteration step s the difference problem (4) is a linear eigenvalue one

Ls ψs+1 = λs+1ψs+1

with a three-diagonal symmetric matrix of the operator Ls, defined as:

Ls = Λ + α I (ψs)2.

Here Λyi = yxx,i, I is an unit operator, (ψs1, ψ
s
2, . . . , ψ

s
N ) = ψs. At each iteration

step s the problem (4) is solved by the bisection method. The corresponding
eigenvector is found by means of a three-diagonal algorithm.

Function ψ at the initial iteration s = 0 is built in special way. In the case
of a weak nonlinearity (|α| ≤ 1), it is chosen as a corresponding eigenfunction of
the linear (α = 0) difference problem:

ψ0
k,i = sin

(
πkxi
L

)
.
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However, this case isn’t of great interest both for practice and for computational
mathematics since for a little |α| the problem (4) is quasi-linear one: the influence
of α on its solution is weak and the solution of (4) can be found analytically by
the method of a scattering inverse problem. The case |α| ≥ 1 is of interest for us.

The iterations are terminated if the following condition is fulfilled:

||ψs+1 − ψs||C < ε1||ψs||C + ε2, ε1, ε2 > 0.

The absolute solution error Ψk in the C-norm is checked too:

Ψk =
∣∣∣∣∣∣∣∣d2ψk(x)

dx2 + α|ψk(x)|2ψk(x)− λkψk(x)
∣∣∣∣∣∣∣∣
C

.

As we mentioned above, the amplitude A(x, z) is normalized to its maximum,
so we’ll solve the difference problem (4) with ||ψk(x)||C = 1.

4 Computational Results

Calculations show that for all considered values of the domain length L = 0.5÷20
and a nonlinearity parameter α the problem (2) has a discrete spectrum. The
iterative process converges for any examined eigenvalue numbers k ≤ 50. The
comparison of few first eigenvalues on two grids with a decreasing mesh step
shows that λhk are calculated with a second order accuracy. To test our method
we used the first eigenfunction of (2), which can be written analytically (see
for example [1–3], [8]). The second test consists in finding of eigenvalues and
eigenfunctions in the case of a weak nonlinearity (|α| ≤ 0.01). For small |α|
eigenvalues of the nonlinear difference scheme (4) are negative and close to the
corresponding ones of the linear (α = 0) case.

4.1 Case of Self-Focusing: α > 0

We begin computer simulations for the case of self-focusing, α > 0. For the
practice of eigenfunction computations it is very important to study how the
convergence and the kind of spectrum depends on a domain size L. Computer
simulations show that for the length L = 0.5 ÷ 2.0 the iterative process (4)
converges for any α, which is smaller than 100, and eigennumbers k ≤ 50, for
example with the step h = 0.01. Let’s note, eigenvalues λk increase with increas-
ing of α. Moreover, the value of λ1 tends to the value α/2 with increasing of
the domain length L. For example, in the Table αcr is presented, for which the
following condition is fulfilled:

|λ1 − α/2| ≤ 10−2.

We can see that αcr decreases very quickly with a growth of L.
For domain lengths 2 < L < 20 the values of λk for k = 2÷10 with a growth of

α tend to α/2 too and form the group of very closely located eigenvalues. It causes
the essential difficulties with the computation of eigenvalues and eigenfunctions.
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Table 1

L 2 5 10 20

αcr 36 6 0.9 0.2

It is important, if the group of the first eigenvalues λk are close to α/2, the use
of the exact solution of the linear (α = 0) difference scheme (4) as the initial
approximation is impossible because the iterative process doesn’t converge to
the required eigenvalue and eigenfunction. We use another way in such case,
and construct the initial approximation giving the convergence of the iterative
process. It consists in the calculation of the first eigenfunction ψ1 on the segment
with a less domain length L (for example L = 1) and a large value of α, for
which the first k eigenvalues λk don’t yet form the group close to α/2. Let’s
note, for large meanings of α the shape of the eigenfunction ψ1 is concave and
narrow enough. Then this function ψ1 is iterated k times on the segment with
a more length L and imitates the corresponding eigenfunction ψk with required
number of oscillations. The function constructed in such way is used as the initial
approximation to find ψk on the segment length L = 2, 5, 10, 20 for those α
under which the group of eigenvalues λk is close to α/2.

The iterative process converges for the constructed initial approximation ψ0
k

if the following condition takes place:

||ψ0
k − ψk||C ≤ ε, (5)

where ε = ε(L, k). The condition (5) means the constructed approximation must
be close enough to the solution of (4). Computer simulations show, for L = 5 and
k = 2 the value of ε must satisfy the condition ε ≤ 0.05, meanwhile for L ≥ 10
and the same k the value of ε must be less than 0.0001. It should be noted,
the choice of initial α (when the length of the initial approximation segment is
fixed, L = 1) depends on the length under consideration and on the eigennumber
which are defined. In this case one can estimate the width of one separated initial
approximation and choose the corresponding α.

Thus, if the first k eigenvalues form the group close to α/2, it is possible to
separate them using the specially constructed initial approximation. Unfortu-
nately we didn’t succeed to construct such approximation in any case of closely
located eigenvalues.

With increasing of the domain length L up to L = 10 and 20 it is difficult to
compute even the first eigenvalue λ1 because in this case the first k eigenvalues
tend to α/2 much more rapidly than for the segment length L < 10. However,
there is a possibility to improve the convergence by increasing the mesh step h
and then to use the obtained eigenfunction ψ1 as an initial approximation for
the grid function with a greater number of steps. Indeed, the number of grid
eigenfunctions decreases with a growth of a mesh step h and this fact simplifies
the separation of eigenvalues.

There aren’t difficulties with the calculation of eigenvalues and eigenfunctions
with numbers 10 ≤ k ≤ 50 in large intervals on α using this algorithm. For
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example, on the segment length L = 10 the values λk, ψk with 20 ≤ k ≤ 50 can
be calculated for α ≤ 100. The eigenvalues and eigenfunctions corresponding to
10 ≤ k < 20 are computed for α ≤ 40. If L = 20 it is possible to calculate λk,
ψk for 30 ≤ k ≤ 50 if α ≤ 40. It should be stressed, the profile of obtained
eigenfunctions differs dramatically from the set of consecutive functions of the
cosh−2(x)–type.

In conclusion of this section one can mention that in all computer experiments
carried out the absolute solution error Ψk in the C-norm depending on a grid
step h didn’t exceed 10−4 for separate eigenvalues and 0.05 for eigenvalues close
to α/2.

4.2 Case of Defocusing: α < 0

Computer simulations show that the case α < 0 is similar to the previous one.
Namely, the first eigenvalues and eigenfunctions can be obtained without diffi-
culties on segments with a small length L ≤ 2. For the fixed segment length L
with a growth of the eigennumber k the interval on α for which the eigenvalue
λk can be obtained, increases as well. For example, if L = 1 the eigenvalue λ1
is computed for |α| ≤ 50, λ2 — for |α| ≤ 119, the values of λ10 are obtained
for |α| ≤ 840. The profile of the corresponding eigenfunction in contrast to the
previous case is convex and for the fixed eigennumber k its width increases with
a growth of the absolute value of α.

5 Conclusions

The results obtained above allow to give some recommendations for calculation
of eigenvalues and eigenfunctions of NLSE on a limited segment length L for the
practically important case |α| > 1 (including |α| 4 1).

First, it is necessary to decrease the segment length to separate the eigen-
values in opposite to the case of linear Shrödinger equation considered on an
unlimited interval. The reason is that any eigenvalue λk for α > αcr(L) tends to
the α/2 and αcr(L) decreases dramatically with a growth of a segment length
L.

Second, with a growth of the eigennumber k (for which the corresponding λk
is close to α/2) it is necessary to choose the initial approximating eigenfunction,
which is close enough to the corresponding eigenfunction. This provides the
convergence of the iterative process. We proposed one of the possible ways of such
initial approximation construction based on the property of a first eigenfunction
in the case of a self-focusing: the eigenfunction width decreases with a growth
of a nonlinearity coefficient.

Third, it is useful to take into account the well-known property of difference
schemes: the maximum number of calculated eigenfunction depends on a grid
step. So, to limit the number of eigenfunctions with eigenvalues, which are close
to α/2, it is necessary to use rough grids. In this case, one can find the first
k eigenfunctions. Then it is necessary to decrease the grid step and to use the
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eigenfunctions computed on a rough grid as an initial approximation to obtain
more exact results.

Thus, the computation method for finding of NLSE eigenvalues and eigen-
functions proposed in the paper is effective for the practically interesting case
|α| ∈ [1, 100]. Using it the eigenfunctions ψk, k ≤ 50 are found. Eigenfunctions
ψk were used as the initial condition A(x, 0) = ψk(x) for NLSE (1) to proof
obtained results (in the point of view if they are really solitons). We considered
their evolution along the coordinate z belonging to the interval 1 ≤ Lz ≤ 20
with the same transverse length L. The calculations confirmed, eigenfunctions
preserved their profile along z (|A(x, 0)|2 = |A(x, z)|2) for the length Lz much
more than the diffraction length of a separate subbeam. However, if the trans-
verse size of an area is increased, the profile of the eigenfunctions propagating
along z with λk < α/2 doesn’t preserve.

It should be noticed, the method proposed in the paper can be generalized
on the case of two coordinates. The iteration method for solving of the nonlinear
on eigenfunction problem (4) can be also applied to the case of a f(ψ)ψ–type
nonlinear term in (4) and can be used on adaptive grids.

Acknowledgement. This paper was supported partly by RFBR (grant N 02-
01-727).
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Abstract. The paper is devoted to the eigenvalue problem for a second
order strongly elliptic operator. The problem is considered on curved do-
mains, which require interpolated boundary conditions in approximating
finite element formulation. The necessary triangulations for solving the
eigenvalue problem consists of isoparametric elements of degree n, where
n is any integer greater than two.

An approximating numerical quadrature eigenvalue problem is inves-
tigated. The considered convergence analysis is a crucial point for es-
timating of the error in approximating eigenvalues. An isoparametric
approach is the basic tool for proving the convergence.

Keywords: eigenvalue problem, isoparametric FEM, numerical integra-
tion.

1 Introduction and Setting of the Problem

The interest in the second order eigenvalue problems consist of their consid-
erable practical importance. Different results are obtained with respect to the
finite element discretizations, convexity of the domains, smoothness of the exact
solutions and boundary, type of the boundary conditions etc.

Most of the authors use piecewise linear trial functions which gives the lowest
rate of convergence. Armentano and Duran [5] analyze the effect of mass-lumping
in the linear triangular finite element approximation of second order elliptic
eigenvalue problems. The original domain in their case is a plane polygon. The
authors prove that in the case of convex domain the eigenvalue obtained by
using mass-lumping is always below the one obtained with exact integration.
For singular eigenfunctions, as those arising in non convex polygons, they show
that the eigenvalue obtained by mass-lumping is above the exact eigenvalue when
the mesh size is small enough.

Hernández and Rodriguez [11] consider the spectral problem for the Laplace
equation with Neumann boundary conditions on a curved non convex domain.
They prove convergence and optimal order error estimates for the eingenpairs
introducing nonconforming finite element method. Unfortunately their result is
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valid for standard piecewise linear continuous elements and polygonal compu-
tational domain only. Hernández and Rodriguez extend their results for spec-
tral acoustic problems on curved domains in [12]. There the optimal rate of
convergence is proved by straight Raviart-Thomas elements. Duran, Padra and
Rodriguez present results for 3D-eigenvalue problem on polyhedral domains in
[10].

The convergence of the piecewise linear eigenvalue approximations on a non
convex domains are considered also by Vanmaele and Ženǐsek [14]. They in-
vestigate second order eigenvalue problem with Dirichlet boundary conditions.
The results in [14] have been further extended by the same authors to include
multiple eigenvalues [15] and numerical integration effects [16] (thus allowing to
considering non constant coefficients).

General result on polygonal domains are obtained on arbitrary Lagrangian
rectangular triangulations by Andreev, Kascieva and Vanmaele [1]. Note that in
this case the computational domain is the original domain.

Lebaud analyzed in [13] an eigenvalue problem for second order elliptic op-
erator with variable coefficients on domain with Lipschitz-continuous boundary.
She consider simple eigenvalues and Dirichlet boundary conditions, assuming
exact integration. Lebaud construct the so-called ”good” approximation of the
boundary by isoparametric triangular finite elements of degree k ∈ N. She prove
optimal rate of convergence for the eigenpairs assuming that the exact eigen-
functions are smooth enough. Lebaud does not investigate the effect of numerical
integration.

Andreev and Todorov [2] consider lumped mass method for the problem
introduced by Lebaud [13]. To lumping of the mass matrix they use the 7-
node isoparametric element and corresponding quadrature formula. Proving the
convergence they suppose that the bilinear a-form is computed exactly.

The paper deals with a second order eigenvalue problem for selfadjoint ellip-
tic operator defined on domain with complex geometry. The problem for obtain-
ing the rate of convergence for eigenpair approximations obtained by triangular
meshes with elements of arbitrary degree is still open. The solutions of such a
type problems consists of three important steps:

(i) Computing of the total quadrature error on the corresponding triangula-
tions;

(ii) Proving of the convergence of the eigenvalue approximations;
(iii) Determining of the rate of convergence of the approximate eigenpairs;

The step (i) is already done and the results are published by Andreev and
Todorov in [4]. The problem (ii) is considered in the present paper for triangu-
lations constructed by arbitrary triangular Lagrangian finite elements of degree
k ≥ 2, k ∈ N. The effect of the numerical integration is studied in the most
complicated case when both sides of the eigenvalue problem are approximated
by quadrature formula. For this purpose a pure isoparametric approach is used.

The major difficulty solving the problem (iii) consists of the fact that the
computational domain is not the original domain. The precisely estimates of the
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remainders are necessary for completing (iii). The solution of (ii) is a crucial
point for realizing (iii). The problem (iii) is an object of further investigations.

Let Ω be a bounded domain in R2, with Lipschitz-continuous boundary. We
consider the case when the piecewise Cn+1 (n is any integer greater than two)
boundary Γ = ∂Ω is curved. Denote the space of generalized functions on Ω by
D′(Ω). Define the operator

Lu = −
2∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+ a0u, u ∈ D′(Ω),

where aij belong to C1(Ω), aij = aji, i, j = 1, 2 and a0 ∈ C(Ω), a0(x) ≥ a > 0,
∀x ∈ Ω, a = const. Assume that L is strongly elliptic, i.e. there exists a constant
α0 > 0 such that

2∑
i,j=1

aij(x)ξiξj ≥ α0

2∑
i=1

ξ2
i , ∀ξ, x ∈ R2.

We study the eigenvalue problem

P :

⎧⎨⎩find λ ∈ R and a nontrivial function u ∈ D′(Ω) such that
Lu = λu in Ω,
u = 0 on Γ,

for the operator L.
Let Hm(Ω), m ∈ N be the real Sobolev space provided with the seminorms

| · |m,Ω and norms ‖ · ‖m,Ω [7].
Define the space V = {v ∈ H1(Ω) | v = 0 on Γ}. Consider the bilinear

form

a(u, v) =
∫
Ω

2∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
dx +

∫
Ω

a0(x)uv dx

on V ×V. Write the weak formulation of the problem P by

PW :
{

find λ ∈ R and a nontrivial function u ∈ V such that
a(u, v) = λ(u, v), ∀v ∈ V.

2 Preliminaries

We use isoparametric triangular Lagrangian finite elements of degree n ≥ 2.
The elements of higher degree (quartic and quintic elements) are considered by
Brenner and Scott [6–p. 72]. Introduce a finite element discretization for solving
the problem PW .

We suppose that all finite elements in the triangulation τh of the domain Ω
are isoparametric equivalent to one finite element (K̂, P̂ , Σ̂) called finite element
of reference:
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K̂ = {(x̂1, x̂2) | x̂1 ≥ 0, x̂2 ≥ 0, x̂1 + x̂2 ≤ 1} is the canonical 2-simplex;
P̂ = Pn(K̂), where Pn is the space of all polynomials of degree, not exceeding

n;
Σ̂ = {x̂ = (x̂1, x̂2) | x̂1 = i

n , x̂2 = j
n ; i + j ≤ n; i, j ∈ N

⋃
{0}} is the set of

all Lagrangian interpolation nodes.
An arbitrary finite element K ∈ τh is defined by K = FK(K̂), where FK ∈ P̂ 2

is an invertible transformation. Let

hK = diam(K), h = max
K∈τh

hK , ∀K ∈ τh.

We use not only straight elements but also isoparametric elements with one
curved side for getting good approximation of the boundary Γ . Thus we obtain
a perturbed domain Ωh =

⋃
K∈τh

K of the domain Ω.
The notations C, C1, C2, ..., are reserved for generic positive constants, which

may vary with the context.
We define a finite element space associated with a triangulation τh by

Vh = {v ∈ C(R2) | v(x) = 0 if x �∈ Ωh; v|K ∈ PK ,K ∈ τh},

where PK = {p : K → R | p = p̂ ◦ F−1
K , p̂ ∈ P̂}. The finite element space Vh

is constructed on the basis of (n + 1)(n + 2)/2 - node isoparametric triangular
elements.

The boundaries Γ and Γh are close by a little h, then there exists a bounded
open set Ω̃, which satisfies Ω ⊂ Ω̃, Ωh ⊂ Ω̃ for all considered triangulations τh.
We suppose that every function from V is extended by zero outside of Ω to R2

in a continuous way.
Further we shall use the space Wh = V +Vh (see [6–p. 198]). We define the

approximating bilinear form

Ah(u, v) =
∫
Ω̃

2∑
i,j=1

ãij(x)
∂u

∂xi

∂v

∂xj
dx +

∫
Ω̃

ã0(x)uv dx, u, v ∈ Wh, (1)

where ãij , ã0 ∈ L∞(Ω̃) are continuous extensions of the coefficients aij , a0 over
Ω̃. We shall write the scalar product in the spaces L2(Ω), L2(Ωh) and L2(Ω̃)
by one and the same denotation (·, ·). Suppose that the bilinear forms (1) are
uniformly Wh-elliptic, i.e. there exists a constant β̃ independent of the spaces
Wh such that for all h sufficiently small and ∀v ∈ Wh

β̃‖v‖2
1,Ω̃

≤ Ah(v, v).

Thus we obtain the consistent mass eigenvalue problem

PC :
{

find λh ∈ R and a nontrivial function uh ∈ Vh such that
Ah(uh, v) = λh(uh, v), ∀v ∈ Vh.

Further we present some results concerning isoparametric numerical integra-
tion.
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To evaluate integrals over the finite element of reference K̂ numerically, we
use the quadrature formula∫

K̂

ψ̂(x̂) dx̂ ∼= Î(ψ̂) =
N̂∑
i=1

ω̂iψ̂(âi), (2)

where âi are the nodes of the quadrature formula and ω̂i > 0.
Define a quadrature formula IK(ψ) over the finite element K for continuous

ψ by ∫
K

ψ(x) dx ∼= IK(ψ) = Î(JFK
ψ̂), (3)

where JFK
is the Jacobian of transformation FK . The integrals over Ωh will be

computed element by element using (3).
Denoting the error functionals

Ê(ψ̂) =
∫
K̂

ψ̂ dx̂− Î(ψ̂), ∀ψ̂ ∈ C(K̂),

EK(ψ) =
∫
K

ψ dx− IK(ψ), ∀ψ ∈ C(K),

E(u, v) =
∑
K∈τh

EK(uv), ∀u, v ∈ Wh,

Ea(u, v) =
∑
K∈τh

EaK(uv)

=
∑
K∈τh

EK

(
ãij

∂u

∂xi

∂v

∂xj
+ ã0uv

)
, ∀u, v ∈ Wh.

Further, we need the following hypotheses.

(H1) The Jacobian JFK
of isoparametric transformation FK , K ∈ τh satisfies

the relations:

|JFK
|m,∞,K̂ = Chm+2, m = 0, 1, . . . , n− 1, JFK

∈ Pn−1(K̂). �

(H2) The triangulation τh is n-regular in the sense of Ciarlet and Raviart [8].
�

(H3) We assume that the quadrature formula (2) is exact for all polynomials
of P2n−1(K̂), ω̂i > 0, ∀i = 1, 2, ..., N̂ and the union

⋃N̂
i=1 ω̂i contains P̂ -

unisolvent subset. �
The estimates

|E(uh, vh)| ≤ Ch2s‖uh‖s,Ωh
‖vh‖s,Ωh

, s = 0, 1, (4)

|Ea(uh, vh)| ≤ Ch2s‖uh‖s,Ωh
‖vh‖s,Ωh

, s = 0, 1, (5)

∀uh, vh ∈ Vh, ãij , ã0 ∈ W 2n,∞(Ω̃) were proved as a corollary of hypotheses
(H1)-(H3) in [4].
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3 Numerical Quadrature Isoparametric Problem

Introduce the scalar product and norm in Vh by

(u, v)h =
∑
K∈τh

IK(uv), ‖v‖h =
√

(v, v)h, ∀u, v ∈ Vh.

Taking into account the fact that Hypothesis (H3) holds, it is easy to see that
the norms ‖ · ‖h and ‖ · ‖0,Ωh

are uniformly equivalent on the space Vh.
Define the bilinear form

ah(u, v) =
∑
K∈τh

IK

⎛⎝ 2∑
i,j=1

ãij
∂u

∂xi

∂v

∂xj
+ ã0uv

⎞⎠ .

Introduce an approximate eigenvalue problem

PNQ :

{
find λ̃h ∈ R and a nontrivial function ũh ∈ Vh such that
ah(ũh, v) = λ̃h

(
ũh, v

)
h
, ∀v ∈ Vh,

corresponding to PW .
Denote the approximate eigenpairs by (λ̃hk , ũ

h
k), 1 ≤ k ≤ N(h) = dimVh. We

have a set of positive eigenvalues

0 < λ̃h1 ≤ λ̃h2 ≤ ... ≤ λ̃hN(h)

and normalize the eigenfunctions by

(ũhi , ũ
h
j )h = δij , 1 ≤ i, j ≤ N(h).

4 Convergence of the Eigenvalue Approximations

The hypotheses (H2) and (H3) assure that the bilinear form ah(·, ·) are uniformly
Vh-elliptic. Define the Rayleigh quotients by

R(u, v) =
a(u, v)
(u, v)

, u, v,∈ V,

Rh(uh, vh) =
Ah(uh, vh)
(uh, vh)

, R̃h(uh, vh) =
ah(uh, vh)
(uh, vh)h

, ∀u, v,∈ Vh.

The next theorem contains the main result of the paper.

Theorem 1. Let λk and λ̃hk be simple eigenvalues of problems PW and PNQ
respectively. Let also hypotheses (H1)-(H3) hold, then λ̃hk → λk when h→ 0.

Proof. It is well known fact that if λk is a simple exact eigenvalue of problem
PW then the following inf-sup condition is valid (see Courant and Hilbert [9])

λk = inf
Ek⊂V

sup
v∈Ek

R(v, v),
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where Ek denotes a k-dimensional subspace of V (k ≤ dimVh). Then for the
consistent mass approximations and numerical quadrature formula approxima-
tions we have

λhk = inf
Ek

h
⊆Vh

sup
vh∈Ek

h

Rh(vh, vh)

and
λ̃hk = inf

Ek
h

⊆Vh

sup
vh∈Ek

h

R̃h(vh, vh).

The set Ekh is a k-dimensional subspace of Vh.
We estimate the difference between the Rayleigh quotients by the error func-

tionals ∣∣∣R̃−1
h (vh, vh)−R−1

h (vh, vh)
∣∣∣ ≤ ∣∣∣∣ (vh, vh)h

ah(vh, vh)
− (vh, vh)

Ah(vh, vh)

∣∣∣∣
≤

∣∣∣∣ (vh, vh)h
ah(vh, vh)

− (vh, vh)
ah(vh, vh)

∣∣∣∣ +
∣∣∣∣ (vh, vh)
ah(vh, vh)

− (vh, vh)
Ah(vh, vh)

∣∣∣∣
=
|E(vh, vh)|
ah(vh, vh)

+
(vh, vh)

Ah(vh, vh)

∣∣∣∣Ah(vh, vh)− ah(vh, vh)
ah(vh, vh)

∣∣∣∣
=

1
ah(vh, vh)

(
|E(vh, vh)|+ R−1

h (vh, vh) |Ea(vh, vh)|
)
.

We obtain ∣∣∣R̃−1
h (vh, vh)−R−1

h (vh, vh)
∣∣∣ ≤ Ch2 (1 + R−1

h (vh, vh)
)

by the Vh-ellipticity of bilinear form ah(., .) and inequalities (4) and (5). Then

(1− Ch2)R−1
h (vh, vh)− Ch2 ≤ R̃−1

h (vh, vh) ≤ (1 + Ch2)R−1
h (vh, vh) + Ch2.

Taking inf-sup in the latter two inequalities we have

(1− Ch2)
(
λhk

)−1 − Ch2 ≤
(
λ̃hk

)−1
≤ (1 + Ch2)

(
λhk

)−1
+ Ch2

for h sufficiently small.
Since λhk → λk when h→ 0 (see Lebaud [13]) we get that

lim
h→0

(
λ̃hk

)−1
= (λk)

−1
,

which completes the proof. �

Theorem 1 enable us to obtain optimal order estimates for the error in so-
lutions of problem PNQ, when triangular elements of arbitrary degree are used.
On the other hand this theorem could be used for computing of the rate of
convergence of the lumped mass approximations.
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Abstract. In this paper, we develop a probabilistic model for estimation
of the numbers of cache misses during the sparse matrix-vector multi-
plication (for both general and symmetric matrices) and the Conjugate
Gradient algorithm for 3 types of data caches: direct mapped, s-way set
associative with random or with LRU replacement strategies. Using HW
cache monitoring tools, we compare the predicted number of cache misses
with real numbers on Intel x86 architecture with L1 and L2 caches. The
accuracy of our analytical model is around 96%.

1 Introduction

Sparse matrix-vector multiplication (shortly SpM×V ) is an important building
block in algorithms solving sparse systems of linear equations, e.g., FEM. Due
to matrix sparsity, the memory access patterns are irregular and the utilization
of cache suffers from low spatial and temporal locality. An analytical model for
SpM×V is developed in [2], where the dependence of the number of cache misses
on data and cache parameters is studied. We have already designed another
analytical model in [1], but here it is further extended for symmetric matrices.

The contribution of this paper is twofold. (1) We have designed source code
transformations based on loop reversal and loop fusion for the Conjugate Gra-
dient algorithm (CGA) that improve the temporal cache locality. (2) We have
derived a probabilistic models for estimations of the numbers of cache misses
for data caches of 3 types: direct mapped and s-way set associative with ran-
dom and with LRU replacement strategies. We have derived these models for 3
algorithms: general and symmetric SpM×V and CGA. We have concentrated
on Intel architecture with L1 and L2 caches. Using HW cache monitoring tools,
we have verified that the accuracy of our analytical model is around 96%. The
errors in estimations are due to minor simplifying assumptions in our model.

2 Terminology and Notation

A common method for solving sparse systems of linear equations appearing in
FEM is the Conjugate Gradients algorithm (CGA). Such a sparse system of

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 566–573, 2005.
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linear equations with n variables is usually represented by a sparse (n × n)-
matrix A stored in the format of compressed rows. Let nZ be the total number
of nonzero elements in A. Then A is represented by 3 linear arrays A, adr, and x.
Array A[1, . . . , nZ] stores the nonzero elements of A, array adr[1, . . . , n] contains
indexes of initial nonzero elements of rows of A, and array c[1, . . . , nZ] contains
column indexes of nonzero elements of A. Hence, the first nonzero element of
row j is stored at index adr[j] in array A. Let nzpr denote the average number
of nonzero elements in matrix A per row: nzpr = nZ/n. Let wB denote the
bandwidth of matrix A, i.e., the maximal difference between column indexes of
2 nonzero elements in rows of A, i.e. , li = minj{Ai,j �= 0}, ri = maxj{Ai,j �=
0}, wB = maxi {ri − li + 1}.

For a symmetric sparse matrix A the bandwidth of the matrix (denoted by
wB) is defined as the largest distance between a nonzero element and the main
diagonal, i.e. , ri = maxj{Ai,j �= 0}, wB = maxi {|ri − i|+ 1}.

A suitable format for storing symmetric sparse matrices is the SSS (symmet-
ric sparse skyline) format in which only the strictly lower triangular submatrix
is stored in the CSR format and the diagonal elements are stored separately in
array diag[1 . . . n].

The cache model we consider corresponds to the structure of L1 and L2
caches in the Intel x86 architecture. An s-way set-associative cache consists of
h sets and one set consists of s independent blocks (called lines in the Intel
terminology). Let CS denote the size of the data part of a cache in bytes and
BS denote the cache block size in bytes. Then CS = s · BS · h. Let SD denote
the size of type double and SI the size of type integer. Let ndpb denote the
number of items of type double per cache block and nipb the number of items
of type integer per cache block. Obviously, BS = ndpbSD = nipbSI.

We distinguish 2 types of cache misses: Compulsory misses (sometimes called
intrinsic or cold) that occur when empty cache blocks are loaded with new data
and thrashing misses (also called cross-interference, conflict or capacity misses)
that occur when useful data are loaded into a cache block, but these data are
replaced prematurely.

2.1 Sparse Matrix-Vector Multiplication

Consider a sparse matrix A represented by linear arrays A, adr, c, and diag as
defined in Section 2 and a vector x represented by dense array x[1, . . . , n]. The
goal is to compute the vector y = Ax represented by dense array y[1, . . . , n]. The
multiplication requires indirect addressing, which causes performance degrada-
tion due to the low spatial and temporal locality.

3 Linear Code Optimizations of CG Algorithm

Consider a sparse symmetric positive definite matrix A in the compressed row
format as defined in Section 2 and an input dense array y[1, . . . , n], representing
vector y. The goal is to compute the output dense array x[1, . . . , n], representing
solution vector x of linear system Ax = y.
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A Standard CGA Implementation

Algorithm CGS(in A, adr, c, y;out x) (* CGA Axelsson’s variant without
preconditioning *)
Auxiliary: double d[1, . . . , n], p[1, . . . , n], r[1, . . . , n], nom, nory, denom,α;
(1) nory = 0;
(2) for i = 1 to n do
(3) { nory+ = y[i] ∗ y[i]; r[i] = −y[i]; x[i] = 0.0; d[i] = y[i]; }
(4) nom = nory;
(5) while (residual vector is ”large”) do {
(6) call MVM(A, adr, c, d; p);
(7) call Dot product(d, p; denom); α = nom/denom;
(8) for i = 1 to n do { x[i]+ = α ∗ d[i]; r[i]+ = α ∗ p[i]; }
(9) denom = nom; call Dot product(r, r;nom); α = nom/denom;
(10) for i = 1 to n do { d[i] = α ∗ d[i]− r[i]; }

This code has a serious drawback. If the data cache size is less than the
total memory requirements for storing all input, output, and auxiliary arrays
(A, adr, c, d, p, r, x, y), then due to thrashing misses, part or all of these arrays
are flushed out of the cache and must be reloaded during the next iteration of the
while loop at codelines (5)-(10). This inefficiency can be reduced by application
of the loop reversal [3] and loop fusion [3].

An Improved CGA Implementation Based on Loop Restructuring

Algorithm CGM(in A, adr, c, y;out x) (* modified implementation of
CGS*)
Auxiliary: double d[1, . . . , n], p[1, . . . , n], r[1, . . . , n], nom, nory, denom,α;
(1) nory = 0;
(2) for i = 1 to n do
(3) {nory+ = y[i] ∗ y[i]; r[i] = −y[i]; x[i] = 0.0; d[i] = y[i];}
(4) nom = nory;
(5) while (residual vector is ”large”) do {
(6′) Loop fusion (MVM(A, adr, c, d; p), Dot product(d, p; denom));
(8′) α = nom/denom; nory = 0.0;
(8′′) for i = 1 to n do {x[i]+ = α∗d[i]; r[i]+ = α∗p[i]; nory+ =
r[i] ∗ r[i];}
(9′) denom = nom; nom = nory; α = nom/denom;
(10′) for i = n downto 1 do { d[i] = α ∗ d[i]− r[i]; }

CGM code has been obtained from CGS code by applying 3 transformations:

1. Codelines (6, 7) in CGS are grouped together by loop fusion and this allows
to reuse immediately the new computed values of array p.

2. Similarly, codelines (8, 9) in CGS are grouped together by loop fusion and
this allows to reuse immediately the new computed values of array r (see
codelines (8”), (9’) in CGM).
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3. The loop on codeline (10) in CGS is reversed by loop reversal so that the
last elements of arrays d and r that remain in the cache from the loop on
codelines (8, 9) can be reused.

The CGM code has better temporal locality of data and in Section 4.2 we
perform its quantitative analysis.

4 Probabilistic Analysis of the Cache Behavior

4.1 Sparse Matrix-Vector Multiplication

Algorithms MVM CSR and MVM SSS (see Section 2.1) produce the same sequence
of memory access instructions and therefore, the analytical model is the same
for both. It is based on the following simplified assumptions (same as in [1]):

1. There is no correlation among mappings of arrays A, c, and x into cache
blocks. Hence, we can view load operations as mutually independent events.

2. We consider thrashing misses only for loads from arrays A, c, and x.
3. We assume that the whole cache size is used for data of SpM×V .
4. We assume that each execution of SpM×V starts with the empty cache.

We use the following notation.

– P (Z[i]) denotes the probability of a thrashing miss of the cache block con-
taining element i of array Z.

– NCM denotes the number of cache misses during one execution of SpM×V .
– d denotes the average number of iterations of the innermost loop of MVM CSR

at codeline (4) between 2 reuses of the cache block containing some element
of array x[1, . . . , n].

We distinguish 3 relevant types of sparse matrices to estimate the value of d. (1)
A symmetric sparse matrix A with bandwidth wB and with uniform distribution
of nonzero elements on rows. Then d can be approximated by d = wB [2]. (2)
A symmetric sparse banded matrix A with similar row structure. Two rows i
and i + 1 are said to be similar if row i contains nonzero elements · · · ,A[i][i−
Δ] ,A[i][i] ,A[i][i+Δ] , · · · , whereas row i+1 contains nonzero elements · · · ,A[i+
1][i + 1−Δ] ,A[i + 1][i + 1] ,A[i + 1][i + 1 + Δ] , · · ·, where Δ is a constant. In
other words, we assume that the indexes of nonzero elements of row i+1 are only
”shifted” by one position with respect to row i. For A with structurally similar
rows, the cache block containing an element x[i] is reused with high probability
during loading x[i + 1] after nzpr iterations1. Hence, d = min (wB, nzpr) = nzpr.

1 For simplicity, we assume that all rows corresponding to discretization of internal
mesh nodes are similar. But in real applications, boundary mesh nodes produce
equations with a slightly different structure. This simplification should not have a
significant impact, since the number of boundary nodes is of order of square root of
all mesh nodes.
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(3) A sparse banded matrix A where wB
nzpr

≈ 1. Then x[i] is reused with high
probability during loading x[i + 1] in the next iteration, and therefore, d = 1.

Due to the assumption that each new execution of SpM×V starts with the
empty cache, all nZ elements of arrays A and c and all n elements of arrays x,
adr, y must be loaded into the cache once and the number of compulsory misses

is NC
CM = nZ (SD+SI)+n (2·SD+SI)

BS
.

Since caches have always limited size, thrashing misses occur: Data loaded
into a cache set may cause replacement of other data that will be needed later.
Hence, the total number of cache misses is NCM = NC

CM + NT
CM.

Symmetric SpM×V . The same assumptions are valid even for symmetric case.
We consider the SSS format (see 2),let denote nZ

′ the number of nonzero ele-
ments in strictly lower triangular submatrix. Then the number of compulsory
misses is NC

CM
′ = nZ

′ (SD+SI)+n (3·SD+SI)
BS

, NCM
′ = NC

CM
′ + NT

CM
′
.

Direct Mapped Cache (s = 1). The innermost loop of the MVM CSR algorithm
has nZ iterations. Each element of arrays A, c, and x in each iteration is either
reused or replaced due to thrashing. Under our assumption of independence of
these replacements for all 3 arrays, the total number of thrashing misses can be
approximated by formula: NT

CM = nZ (P (A[j]) + P (c[j]) + P (x[k])) ; ∀j, k.
The probability that 2 randomly chosen cache blocks from the cache are

distinct is 1− BS
CS

= 1− h−1. Hence, P (c[j]) = P (A[j]) = 1− (1− h−1)2.
Arrays A and c are accessed linearly, their indexes are incremented in each

iteration of the innermost loop, and in a given moment, only one cache block
is actively used unless thrashing occurs. The access pattern for array x is more
complicated due to indirect addressing. In the worst case, an element of x, after
loading into the cache, is reused only after d iterations of the innermost loop,
since it is used at each row of matrix A only once (said otherwise, array x actively
uses d cache blocks). Every load during this time can cause cache thrashing.
Hence,P (x[k]) = 1− (1− h−1)3d.

Symmetric SpM×V . We can make similar assumptions. Vector y is accessed us-
ing the same pattern as vector x, so P (c[j]) = P (A[j]) = 1−(1−h−1)3 P (x[k]) =
P (y[k]) = 1− (1− h−1)4d NT

CM
′ = nZ

′ (P (A[j]) + P (c[j]) + P (x[k])) ; ∀j, k.

s-Way Set-Associative Cache, Random Replacement Strategy
Standard SpM×V . The probability can be derived as in the previous section,
only the thrashing occurs with probability 1

s . So, one of s cache blocks containing
elements of A or c can be replaced by both loads, which are assumed independent,
with probability P (A[j]) = P (c[j]) = 1

s (1− (1− h−1)2) and P (x[k]) = 1
s (1−

(1− h−1)3d).

Symmetric SpM×V . We can make similar assumptions. Vector y is accessed
with same pattern like vector x, so P (A[j]) = P (c[j]) = 1

s (1 − (1 − h−1)3) and
P (x[k]) = P (y[k]) = 1

s (1− (1− h−1)4d).
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s-Way Set-Associative Cache, LRU Replacement Strategy
In the LRU case, cache block can be replaced only if at least s immediately
preceding loads accessed this block. Hence,

P (A[j]) = P (c[j]) =

⎧⎨⎩0 if s > 2,
h−2 if s = 2,
1− (1− h−1)2 if s = 1.

(1)

Arrays A and c are accessed in the linear order of indexes as before and during d

iterations, they completely fill ( = 5d(SD+SI)
sBS

6 cache sets. We distinguish 2 cases
of sparsity of matrix A:

– wB
nzpr

≈ 1. This corresponds to a sparse banded matrixA of type (3) in Section
4.1 where cache sets are almost completely filled with array x. Then memory
access pattern is the same as for arrays A and c, P (x[k]) = P (A[j]) = P (c[j]).

– wB
nzpr

≥ ndpb. This corresponds to a sparse matrix A of type (1) or (2) in
Section 4.1 such that every cache block contains at most one element of
array x during one execution of SpM×V . If the load operations for arrays
A or c replace a cache block containing array x, one thrashing miss occurs,
P (x[k]) = 1− (1− h−1)#.

Symmetric SpM×V . Similarly,

P (A[j]) = P (c[j]) =

⎧⎪⎪⎨⎪⎪⎩
0 if s > 3,
h−3 if s = 3,
3h−2 if s = 2,
1− (1− h−1)3 if s = 1.

(2)

Vector y is accessed with the same pattern like vector x, so P (y[k]) = P (x[k]).

4.2 CGA

We consider the same data structures A, adr, c, x, y as in Algorithms CGS and
CGM. Let us further assume the following simplified conditions.

1. There is no correlation among mappings of arrays into cache blocks.
2. Thrashing misses occur only within the subroutines for SpM×V . Hence, we

consider only compulsory cache misses.
3. We again assume that the whole cache size is used for input, output, and

auxiliary arrays.
4. We assume that each iteration of the while loop of the CGA starts with an

empty cache.

Define

NSl = the predicted number of cache misses that occur on codeline (l) of the
CGS algorithm.

NMl = the predicted number of cache misses that occur on codeline (l) of the
CGM algorithm.
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The total number of cache misses for SpM×V on codeline (6) in CGS and on
codeline (6’) in CGM was evaluated in Section 4.1, NS(6) = NM(6′) = NCM. The
number of compulsory misses for the dot product of 2 vectors on codeline (7) in
CGS is the number of cache blocks needed for 2n doubles. Whereas in CGM, the dot
product is computed directly during the multiplication due to the loop fusion and
all elements of arrays d and p are reused. Hence, NS(7) = 2n

ndpb
and NM(7′) =

0.
The codeline (8) contains 2 linear operations on 4 vectors and the same holds

for CGM. Therefore,NS(8) = NM(8′+8′′) = 4n
ndpb

. The codeline (9) contains a dot
product of vector r, whereas in CGM on the codeline (8”) the same dot product
is computed directly during those linear vector operations and all elements of
array r are reused. So,NS9 = n

ndpb
and NS9′ = 0.

The codeline (10) contains linear operations on 2 vectors. For large n, we can
assume that after finishing the loop on the codeline (9), the whole cache is filled
only with elements of arrays d, p, r, and x. In CGM, the loop on codeline (10’) is
reversed and so, in the best case, the last CS

4SD
elements of array r (similarly for

array d) can be reused. Therefore, NS10 = 2n
ndpb

and NM10′ = 2n
ndpb

− CS
2BS

.

4.3 Evaluation of the Probabilistic Model

Figure 1 gives performance numbers for Pentium Celeron 1GHz, 256 MB, run-
ning W2000 Professional with the following cache parameters: L1 cache is data
cache with BS = 32, CS = 16K, s = 4, h = 128, and LRU replacement strategy.
L2 cache is unified with BS = 32, CS = 128K, s = 4, h = 1024, and LRU strat-
egy. The parameters R1 = NCM(L1)

RNCM(L1) and R2 = NCM(L2)
RNCM(L2) denote the ratios

of the estimated and real numbers of misses for L1 and L2 caches, respectively.
They represent the accuracy of the probabilistic model.

Figure 1 illustrates that the real number of cache misses was predicted with
average accuracy 97% in case of algorithm MVM CSR and 95% in case of algorithm
MVM SSS. Figure 1 also shows that the accuracy of the probabilistic cache model
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is around 96% of algorithms CGS and CGM. The accuracy of an analytical model
is influenced by the following assumptions.

1. Successive loads of items of array x are assumed mutually independent from
the view of mapping into cache sets and that happens if the structure of
matrix A is random, but this is not true in real cases.

2. In the SpM×V , we consider only arrays A, c, and x, but the algorithms
MVM CSR and MVM SSS (see Section 2.1) also load arrays adr and y to caches.

3. We assume that both L1 and L2 caches are data caches. In the Intel archi-
tecture, this assumption holds only for the L1 cache, whereas the L2 cache
is unified and it is used also for storing instructions. This fact is not taken
into account in our formulas, but the error is small due to small code sizes.
Similarly, a small part of the error is due to system task codes in L2.

4. In the CGAs, we assume that every iteration is independent. This assumption
is valid for CS ≤ n(5 · SD + SI) + nzpr(SD + SI) (all memory requirements
for storing the arrays A, adr, c, d, p, r, x, y in the CGAs).

5 Conclusions

Our analytical probabilistic model for predicting cache behavior is similar to
the model in [2], but we differ in 2 aspects. We have explicitly developed and
verified a model for s-way set associative caches with LRU block replacement
strategy and obtained average accuracy of predicted numbers of cache misses
equal to about 97% for both SpM×V and CGA. We have derived models for
both general and symmetric matrices. In contrast to [2], (1) our results indicate
that cache miss ratios for these 2 applications are sensitive to the replacement
strategy used, (2) we consider both compulsory and thrashing misses for arrays
A and c.
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Abstract. An iterative procedure of finding a solution of the initial
value problem for a linear anisotropic system of elasticity with polyno-
mial data is described. 3-D images and animated movies of elastic wave
propagations in different anisotropic crystals are generated. These images
are collected in the library of images.
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1 Introduction

Search and development of new materials with specific properties are needed for
different industries such as chemistry, microelectronics, etc. When new materials
are created we must be able to have the possibility to model and study their
properties. Mathematical models of physical processes can provide cutaway views
that let you see aspects of something that would be invisible in the real artifact
but computer models can also provide visualization tools.

Our current activity includes mathematical modeling and simulating the
wave propagation in anisotropic solids and crystals with different structure of
anisotropy. Dynamic mathematical models of elastic wave propagations in
anisotropic media are described by the system of partial differential equations
[3], [4], [7] .

The initial value problem for a linear system of anisotropic elasticity is consid-
ered in this paper. We describe an iterative procedure of finding a solution of this
initial value problem with polynomial data. Wave fields for different anisotropic
materials are simulated by this procedure. We have used Mathematica 4.0 to
generate 3-D images and animated movies of elastic wave propagations in crys-
tals. These images are collected in the library of images. Our library can serve as
a collection of patterns and samples when we analyze the structure of anisotropic
materials or evaluate the performance of numerical methods.

The structure of our paper is as follows. The linear system of anisotropic
elasticity and an initial value problem of this system are described in Section 2.
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An iterative procedure of solving the considered initial value problem is given
in Section 3. Visualization examples of dynamic wave propagations in different
anisotropic solids are presented in Section 4. General remarks are at the end of
the paper.

2 Statement of the Problem and Properties of Its
Solution

Let x = (x1, x2, x3) ∈ R
3. We assume that R

3 is an elastic medium, whose small
amplitude vibrations

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) (1)

are governed by the system of partial differential equations and initial conditions
(see, [3], [4], [7])

ρ
∂2uj
∂t2

=
3∑
k=1

∂τjk
∂xk

+ fj(x, t), x ∈ R
3, t > 0, j = 1, 2, 3, (2)

uj(x, 0) = ϕj(x),
∂uj(x, t)

∂t

∣∣∣∣
t=0

= ψj(x), j = 1, 2, 3. (3)

Here ρ is the density of the medium,

τjk =
3∑

l,m=1

Cjklmσlm, j, k = 1, 2, 3 (4)

is the stress tensor,

σlm =
1
2

(
∂ul
∂xm

+
∂um
∂xl

)
, l, m = 1, 2, 3 (5)

is the strain tensor, and {Cjklm}3j,k,l,m=1 are the elastic moduli of the medium,
ϕj(x), ψj(x), fj(x), j = 1, 2, 3 are smooth functions. We assume that ρ and
Cjklm are constants.

It is convenient and customary to describe the elastic moduli in terms of
a 6 × 6 matrix according to the following conventions relating a pair (j, k) of
indices j, k = 1, 2, 3 to a single index α = 1, . . . , 6 (see, [3], [4]):

(1, 1) ←→ 1, (2, 2) ←→ 2, (3, 3) ←→ 3,
(2, 3), (3, 2) ←→ 4, (1, 3), (3, 1) ←→ 5, (1, 2), (2, 1) ←→ 6. (6)

This correspondence is possible due to the symmetry properties Cjklm = Ckjlm =
Cjkml. The additional symmetry property Cjklm = Clmjk implies that the
matrix

C = (Cαβ)6×6 (7)
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of all moduli where α = (jk), β = (lm), is symmetric. We will assume also that
ρ > 0 and the matrix (Cαβ)6×6 is positive definite.

In this paper we analyze relations (2), (3) as the Cauchy problem for the
second order hyperbolic equations system with the polynomial initial data. Using
the reasoning similar to the work [8] the system (2) can be written as symmetric
hyperbolic system of the first order. Applying the symmetric hyperbolic system
theory (see, [1], [5]) to obtained system we get the following proposition.

Proposition 1. Let T be fixed positive, p be non-negative numbers; x0 = (0, 0, 0),
Q = (x0, T ) be a point from four dimensional space, Γ (Q) be the conoid of de-
pendence (the characteristic conoid) of the hyperbolic system (2) at the point
Q. Suppose also initial data and non-homogeneous term of (2) are given in the
following polynomial form

ϕj(x) =
p∑
l=0

p∑
m=0

ϕl,mj (x3)xm1 xl2, j = 1, 2, 3, (8)

ψj(x) =
p∑
l=0

p∑
m=0

ψl,mj (x3)xm1 xl2, j = 1, 2, 3, (9)

fj(x, t) =
p∑
l=0

p∑
m=0

F l,mj (x3, t)xm1 xl2, j = 1, 2, 3, (10)

ϕl,mj (x3) ∈ C2, ψl,mj (x3) ∈ C1, F l,mj (x3, t) ∈ C1(Δ(T )),

Δ(T ) = {(x3, t) ∈ R
2 : (0, 0, x3, t) ∈ Γ (Q)}. (11)

Then the solution u = (u1, u2, u3) of (2), (3) has the following structure in the
conoid Γ (Q)

uj(x1, x2, x3, t) =
p∑
k=0

p∑
s=0

Us,kj (x3, t)xs1x
k
2 , (12)

where Us,kj (x3, t) ∈ C2(Δ(T )), j = 1, 2, 3; s, k = 0, 1, 2, . . . , p.

We note that the problem (2), (3) may be written in the form

ρ
∂2u
∂t2

= G
∂2u
∂x2

1
+ H

∂2u
∂x2

2
+ B

∂2u
∂x2

3
+ F

∂2u
∂x1∂x2

+ D
∂2u

∂x1∂x3
+ E

∂2u
∂x2∂x3

+ f , (13)

uj(x, 0) = ϕj(x),
∂uj(x, t)

∂t

∣∣∣∣
t=0

= ψj(x), j = 1, 2, 3, (14)

where the components of vector functions ϕ = (ϕ1, ϕ2, ϕ3), ψ = (ψ1, ψ2, ψ3),
f = (f1, f2, f3) satisfy (8), (9), (10);

G =

⎡⎣ c11 c16 c15
c16 c66 c56
c15 c56 c55

⎤⎦ , F =

⎡⎣ c16 + c16 c12 + c66 c14 + c56
c66 + c12 c26 + c26 c46 + c25
c56 + c14 c25 + c46 c45 + c45

⎤⎦ , (15)
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H =

⎡⎣ c66 c26 c46
c26 c22 c24
c46 c24 c44

⎤⎦ , D =

⎡⎣ c15 + c15 c14 + c56 c13 + c55
c56 + c14 c46 + c46 c36 + c45
c55 + c13 c45 + c36 c35 + c35

⎤⎦ , (16)

B =

⎡⎣ c55 c45 c35
c45 c44 c34
c35 c34 c33

⎤⎦ , E =

⎡⎣ c56 + c56 c46 + c25 c36 + c45
c25 + c46 c24 + c24 c23 + c44
c45 + c36 c44 + c23 c34 + c34

⎤⎦ . (17)

3 Procedure of Solving (13), (14)

In this section we describe a procedure of finding recurrence relations for terms
Us,kj (x3, t), j = 1, 2, 3; s, k = 0, 1, 2, . . . , p from the equation (12). The starting
step is to find Up,p(x3, t) = (Up,p1 (x3, t), U

p,p
2 (x3, t), U

p,p
3 (x3, t)). Differentiating

(13), (14) p times with respect to x1 and then p times with respect to x2, using
(10), (12) we find

ρ
∂2Up,p

∂t2
= B

∂2Up,p

∂x2
3

+ Fp,p, (x3, t) ∈ Δ(T ), (18)

with initial conditions

Up,p|t=0 = ϕp,p(x3),
∂Up,p

∂t

∣∣∣∣
t=0

= ψp,p(x3), x3 ∈ O(T ), (19)

where
O(T ) = {x3 ∈ R : (x3, 0) ∈ Δ(T )}, (20)

B is defined by (17) and ϕp,p(x3), ψp,p(x3), Fp,p(x3, t) are given coefficients of
polynomial expansions (8), (9), (10) of vector functions ϕ, ψ, f . Since C defined
by (7) is a real symmetric positive definite matrix then B defined by (17) is a
real symmetric positive definite matrix also. Hence B is congruent to a diagonal
matrix of its eigenvalues. That is, there exists an orthogonal matrix Z such that

Z−1BZ = Λ =

⎡⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦ . (21)

Because B is positive definite, real and symmetric then its eigenvalues λi, i =
1, 2, 3 are real and positive.

Setting
Up,p = ZYp,p (22)

in (18) we get

ρ
∂2ZYp,p

∂t2
= B

∂2ZYp,p

∂x2
3

+ Fp,p, (x3, t) ∈ Δ(T ). (23)
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We multiply left hand side of (23) by Z−1 to obtain

ρ
∂2Yp,p

∂t2
= Λ

∂2Yp,p

∂x2
3

+ Z−1Fp,p, (x3, t) ∈ Δ(T ). (24)

Denoting νj =
(
λj

ρ

) 1
2
, j = 1, 2, 3 and using d’Alembert formula we can solve

the Cauchy problem for (24) with the following initial data

Yp,p|t=0 = Z−1ϕp,p(x3),
∂Yp,p

∂t

∣∣∣∣
t=0

= Z−1ψp,p(x3), x3 ∈ O(T ). (25)

Using this fact and (22) we can solve the Cauchy problem (18), (19) in Δ(T ).
The solution of this problem is given by

Up,pi (x3, t) =
3∑
j=1

Zij

{
1
2
[
(Z−1ϕp,p)j(x3 − νjt) + (Z−1ϕp,p)j(x3 + νjt)

]
+

1
2ρνj

∫ t

0

∫ x3+νj(t−τ)

x3−νj(t−τ)

[
Z−1Fp,p

]
j
(σ, τ)dσdτ

}

+
1

2νj

∫ x3+νjt

x3−νjt

(Z−1ψp,p)j(σ)dσ, i = 1, 2, 3, (x3, t) ∈ Δ(T ),(26)

where Zij , i, j = 1, 2, 3 are elements of the matrix Z.
The next step consists of finding Up−1,p(x3, t) and Up,p−1(x3, t) if we suppose

that Up,pj (x3, t), j = 1, 2, 3 were found by (26).
Differentiating (13), (14) p − 1 times with respect to x1 and p times with

respect to x2 and repeating reasoning which we did before we find

Up−1,p
i =

3∑
j=1

Zij

{
1
2
[
(Z−1ϕp−1,p)j(x3 − νjt) + (Z−1ϕp−1,p)j(x3 + νjt)

]
+

1
2ρνj

∫ t

0

∫ x3+νj(t−τ)

x3−νj(t−τ)

(
pD̃

[
Z−1 ∂U

p,p

∂x3

]
+ Z−1Fp−1,p

)
j

(σ, τ)dσdτ

+
1

2νj

∫ x3+νjt

x3−νjt

(Z−1ψp−1,p)j(σ)dσ

}
. (27)

Differentiating (13), (14) p times with respect to x1 and p−1 times with respect
to x2 in the similar way we get the following formula

Up,p−1
i =

3∑
j=1

Zij

{
1
2
[
(Z−1ϕp,p−1)j(x3 − νjt) + (Z−1ϕp,p−1)j(x3 + νjt)

]
+

1
2ρνj

∫ t

0

∫ x3+νj(t−τ)

x3−νj(t−τ)

(
pẼ

[
Z−1 ∂U

p,p

∂x3

]
+ Z−1Fp,p−1

)
j

(σ, τ)dσdτ

+
1

2νj

∫ x3+νjt

x3−νjt

(Z−1ψp,p−1)j(σ)dσ

}
. (28)
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Using analogous reasoning we find formulas for Up−1,p−1(x3, t), Up−m,p(x3, t),m =
2, . . . , p, Up,p−m(x3, t), m = 2, . . . , p ; Up−m,p−n(x3, t), m, n = 2, . . . , p as follows

Up−1,p−1
i =

3∑
j=1

Zij

{
1

2ρνj

∫ t

0

∫ x3+νj(t−τ)

x3−νj(t−τ)

(
pD̃

[
Z−1 ∂U

p,p−1

∂x3

]

+pẼ

[
Z−1 ∂U

p−1,p

∂x3

]
+ p2F̃

[
Z−1Up,p

]
+ Z−1Fp−1,p−1

)
j

(σ, τ)dσdτ

+
1
2
[
(Z−1ϕp−1,p−1)j(x3 − νjt) + (Z−1ϕp−1,p−1)j(x3 + νjt)

]
+

1
2νj

∫ x3+νjt

x3−νjt

(Z−1ψp−1,p−1)j(σ)dσ

}
, (29)

Up−m,pi (x3, t) =
3∑
j=1

Zij

{
1

2νj

∫ x3+νjt

x3−νjt

(Z−1ψp−m,p)j(σ)dσ

+
1

2ρνj

∫ t

0

∫ x3+νj(t−τ)

x3−νj(t−τ)

(
(p−m + 1)D̃

[
Z−1 ∂U

p−m+1,p

∂x3

]

+(p−m + 1)(p−m + 2)G̃
[
Z−1Up−m+2,p] + Z−1Fp−m,p

)
j

(σ, τ)dσdτ

+
1
2
[
(Z−1ϕp−m,p)j(x3−νjt)+ (Z−1ϕp−m,p)j(x3 + νjt)

]}
,m=2, . . . , p,(30)

Up,p−mi (x3, t) =
3∑
j=1

Zij

{
1

2νj

∫ x3+νjt

x3−νjt

(Z−1ψp,p−m)j(σ)dσ

+
1

2ρνj

∫ t

0

∫ x3+νj(t−τ)

x3−νj(t−τ)

(
(p−m + 1)Ẽ

[
Z−1 ∂U

p,p−m+1

∂x3

]

+(p−m + 1)(p−m + 2)H̃
[
Z−1Up,p−m+2] + Z−1Fp,p−m

)
j

(σ, τ)dσdτ

+
1
2
[
(Z−1ϕp,p−m)j(x3 − νjt) + (Z−1ϕp,p−m)j(x3+νjt)

]}
,m=2, . . . , p,(31)

Up−m,p−ni (x3, t) =
3∑
j=1

Zij

{
1

2ρνj

∫ t

0

∫ x3+νj(t−τ)

x3−νj(t−τ)

(
Z−1Fp−m,p−n

+(p−m + 1)D̃
[
Z−1 ∂U

p−m+1,p−n

∂x3

]
+ (p− n + 1)Ẽ

[
Z−1 ∂U

p−m,p−n+1

∂x3

]
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+(p−m + 1)(p− n + 1)F̃
[
Z−1Up−m+1,p−n+1]

+(p−m + 1)(p−m + 2)G̃
[
Z−1Up−m+2,p−n]

+(p− n + 1)(p− n + 2)H̃
[
Z−1Up−m,p−n+2])

j

(σ, τ)dσdτ

+
1
2
[
(Z−1ϕp−m,p−n)j(x3 − νjt) + (Z−1ϕp−m,p−n)j(x3 + νjt)

]
+

1
2νj

∫ x3+νjt

x3−νjt

(Z−1ψp−m,p−n)j(σ)dσ

}
, m, n = 2, . . . , p, (32)

where (x3, t) ∈ Δ(T ) and

D̃ = Z−1DZ, Ẽ = Z−1EZ, F̃ = Z−1FZ, G̃ = Z−1GZ, H̃ = Z−1HZ. (33)

Using mentioned arguments all terms Us,kj (x3, t), j=1, 2, 3; s, k=0, 1, 2, . . . , p
of (12) may be found successively in the order which we fixed in this section.

4 Visualization Examples of Wave Propagations

In this section we present the images of the wave propagations in three crystals
belonging to different crystal systems. These pictures are obtained by fixing one
of the space variables in the solution which we get by the method explained in
the previous section.

Consider (13), (14) with the following initial conditions

ϕ = (ϕ1, ϕ2, ϕ3), ψ = (ψ1, ψ2, ψ3),
ϕj = p(x1)p(x2)p(x3), ψj ≡ 0, j = 1, 2, 3, (34)

where the function p(z) is the interpolating polynomial of

f(z) =
1
z

sin
(

5z
2

)
(35)

in the interval [−5, 5] with 16 points.
Let (x1, x2, x3) ∈ R

3 be space variables and one of these variables be fixed,
for example x2 = 0. The three-dimensional graph of each function ϕj(x) has a
hillock shape which is shown in Figure 1. The horizontal axes here are x1, x3,
the vertical axis is ϕj for x2 = 0. In Figure 1 level plots of the same surface is
shown. The different colors correspond to different levels of the surface.

We consider this problem for selenium, tin and gold which are trigonal,
tetragonal and cubic crystals, respectively. The elastic constants in units of
1012dyn/cm2 and densities (gr/cm3) of these crystals are as follows:

For selenium,

C11 = C22 = 0.1870, C13 = C23 = 0.2620, C44 = C55 = 0.1490,
C12 = 0.0710, C33 = 0.7410, C66 = (C11 − C12)/2,
C14 = −C15 = C56 = 0.0620, ρ = 4.838,

(36)
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Fig. 1. The j − th component of initial vector function
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Fig. 2. u2(x1, 0, x3, t) for selenium (trigonal media)
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Fig. 3. u2(x1, 0, x3, t) for tin (tetragonal media)
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Fig. 4. u2(x1, 0, x3, t) for gold (cubic media)
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for tin,

C11 = C22 = 0.7529, C13 = C23 = 0.4400, C44 = C55 = 0.2193,
C12 = 0.6156, C33 = 0.9552, C66 = 0.2336, ρ = 7.29, (37)

for gold,

C11 = C22 = C33 = 1.9244, C12 = C13 = C23 = 1.6298,
C44 = C55 = C66 = 0.4200, ρ = 19.283, (38)

and other components are 0. The Figures 2− 4 contain four screen shots of the
wave propagations in crystals selenium, tin and gold. These figures are 2-D level
plots of u2(x1, 0, x3, t) for time in units of 10−6 sec.

5 General Remarks

On the base of the formulas described in this paper a library of images and
animated movies of elastic wave propagations in different crystals was created.
This library can serve as a collection of patterns and samples for the analysis
of the structure of anisotropic crystals or evaluation of the numerical methods
performance. The results of this paper and [8] were used to generalize formulas
and the described procedure to the case of vertical non-homogeneous anisotropic
media in which the elastic moduli and density are functions of one space variable.
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Abstract. A second order singularly perturbed differential equation
with nonlinear source term modelling chemical processes on semi-infinite
interval is considered. The question of transformation of the boundary
conditions to a finite interval is studied. We proved that the problem
posed on a finite interval does not involve a distinct boundary layer
and can be solved with the use of an upwind difference scheme that is
uniformly convergent with respect to the small parameter. Numerical
experiments are discussed.

1 Introduction

A boundary value problem for a nonlinear equation of second order on a semi-
infinite interval is considered. Nonlinearity in the equation corresponds to mod-
elling of a chemical reaction, when a speed of reaction depends on the tempera-
ture according to Arrenius law. The essential feature of the problem consists in
the unboundeness of the domain and in presence of a boundary layer of solution
corresponding to the zone of the chemical reaction.
Consider a boundary value problem:

εu′′ − au′ + F (u) = 0, u(0) = A, lim
x→∞

u(x) = B, (1)

where ε > 0, a > 0, F (u) ≥ 0, B > A > 0. At modelling of chemical reaction
the function F is given in a form

F (u) = K(B − u) exp

(
− E/u

)
,

where K > 0, E > 0, u is a temperature, ε is a coefficient of diffusion, a is a
speed of expansion of a flame, K is a constant of reaction speed, E is an energy
of activation, F (u) corresponds to a thermal emission according to Arrenius law.
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Expressing a derivative in an obvious form, it is possible to show, that u(x)
is increasing function, A ≤ u(x) ≤ B.
Some phenomena in different areas of science, by example in chemical reac-

tions, are models of singularly perturbed problems of reaction-diffusion-convection
type, for which the diffusion coefficient can be very small with respect to the
reaction terms. The presence of boundary (interior) layers makes necessary the
use of robust numerical methods, which give effective solutions for any value of
the diffusion parameter. There are many publications dealing with equation (1)
on finite interval [2]-[6].
Many authors have been developed the fitted mesh method, i.e., classical

schemes defined on special meshes condensing the mesh points in the boundary
layer regions. Most popular are Shishkin’s and Bakhvalov’s meshes [2]-[5].
In this paper, we first discuss the reduction of the problem (1) to a suitable

boundary value problem on finite interval. We analyze in Section 2 the transfer
the limit boundary condition from infinity. The new problem posed on a finite
interval we solve using an upwind difference scheme, Section 3. Uniform con-
vergence of discrete solution to the continuous one is also proved. Numerical
experiments are discussed in Section 4.

2 Reduction of the Problem to a Finite Interval

Consider the question, how to transfer a problem on infinite interval to a problem
for a finite interval. We shall do this, following [1], [6] on a base of extraction of
all set of solutions satisfying the boundary condition at infinity, by means of the
first order equation:

u′(x) = γ(u(x)−B) + β(u(x)). (2)

where γ is a negative root of the equation

εγ2 − aγ −K exp(−E/B) = 0, (3)

β(u) is solution of the singular Cauchy problem

εβ′(u)(γ(u−B) + β(u)) + (εγ − a)β(u) =

= K(u−B)

(
exp(−E/u)− exp(−E/B)

)
, β(B) = 0. (4)

Using the set (2), we get a problem on a finite interval:

εu′′ − au′ + F (u) = 0, (5)

u(0) = A, u′(L) = γ(u(L)−B) + β(u(L)).

The solutions of problems (1) and (5) coincide for all 0 ≤ x ≤ L. It follows
from uniqueness of solutions of these problems and from a way of extraction of a
steady manifold, when on the extracted variety the initial equation has form of
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identity. Note, that the reduced problem is formulated on a finite interval, but the
function β(u) in the boundary condition is solution of the corresponding singular
Cauchy problem. The solution of this problem can be found approximately as
asymptotic series:

β̃m(u) =
m∑
k=0

βk(u)ε
k.

Substituting this expansion in (4), and expanding γ in a series on ε, we receive
recurrent formulas for βk(u)

βk =
1

a

k−1∑
i=0

β′
i βk−1−i +

k∑
i=1

(−1)i
2i−1PiK

i exp(−iE/B)

i! a2i
(β′
k−i(u−B) + βk−i),

β0 =
1

a
K(u−B)

(
exp(−E/B)− exp(−E/u)

)
, Pi =

i−2∏
j=0

(2j +1), P1 = 1, (6)

and ‖β − β̃m‖ ≤ Cεm+1.
Therefore the coefficients in the boundary condition of the reduced problem

can be found with given accuracy. We can show, that problem (5) is stable to
perturbation of this coefficients. The next problem is how to find solution of a
problem (5).

3 Construction of the Difference Scheme

Now we construct a difference scheme for the problem (5). We consider spline
method of construction of difference scheme. Feature of a method that at con-
struction of difference scheme it is taken into account boundary layer growth of
the solution, though boundary layer function is not used.
Let Ω is a grid on an interval [0, L], Δn = (xn−1, xn], n = 1, 2, . . . , N.

Consider the next problem instead of (5):

εũ′′ − aũ′ + F̃ (ũ) = 0,

ũ(0) = A, ũ′(L) + g(ũ(L)) = 0, (7)

where F̃ (ũ(x)) = F (ũ(xn)) at x ∈ Δn, g(u) = −γ(u−B)− β(u).
On the segment Δn = (xn−1, xn] this problem has the form:

εũ′′ − aũ′ + F (ũn) = 0,

ũ(xn−1) = u
h
n−1, ũ(xn) = u

h
n.

The solution of this equation has the explicit form:

ũ(x) =
F̃ (ũn)

a
x+ C1n + C

2
n exp

(
a

ε
(x− xn)

)
.
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Finding constants C1n, C
2
n from boundary conditions and taking into account

continuity of the derivative on the boundary of the adjoining intervals

lim
x→xn−0

ũ′(x) = lim
x→xn+0

ũ′(x),

we get the monotonous difference scheme:

Φn+1 exp(−τn+1)

hn+1
uhn+1 −

(
Φn+1 exp(−τn+1)

hn+1
+
Φn

hn

)
uhn +

Φn

hn
uhn−1 =

=
F (uhn)

a
(1− Φn)−

F (uhn+1)

a

(
1− Φn+1 exp(−τn+1)

)
,

uh0 = A, ΦN
uhN − u

h
N−1

hN
=
F (uhN )

a
(ΦN − 1)− g(u

h
N ), (8)

where τn = ahn/ε, Φn = τn/(1− exp(−τn)).

Lemma 1. Let F ′(u) ≤ −β0 < 0, g′(u) ≥ 0. Then

|u(x)− ũ(x)| ≤
1

β0
max
x
|F̃ (ũ)− F (ũ)|.

Proof. Let z = u− ũ. Then

εz′′ − az′ + F (u)− F̃ (ũ) = 0,

z(0) = 0, z′(L) + g′(s)z(L) = 0,

which implies

εz′′ − az′ +
F (u)− F (ũ)

u− ũ
z = F̃ (ũ)− F (ũ),

z(0) = 0, z′(L) + g′(s)z(L) = 0.

An application of the maximum principle leads to the assertion.

Corollary 1. Let F (u) is a monotonous function on each grid interval. If for
all n = 1, 2, . . . , N

|F (uhn)− F (u
h
n−1)| ≤ Δ,

then

‖uh − [u]‖ ≤
1

β0
Δ, ‖uh − [u]‖ = max

n
|uhn − u(xn)|.

Thus, condensing a grid and solving a boundary value problem on series of
meshes, we can achieve the necessary accuracy of the difference scheme.
If we replace the problem (5) by the problem:

εũ′′ − aũ′ +K(B − ũ)f(u) = 0,
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ũ(0) = A, ũ′(L) = γ(ũ(L)−B) + β(ũ(L)), (9)

where f(u(x)) = exp(−E/u(xn)) at x ∈ Δn, then we obtain the difference
scheme:

τn+1 exp(−λ1n+1hn+1)

φn+1 − 1
uhn+1 −

(
λ2nφn − λ

1
n

φn − 1
+
λ2n+1 − λ

1
n+1φn+1

φn+1 − 1

)
uhn+

+
τn exp(λ

2
nhn)

φn − 1
uhn−1 = B

(
λ1n + τn exp(λ

2
nhn)− λ

2
nφn

φn − 1
+

+
λ1n+1φn+1 + τn+1 exp(−λ

1
n+1hn+1)− λ

2
n+1

φn+1 − 1

)
,

uh0 = A,
(λ2NφN − λ

1
N )u

h
N − τN exp(λ

2
NhN )u

h
N−1

φN − 1
= γ(uhN −B)+

+B
λ2NφN − λ

1
N − τN exp(λ

2
NhN )

φN − 1
+ β(uhN ),

where τn = λ
2
n − λ

1
n, φn = exp(hnτn).

Now we turn to investigate the accuracy of the upwind difference scheme for
problem (5):

Lhnu
h = 2ε

hn(u
h
n+1 − u

h
n)− hn+1(u

h
n − u

h
n−1)

hnhn+1(hn + hn+1)
− a
uhn − u

h
n−1

hn
+ F (uhn) = 0,

uh0 = A,
uhN − u

h
N−1

hN
+ g(uhN ) = 0. (10)

Let zh = uh − [u]. Using results of [3], we obtain

|Lhnz
h| ≤ C

∫ xn+1
xn−1

[ε|u′′′(s)|+ |u′′(s)|] ds.

Assuming that for n

εhn max
x∈Δn

|u′′′(s)|+ hn max
x∈Δn

|u′′(s)| ≤ Δ, (11)

we find |Lhnz
h| ≤ CΔ. Next using the maximum principle, we can prove, that in

this case |uhn − u(xn)| ≤ CΔ for every n.
Thus, by condensing of the grid Ω it is possible to provide the required

accuracy of the difference scheme. To fulfill the condition (11) it is necessary
to calculate approximately u′′

n, u
′′′
n in terms of u

h
n. At modelling of chemical

reactions the function u(x) has great gradients on an internal boundary layer
and for calculation of these derivatives we can not use difference approximations.
We can find derivatives u′′

n, u
′′′
n from degenerate equation au

′ = F (u). Then the
inequality (11) has the form:

εhn

a3
|F ′′
nF

2
n + F

′2
n Fn|+

hn

a2
|F ′
nFn| ≤ Δ.
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Consider the iterative method for the nonlinear difference scheme (10):

ε
hn(u

k
n+1 − u

k
n)− hn+1(u

k
n − u

k
n−1)

hnhn+1(hn + hn+1)
−a
ukn − u

k
n−1

hn
−Mukn = −F (u

k−1
n )−Muk−1n ,

uk0 = A,
ukN − u

k
N−1

hN
+M1u

k
N =M1u

k−1
N − g(uk−1N ).

Lemma 2. Let

−B0 ≤ F
′(u) ≤ −β0 < 0, 0 < β1 ≤ g

′(u) ≤ B1, (12)

M =
B0 + β0
2

, M1 =
B1 + β1
2

,

then

‖uh − uk‖ ≤ q‖uh − uk−1‖, q = max
i=0,1

{
Bi − βi
Bi + βi

}
.

This method has the property of monotone convergence, even if conditions
(12) are not fulfilled, but in this case we can not estimate the number of itera-
tions.

4 Numerical Experiments

Consider the iterative method for the upwind difference scheme on an uniform
grid:

ε
ukn+1 − 2u

k
n + u

k
n−1

h2
− a
ukn − u

k
n−1
h

+K(B − ukn) exp(−E/u
k−1
n ) = 0,

Fig. 1
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Table 1

L boundary conditions
Dirichlet Neumann m = 0 m = 1

5 8.975 0.034 0.040 0.0016
10 5.023 0.211 0.024 0.0009
20 0 0 0 0

uk0 = A,
ukN − u

k
N−1
h

− γukN = −Bγ + β(u
k−1
N ).

On Figure 1 the graph of the solution of the problem (5) is displayed at
ε = 0.001, A = 10, B = 20,K = 300, E = 100, h = 0.01.
The accuracy of a boundary condition transfer from infinity was compared

on the base of conditions Dirichlet u(L) = 0 and Neumann u′(L) = 0 and on the
base of extraction of steady manifold with transition to a problem (5). In the
last case was used asymptotic expansions with m = 0 m = 1. As the solution
of the scheme on the infinite interval was considered a solution of scheme on
a large enough interval with length L0 = 100. Comparisons were performed at
L = 5, L = 10, L = 20. Let uh∞ is the projected solution from large interval.
In Table 1 the error δ = ‖uh − uh∞‖ is displayed depending on the boundary
conditions.
The results of computations confirm the advantage of the approach presented.
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Abstract. We show that unlike the bright solitons, the parametrically
driven kinks of the nonlinear Schrödinger equation are immune from
instabilities for all damping and forcing amplitudes; they can also form
stable bound states. In the undamped case, the two types of kinks and
their complexes can stably travel with nonzero velocities. The bistability
of the Bloch and Néel walls within the NLS contrasts the properties of
these solutions within the Ginzburg-Landau equation, where they cannot
stably coexist.

1 Introduction

We consider the parametrically driven, damped nonlinear Schrödinger (NLS)
equation, with the “defocusing” cubic nonlinearity

iψt +
1
2
ψxx − |ψ|2ψ + ψ = hψ − iγψ, (1)

where γ is the damping coefficient, and h is the amplitude of parametric driving
that should compensate dissipative losses of localized states in various media.
(Without loss of generality, one can consider h, γ ≥ 0.)

Eq.(1) has a number of applications in physics. In fluid dynamics, the “defo-
cusing” parametrically driven NLS governs the amplitude of the water surface
oscillations in a vibrated channel with a large width-to depth ratio [1, 2]. The
same equation arises as an amplitude equation for the upper cutoff mode in the
parametrically driven damped nonlinear lattices [3]. In the optical context, it was
derived for the doubly resonant χ(2) optical parametric oscillator in the limit of
large second-harmonic detuning [4]. Finally, Eq.(1) describes inhomogeneities of
the magnetisation of an easy-plane ferromagnet in an external field [5], and also
arises in the anisotropic XY -model [5, 6, 7].

The localized solutions forming in the defocusing media are domain walls,
or kinks, also known as “dark solitons” in the context of nonlinear optics. Our
purpose was to numerically explore the stability and bifurcations of dark solitons
of Eq.(1) and their bound states.
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2 Formulation of Problem; Numerical Techniques

Numerical study of Eq.(1) included three stages. First of all, we made numerical
continuation of stationary solutions of Eq.(1) in a wide range of parameters.
Next, we examined the stability properties of the stationary solutions apply-
ing a corresponding eigenvalue problem for the linearized operator. Finally, we
performed direct numerical simulation of time-dependent equation (1) for some
values of parameters.

For steadily travelling solutions we assumed the form ψ(x − V t), in which
case Eq.(1) reduces to an ODE

1
2
ψxx − iV ψx − |ψ|2ψ + ψ = hψ, (2)

where velocity V plays a role of additional parameter.
For the numerical solution of Eq.(2) we used the Newtonian iteration with the

fourth-order Numerov’s finite-difference approximation. The calculations were
performed on the interval (-100,100), with the stepsize Δx = 5 · 10−3. The
numerical continuation procedure that we applied is described in [8]. As two
bifurcation measures of stationary solutions, we calculated the energy and mo-
mentum integrals:

E = Re
∫ (

|ψx|2
2

+
|ψ|4
2

− |ψ|2 + hψ2 +
|ψ(0)|4

2

)
dx, (3)

P =
i

2

∫
(ψxψ − ψxψ) dx. (4)

In the undamped case, integrals (3) and (4) of Eq.(1) are conserved. Stability of
stationary solutions was examined numerically, by computing eigenvalues of

Hϕ = λJϕ, (5)

where the column ϕ = (u, v)T ; the operator H has the form

H = −I

2
∂2
x +

(
3R2 + I2 + h 2RI − V ∂x + γ
2RI + V ∂x − γ R2 + 3I2 − h

)
and J is the skew-symmetric matrix:

J =
(

0 −1
1 0

)
.

The eigenvalue problem (5) is obtained by linearising eq.(1) about ψ = R+ iI in
the co-moving frame, and letting δψ = (u + iv)eλt. The solution is stable when
there are no eigenvalues with positive real part.

To solve (5), we used the Fourier expansion of eigenfunctions u and v:

u(x) =
N/2∑

m=−N/2
um exp(−iωmx), v(x) =

N/2∑
m=−N/2

vm exp(−iωmx), (6)
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Fig. 1. The momentum of the travelling Bloch and Néel walls (thick line) and their
nonoscillatory bubble-like complex (thin line). For |V | close to but slightly lower than c,
the wall attaches a small-amplitude bubble on each flank; this accounts for the turn of
the thick curve near |V | = c. The dotted segments of the continuous branches indicate
unstable solutions. This figure pertains to h = 1/15

where ωm = 2πm/L. Substituting Eqs.(6) into Eq.(5) gives us a matrix eigen-
value problem that was solved with the help of the standard EISPACK code.
Typically, we chose N = 600 modes on the interval (−L,L), with L = 30.

Finally, the direct numerical simulation of the time-dependent equation (1)
was performed with the help of the pseudospectral code developed in [9, 10].

3 Results of Numerical Study

Some stationary solutions of Eq.(1), localized and nonlocalized, are known ex-
plicitly. First, there is a pair of flat solutions. One of them is always unstable;
the other one is stable for all h ≥ γ ≥ 0. It reads

ψ(0) = iAeiθ, (7)

where
A =

√
1 +

√
h2 − γ2, θ =

1
2

arcsin
γ

h
. (8)

Next, one nonhomogeneous solution is known in literature as the Néel wall [1, 2,
4]:

ψN (x) = iA tanh(Ax)eiθ. (9)
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One can show, analytically, that the Néel wall is stable for all h and γ (with
h ≥ γ ≥ 0) [5].

In the undamped case, the Néel wall (9) coexists with another solution that
is also available analytically [11]:

ψB(x) = iA tanh(2
√
hx)±

√
1− 3h sech(2

√
hx). (10)

This solution is usually referred to as the Bloch wall; numerical stability analysis
reveals that the Bloch wall is stable throughout its existence region (which is
h < 1

3 and γ = 0). Other solutions of Eq.(1), both quiescent and travelling, were
obtained numerically.

3.1 The Case of Zero Damping

In the case γ = 0, we have found that the Bloch and Néel walls can travel
with nonzero velocity. The corresponding dependence P (V ) [where P is the
momentum defined by eq.(4)] is shown in the diagram Fig.1. The distinction
between the Bloch and Néel walls becomes less visible as the velocity V grows.
When V = w, the two branches merge. This scenario is similar to the case of
easy-axis ferromagnets [12], where w corresponds to Walker’s velocity.

Our numerical analysis of eq.(5) shows that the entire Bloch-Néel branch of
travelling walls is stable. This coexistence of two stable kinks is in contrast with
the relativistic

1
2
(ψtt − ψxx) + |ψ|2ψ − ψ + hψ = 0 (11)

and diffusive
ψt =

1
2
ψxx − |ψ|2ψ + ψ − hψ (12)

counterparts of eq.(1) — in both eq.(11) and eq.(12), the Bloch wall is the only
stable solution in the region h < 1

3 , where the Bloch and Néel walls coexist
[7, 13, 14].

We also found other travelling solutions, namely bubble-like bound states of
a Bloch wall and a Néel wall. The corresponding P (V ) curve is also shown in
Fig.1. The point of special interest of this curve is V = 0. At this point, similar
to the bright solitons case [15], there is a one-parameter family of bound states,
with the parameter z characterising the separation distance between the two
walls. Members of this family are generally unstable, nonsymmetric complexes
of Bloch and Néel walls. However, there is a particular separation z = ζ for
which the bubble is symmetric: ψζ(−x) = −ψζ(x). For h = 1/15, the analytical
form of the symmetric bubble is available:

ψζ(x) = iA
[
1− (3/4) sech2 (Ax/4∓ iπ/4)

]
. (13)

Our numerical study showed that the symmetric bubble has the largest momen-
tum over bubbles with various z; at the same time, ζ is the smallest possible
separation: z ≥ ζ. The symmetric bubble is the only stable bubble. Further-
more, for each h, only the symmetric, stable bubble can be continued to nonzero
velocity.
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As |V | → c =
√

1 + 2h +
√

4h(1 + h) (which is the minimum phase velocity
of linear waves), the bubble degenerates into the flat solution (7). On the other
hand, when V, P → 0, the bubble transforms into a pair of Néel walls with the
separation z → ∞. The entire branch of moving bubbles is stable, with the
exception of a small region between V = 0 and the point of maximum |P |, inside
which a real pair ±λ occurs (Fig.1). The change of stability at points where
dP/dV = 0 is explained in [15].

3.2 The Dissipative Case

A natural question is which parts of the bifurcation diagram Fig.1 persist for the
case of nonzero γ. This problem was studied in [16] for bright solitons. When
γ �= 0, the energy and momentum are, in general, changing with time:

Ṗ = −2γP,

Ė = γ

∫
(|ψ(0)|4 − |ψ|4)dx− 2γE,

and therefore in order to be continued to nonzero γ, a steadily travelling soliton
has to satisfy

P = 0

and

E =
1
2

∫
(|ψ(0)|4 − |ψ|4)dx.

In fact, only the first condition needs to be ensured for the continuability. Indeed,
for ψ = ψ(x− V t), Eq.(1) with γ = 0 yields the identity

V P = E − 1
2

∫
(|ψ(0)|4 − |ψ|4)dx,

and hence if P = 0,

E =
1
2

∫
(|ψ(0)|4 − |ψ|4)dx

immediately follows. Since P = 0 only at the stationary Néel wall, we conclude
that no other solutions can be continued to small nonzero γ.

In the case γ �= 0, we obtained, numerically, a new solution with V = 0. This
is the stationary bubble-like complex of two Néel walls. The typical shape of
this solution is shown in Fig.2a. Our simulations revealed a corridor of h values,
h1(γ) < h < h2(γ), where two Néel walls attract and form this stable, stationary
bubble. This corridor is shown in Fig.2b (shaded region). The inset depicts the
energy (4) of the bubble as it is continued in h for fixed γ = 0.35. Note that this
solution is not continuable to γ = 0.
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Fig. 2. (a) The stable, stationary bubble-like solution in the case of nonzero damping.
Here h = 0.617, γ = 0.35. (Solid line: real part; dashed line: imaginary part.) (b) Main
panel: the existence and stability diagram of the damped bubble on the (γ, h)-plane.
Solid lines bound the band-like region of the bubble’s existence; its shaded subregion
gives the stability corridor.
Inset: the energy of the bubble as a function of h for fixed γ = 0.35. Here, the solid
and dashed branches represent stable and unstable solutions, respectively. The solid

line terminates at h ≈
√

1
9 + γ2, at which point the distance between the bound walls

becomes infinite. The dashed line terminates at h = γ, where the bubble degenerates
into the flat solution (7)
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4 Concluding Remarks

In summary, we have shown that:

– Unlike the bright solitons, the parametrically driven kinks are immune from
instabilities for all dampings and forcing amplitudes; they can also form
stable bound states.

– In the case of zero damping, the two types of stable kinks (Bloch and Néel
walls) and their complexes can move with nonzero velocities. The moving
solitons are also stable.

– Of all the undamped solutions, only the stationary Néel wall can be continued
to nonzero γ.

– For nonzero γ, two Néel walls can form a stationary bound state. This bound
state exists for a wide range of values of h and γ, but cannot be continued
to γ = 0.

The remarkable stability of the damped-driven kinks and their bound states is
in sharp contrast with stability properties of the bright solitons, which become
unstable when the parametric driving strength exceeds a certain (rather low)
threshold [10, 15, 17, 18]. Finally, the stable coexistence of two types of domain
walls is also worth emphasising; this multistability is not observed in the para-
metrically driven Klein-Gordon and Ginzburg-Landau equations [eqs.(11) and
(12)].

We thank Nora Alexeeva for writing a pseudospectral code for the time-
dependent NLS (1). IB and SW were supported by the NRF of South Africa
under grant 2053723; EZ by the Russian Fund for Basic Research (grant 03-01-
00657).

References

1. C. Elphick and E. Meron, Phys. Rev. A 40, 3226 (1989)
2. B. Denardo et al, Phys. Rev. Lett. 64, 1518 (1990)
3. B. Denardo et al, Phys. Rev. Lett. 68, 1730 (1992); G. Huang, S.-Y. Lou, and M.

Velarde, Int. J. Bif. Chaos 6, 1775 (1996)
4. S. Trillo, M. Haelterman and A. Sheppard, Opt. Lett. 22, 970 (1997)
5. I.V. Barashenkov, S.R. Woodford and E.V. Zemlyanaya. Phys. Rev. Lett. 90,

054103 (2003)
6. L.N. Bulaevskii and V.L. Ginzburg, Sov. Phys. JETP, 18, 530 (1964); J. Lajze-

rowicz and J.J. Niez, J. de Phys. 40, L165 (1979)
7. P. Coullet et al, Phys. Rev. Lett. 65, 1352 (1990); P. Coullet, J. Lega and Y.

Pomeau, Europhys. Lett. 15, 221 (1991); D.V. Skryabin et al, Phys. Rev. E 64,
056618 (2001)

8. E.V. Zemlyanaya and I.V. Barashenkov. JINR Preprint P11-2004-17, Dubna
(2004); Math. Modelling 67 (2004) (in press)

9. M. Bondila, I.V. Barashenkov and M.M. Bogdan, Physica D87, 314 (1995)
10. N.V. Alexeeva, I.V. Barashenkov and D.E. Pelinovsky, Nonlinearity 12, 103 (1999)
11. S. Sarker, S.E. Trullinger and A.R. Bishop, Phys. Lett. A 59 (1976) 255



Parametrically Driven Dark Solitons: A Numerical Study 597

12. A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Phys. Rep. 194, 117 (1990)
13. P. Hawrylak, K.R. Subbaswamy and S.E. Trullinger, Phys. Rev. D 29, 1154 (1984)
14. B.A. Ivanov, A.N. Kichizhiev and Yu.N. Mitsai, Sov. Phys. JETP 75, 329 (1992)
15. I.V. Barashenkov, E.V. Zemlyanaya and M. Bär, Phys. Rev. E 64, 016603 (2001)
16. I.V. Barashenkov and E.V. Zemlyanaya, SIAM J. Appl. Maths. 64 3, 800 (2004)
17. I.V. Barashenkov, M.M. Bogdan and V.I. Korobov, Europhys. Lett. 15, 113 (1991)
18. I.V. Barashenkov and E.V. Zemlyanaya, Phys. Rev. Lett. 83, 2568 (1999)



Numerical Investigation of the Viscous Flow in a
Bioreactor with a Mixer

Ivanka Zheleva1 and Anna Lecheva2

1 University of Rousse,
Technology College – Razgrad,

BG – 7200 Razgrad, POB 110, Bulgaria
izheleva@ru.acad.bg,

2 University of Rousse, Silistra branch
milen.anna@infotel.bg

Abstract. Tank reactors with different mixers are very often used for
many chemical and biological processes. For their effective use is nec-
essary to know in details hydrodynamics and mass transfer which take
place in them. For many practically important cases the experimental
study of these processes is very expensive, very difficult or impossible.
This is why recently mathematical modelling of the complex swirling
flows in such reactors becomes an effective method for investigation of
the behavior of the fluids in these reactors.

This paper presents mathematical model and numerical results for
viscous swirling flow in a cylindrical tank reactor with a mixer.

The model is based on the Navier-Stokes equations in cylindrical co-
ordinate system. These equations are written in terms of the stream
function, vorticity and the momentum of the tangential component of
the velocity. The flow is supposed to be stationary and axis-symmetric.
A special attention is devoted to the correct formulation of the boundary
conditions.

A numerical algorithm for studying this motion of the fluid is proposed
in [6]. The grid for the discretization of the equations is nonuniform.
Difference scheme of Alternating Direction Implicit Method for solving
Navier-Stokes equations is used.

Numerical results for the stream function, the velocity field and the
momentum of the tangential velocity for different Reynolds numbers are
obtained by this numerical algorithm. The results are presented graphi-
cally. They are discussed and compared with results of other authors. It
is observed a very good agreement between them.

Keywords: Stirred tank reactor, Navier – Stokes equations; axis-
symmetrical swirling viscous flow, numerical investigation.

1 Introduction

The industrial biotechnologies for production of foods, drinks, antibiotics etc.
are based on interdependent and very complex mass transfer processes, which
are usually conducted in apparatus with intensive mixing.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 598–605, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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For example the fermentation medium is a complex multiphase system with
inhomogeneous and dynamically changing characteristics during the processes.

Such mediums consist usually of three phases – solid, liquid and gaseous.
The liquid phase includes water, dissolved components, cell products, dispersed
particles, oil, etc. The solid phase consists of cells, maze flour and other similar
particles. The gaseous phase includes air bubbles with different concentration
of oxygen (O2), carbon dioxide (CO2) and nitrogen (N). In the gaseous phase
could be also volatile fermentation components. These three phases have to be
well homogenized through mechanical mixing and aeration. When the biomass
is aerated by air babbles, because of the low solubility of oxygen in water, the
oxygen is only partially absorbed and its concentration in the different fermen-
tation mediums varies within the limits 4− 7mg/l. Such a small concentration
of oxygen allows microorganisms to live only for several minutes, which leads to
the necessity of continuous aeration in the volume [1]. That is why the oxygen
concentration is considered as a most important factor for the biosynthesis. The
aeration conditions and mechanical mixing in biosynthesis processes to a con-
siderable extent define the characteristics of the final products. For this reason,
the role of the hydrodynamics of these processes is very important.

Because of the very high complexity of the biosynthesis, the literature does
not provide sufficient data to predict all the regimes and to effectively manage the
work of the equipment. The experimental optimization of the apparatuses where
such complex processes are conducted is very expensive and time-consuming
procedure. The only alternative to natural experiments is the computational
one, which allows a considerable reduction of costs and time for optimization of
the existing technologies or for creation of new ones.

A common practice for computational experiments is to use a hierarchy of
models. This method allows to evaluate the role of each parameter and to esti-
mate its influence on the technology effectiveness. Except that, if necessary, it
is possible to increase the model’s complexity in order to examine the process
more precisely.

In this paper, following such a scheme, we deal with one of the most important
factors for all biosynthesis – the hydrodynamics in apparatuses with mechanical
mixing and aeration.

2 Mathematical Model of the Problem

2.1 Geometrical Domain

The reactor is a cylinder with radius R and height Z. It is filled up by incom-
pressible viscous fluid. The mixer is attached to the axis of the cylinder on the
height H1 and it is rotating with constant angle velocity Ω. We assume in this
paper that the mixer is a solid disk with a given radius R1 and thickness L1
and it is attached in the middle of the cylinder axis. The motion of the vis-
cous fluid in the domain is due to rotating of the disk and we assume that it
is axis-symmetrical. The tank axis is a symmetry line for the investigated fluid
motion.
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(a) (b)

Fig. 1. Scheme of the tank reactor with a mixer (a) and the computational area (b)

It is convenient to introduce a cylindrical coordinate system (r, ϕ, z). The
first coordinate r is along the tank radius direction, the third coordinate z is
along the tank height direction and ϕ is an angle coordinate (see Fig. 1).

2.2 Basic Equations

We consider Navier – Stokes equations and continuity equation for incompress-
ible viscous steady state flow written in cylindrical coordinates (r, ϕ, z). We
assume that the fluid motion is axis-symmetrical which means that every un-
known function depends only on r and z but do not depend on the angle variable
ϕ. In this case the first derivative with respect to the angle ϕ is equal to zero
for all unknown functions, i.e. ∂

∂ϕ = 0. We will examine the flow in the reactor
long time after it has started rotating and we will look only for a stationary
solution, therefore the unknown functions do not depend on the time. Thus, the
Navier – Stokes equations written in the terms of stream function, vorticity and
momentum of the tangential velocity in dimensionless form are [3]:

∂
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1
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)
+

∂

∂z

(
1
r

∂ψ

∂z

)
= −ω (1)

1
r

∂rUM

∂r
+

∂WM

∂z
=

1
Re

[
r
∂

∂r

(
1
r

∂M

∂r

)
+

∂2M

∂z2

]
, (2)

∂Uω

∂r
+

∂Wω

∂z
− 1

r3

∂M2

∂z
=

1
Re

[
∂

∂r

(
1
r

∂rω

∂r

)
+

∂2ω

∂z2

]
, (3)

∂ (rU)
∂r

+
∂ (rW )

∂z
= 0, (4)

where −→V (U, V,W ) is the velocity vector with its components in the cylindrical
coordinate system, Re is the Reynolds number Re = ΩR2

ν , R and ΩR are the
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length and velocity scales, respectively, ψ is the stream function, −→ω = rot
−→
V =

(0, ω, 0) is the vorticity vector and M = rV is the magnitude of the momentum
of the tangential velocity.

The relation between components U and W of the velocity vector and the
stream function ψ in cylindrical coordinate system is as follows:

U = −1
r

∂ψ

∂z
, W =

1
r

∂ψ

∂r
. (5)

As a result we have five equations (1) – (5) and five unknown functions: the
stream function ψ, the magnitude of the momentum of the tangential velocity
M , the second component ω of the vorticity vector −→ω , the first U and the third
W component of the velocity vector.

2.3 Boundary Conditions

For the correct mathematical formulation of the problem it is necessary to define
appropriate boundary conditions for all unknown functions.

On all solid walls we have: −→V fluid = −→
V wall and ψ = const. The boundary

condition for the momentum of the tangential velocity is M = 0 except on the
solid disk, where M = r2/R2. The boundary conditions for the vorticity ω are
defined on the base of values of the stream function. Only on the symmetry line
we set up the boundary condition ω = 0, [3, 5, 6].

Thus, we have Dirichlet boundary conditions for all unknown functions. The
problem is to find out a solution of the system (1) – (5) which satisfies the defined
boundary conditions.

3 Numerical Algorithm

A finite difference method for solving the Dirichlet boundary value problem is
developed in [5, 6]. It is based on a construction of a special non-uniform grid
with condensation close to the solid boundaries of the domain. The equations
(1) – (5) are approximated by finite differences on the non-uniform grid by a
5-point star stencil.

The ADI difference schemes are based on introducing a fictitious time t into
the equation (2) for the momentum of the tangential velocity M an into the
equation (3) for the vorticity ω. It is well known [4] that if the boundary condi-
tions of the unknown functions does not dependent on the time then at t →∞
the solution of the parabolic differential equations system will converge to the
solution of the stationary system (2), (3). In the ADI methods the step size τ of
the fictitious time t is realized into two time layers – k+ 1/2 and k+ 1. So that,
for each equation the coefficient matrices on each time layer are tri-diagonal, [3].
More details for ADI scheme, which is used here, can be found in [3, 4].

The equation (1) for the stream function ψ can be solved by different ways,
[3, 4]. One of them is to introduce its own fictitious time t1 different from the
time t. The ADI scheme for the stream function is described in [3].
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The equations of the momentum and of the vorticity are integrated together.
The stationary solution of the equation of the stream function have to be ob-
tained on each iteration for M and ω.

The solution is considered to be convergent if

P f (k) =
max
i,j

∣∣fk+1
i,j − fki,j

∣∣
max
i,j

∣∣fk+1
i,j

∣∣ ≤ εf , (6)

where f is any of functions: the vorticity ω, the momentum M and the stream
function ψ, k + 1 is the current iteration with respect to fictitious time t, εf is
the accuracy constant.

3.1 Numerical Results and Discussion

All numerical results are obtained on the computational area, given on Fig. 1 (b)
with following values of geometrical parameters: Z/R = 3; H1 = 1.5; R1 = 0.4;
L1 = 0.125. The value of the accuracy constant of the stream function ψ is
εψ = 10−6 for all Reynolds numbers. All results presented in this section are
obtained using accuracy constants εω = 10−4 and εM = 10−4.

The results for the stream function ψ, obtained for different Reynolds number
in the interval 50 ≤ Re ≤ 1000 are presented on Fig. 2.

(a) (b) (c) (d)

Fig. 2. Stream function lines for different Reynolds numbers: Re = 50, 100, 500, 1000

Values of lines are: ±2.1069e − 005; ±3.1432e − 005; ±4.6891e − 005; ±609953e − 005;
±0.00010436; ±0.00015568; ±0.00023225; ±0.00034648; ±0.00051689; ±0.0007711;

±0.0011503; ±0.0017161; ±0.0025602; ±0.0038193; ±0.0056977; ±0.0085
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(a) (b) (c)

Fig. 3. Results for Re = 1000, εω = 10−4; (a) Velocity field; (b) Stream-function ψ;
(c) Momentum M

Let us mentioned that for all unknown functions zero initial conditions are
used. It is observed in all cases that the dominant flow structure in the system
is two ring vortices. First of them is formed below the mixer and the second one
is formed above the mixer. Their positions and size are found to be depended on
the Reynolds number and on the position of the mixer. The values of the stream
function are positive numbers above the mixer and the values of the stream
function are negative numbers below the mixer.

From Fig. 2 easily can be seen that when the Reynolds number increases the
centers of the two observed vortices becomes closer to the mixer and to the wall
of the reactor. These results are in good agreement with the results, received by
Lamberto et al. [2].

The numerical results for the velocity field −→V , the stream function ψ and the
momentum M are graphically presented on Fig. 3 for Re = 1000.

As it was mentioned above Lamberto et al (see [2]) have studied similar
problems. Some results from an experimental study and from computational
simulations can be found in [2]. Now we will present some comparison results
of our computer simulations and their experiments. The following values of ge-
ometrical parameters are used in [2]: Z/R = 2.2; H1 = 0.7R; R1 = 0.38R and
the values of the Reynolds number are 8 < Re < 70.

We provide our computations for the same values for the parameters as in [2].
But the number of points in our non-uniform grid is approximately 12 000 and
our simulation requires 3 hours CPU time for PC computer while approximately
150 000 points and 1 000 hours CPU time for SUN SPARC 20 workstation are
reported in [2].
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Table 1. Center positions

Re x∗
exp x∗

sim zPW
sim 〈%x∗〉 〈%zPW 〉 r∗

exp r∗
sim rPW

sim 〈%r∗〉 〈%rPW 〉
Upper
8.64 1.48 1.40 1.46 - - 1.39 1.32 1.40 - -
17.28 1.40 1.35 1.39 5 5 1.39 1.40 1.44 3 1
34.56 1.35 1.30 1.33 4 4 1.45 1.57 1.56 8 6
51.84 1.31 1.29 1.30 2 2 1.66 1.71 1.68 12 11
69.12 1.28 1.28 1.28 1 2 1.75 1.80 1.76 5 5
Lower
8.64 0.58 0.65 0.59 - - 1.30 1.24 1.36 - -
17.28 0.64 0.67 0.63 7 9 1.30 1.34 1.40 4 1
34.56 0.65 0.70 0.69 3 6 1.43 1.53 1.52 12 9
51.84 0.71 0.71 0.70 5 5 1.62 1.68 1.64 12 11
69.12 0.74 0.72 0.72 3 4 1.72 1.79 1.76 6 7

∗ Lamberto et. al. work
PW Present work

Fig. 4. Positions of centers for different Re (from Table 1): dark points - Lamberto
et.al. simulation [2]; + and o - present work simulation

The structure of the fluid motion in the examined stirred reactor which was
received by our computational simulations is the same as the reported by Lam-
berto et al [2].

In the Table 1 we present results for the positions of the loops centers from
the experiments and simulations of Lamberto et al. [2] and from our simulations.
The very good agreement for the two coordinates (r, z) of the loops centers is
observed. For z-coordinate our simulations and Lamberto’s simulations differ
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from the experiments 0-3% only. For r-coordinate our simulations are closer to
the experiments than Lamberto’s simulations.

In the next Fig. 4 one could see positions of the centers of the two circular
loops for different Reynolds numbers for both Lamberto et.al. (dark points)
and our (+ and 0) simulations. Here a very good agreement is also observed.
Practically these positions differ only for Reynolds numbers 8.64 and 17.28 and
this difference is in the frame of 5-7%.

4 Conclusion Remarks

Numerical study of hydrodynamics in a tank reactor with a mixer is presented.
This investigation is made on the base of the developed in [5, 6] numerical
method. Stationary solutions with zero initial conditions are obtained. The nu-
merical results for the stream function, velocity field and magnitude of the mo-
mentum of the tangential velocity are graphically presented. It is find out that
the dominant structure of the flow in such stirred reactors is two ring vortices
above and below the mixer. The comparison of our results and other experimen-
tal and numerical results are in a very good agreement. The proposed numerical
algorithm seems to be very useful and economical. The presented numerical ap-
proach could be used for further studying of hydrodynamics processes in differ-
ent biotechnologies, especially for flow structure in apparatuses with mechanical
mixing and aeration. It is a good base also for further investigation of the mass
transfer in some bioreactors.
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Abstract. For a nonlinear model of a wastewater treatment process
the input-output static caracteristics are studied with respect to uncer-
tainties in process parameters. Computer simulations and visualizations
are performed in Maple to show how these uncertainties influence the
efficiency of the bioreactor.

1 Introduction

Clean water is essential for health, recreation and life protection among other
human activities. The activated sludge processes are most widely used biological
systems in wastewater treatment. These processes are very complex due to their
nonlinear dynamics, large uncertainty in uncontrolled inputs and in the model
parameters and structure [5].

The activated sludge wastewater treatment process is carried out in a system,
which consists of an aeration tank and a secondary settler (see Figure 1). It is
assumed that the hydraulic characteristics of aeration tank are those of a con-
tinuously stirred tank bioreactor with cell recycle. Ideal conditions are assumed
to prevail in the settler [2].

Using mass and energy balance equations, the dynamical model of the process
in the bioreactor is described by the following two nonlinear ordinary differential
equations [3]

dx

dt
= μx + rDxr − (1 + r)Dx (1)

ds

dt
= −kμx + D(sin − s) (2)

1 This research has been partially supported by the Bulgarian National Science Fund
under contract No. MM-1104/01.

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 606–612, 2005.
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Fig. 1. Schematic diagram of the sludge wastewater treatment process

where x = x(t) and s = s(t) are state variables,

x is biomass concentration (activated sludge) [mg/l],
s is substrate concentration (biological oxygen demand) [mg/l],
D is dilution rate [1/h],
sin is influent substrate concentration [mg/l],
xr is recycle biomass concentration [mg/l],
μ is specific growth rate [1/h],
r is sludge recycle ratio
k is yield coefficient.

The specific growth rate μ = μ(s) is presented by the Monod law

μ(s) =
μm · s
ks + s

,

where μm and ks are kinetic process parameters.
It is assumed that the control input is u = D(t) and the output is y = s(t)

or y = x(t).
The main difficulty in controlling the activated sludge wastewater treatment

processes comes from the variation of the process parameters and the influent
waste load. These variations induce process state changes that may lead to a
reduction of the water treatment efficiency, unless the plant operation is contin-
uously adjusted.

Therefore, to overcome this problem, the steady state analysis has been per-
formed. The activated sludge process steady state may critically depend on the
process parameters and on the value of the influent waste load.

Practical investigations and computer simulations show that the parameters
sin, xr and r in the model (1)–(2) are unknown but bounded. Assume now that
instead of numerical values for sin, xr and r we are given intervals [sin], [xr] and
[r] respectively.

The aim of this paper is to study the input-output static characteristics
ys(u) = s(u) and yx(u) = x(u) involving intervals in the above mentioned pa-
rameters. Using advanced techniques from recently developed interval analysis
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we compute the so called interval static characteristic which presents the set of
all functions ys(u), yx(u) for any values of the coefficients in the given intervals.

The paper is organized as follows. In Section 2 the interval input-output static
characteristics of the dynamic process are obtained. Some numerical results and
graphic presentations in the computer algebra system Maple are reported in
Section 3.

2 Interval Static Characteristics

The static model of the process is delivered from (1)–(2) by setting the right-
hand side functions equal to zero. Thus we obtain the nonlinear algebraic system
with respect to s and x

μ(s) · x + ruxr − (1 + r)ux = 0
k · μ(s) · x− u(sin − s) = 0

or more precisely, (
μms

ks + s
− (1 + r)u

)
x + ruxr = 0 (3)

k
μms

ks + s
x− u(sin − s) = 0. (4)

By expressing x = x(s, u) from the second equation (4) and then substituting
it in the first one we obtain the quadratic equation with respect to s

as2 + bs− c = 0

where

a = (1 + r)u− μm, b = μmkrxr − sin((1 + r)u− μm) + (1 + r)uks,
c = (1 + r)ukssin.

Its discriminant is given by

Δ(u) = b2 + 4ac
= (μmkrxr − sin((1 + r)u− μm)− (1 + r)uks)2 + 4μmkrxr(1 + r)uks.

Obviously, Δ(u) > 0 for any u ≥ 0 is valid. The two roots, s1(u) and s2(u) are
then

s1(u) =
−b +

√
Δ(u)

2a
=

2c√
Δ(u) + b

, s2(u) =
−b−

√
Δ(u)

2a
.

Taking into account the biotechnological restriction 0 < s < sin, the second root
s2(u) is excluded from further consideration. Moreover, s1(u) satisfies

s1(u) < sin and lim
u→∞

s1(u) = sin.
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Thus the (biologically reasonable) steady state is s(u) = s1(u), that is

s(u) =
2ks(1 + r)usin√

Δ(u) + μmkrxr − sin((1 + r)u− μm) + (1 + r)uks
. (5)

Then (4) implies

x(u) =
u(sin − s(u))
k · μ(s(u))

. (6)

The functions
ys(u) = s(u), yx(u) = x(u) (7)

are called input-output static characteristics of the dynamic activated sludge
wastewater treatment process.

Assume now that the coefficients sin, xr and r in the model (3)–(4) are
enclosed by the intervals [sin] = [s−

in, s
+
in], [xr] = [x−

r , x
+
r ] and [r] = [r−, r+]

respectively.
For arbitrary but fixed u > 0 consider ys(u) = ys(u; sin, xr, r) and yx(u) =

yx(u; sin, xr, r) from (7) as functions of the variables sin, xr and r defined on the
vector with intervals in the components (interval vector) [z] = ([sin], [xr], [r]). As
a next step we shall compute the ranges of ys(u; sin, xr, r) and yx(u; sin, xr, r)
on [z]. The main difficulty here is the strong dependence (repeatability) on the
uncertain parameters in the expressions for ys(u) and yx(u) [4]. To overcome it
we shall use monotonicity properties of the functions with respect to sin, xr and
r. The gradients of ys and yx,

grad(ys) =
(

∂ys
∂sin

,
∂ys
∂xr

,
∂ys
∂r

)
grad(yx) =

(
∂yx
∂sin

,
∂yx
∂xr

,
∂yx
∂r

)
have constant signs with respect to each one of the components on [z], that is

∂ys
∂sin

> 0,
∂ys
∂xr

< 0,
∂ys
∂r

< 0;

∂yx
∂sin

> 0,
∂yx
∂xr

> 0,
∂yx
∂r

> 0.

Then the range of ys(u) = ys(u; sin, xr, r) and yx(u) = yx(u; sin, xr, r) on the
interval vector [z] = ([sin], [xr], [r]) is presented (see [1]) by

[ys](u) = [y−
s (u), y+

s (u)] = [ys(u; s−
in, x

+
r , r

+), ys(u; s+
in, x

−
r , r

−)],
[yx](u) = [y−

x (u), y+
x (u)] = [yx(u; s−

in, x
−
r , r

−), yx(u; s+
in, x

+
r , r

+)].

The functions [ys](u) and [yx](u) are interval-valued functions of the real vari-
able u. They are called interval input-output static characteristics of the process
(1)–(2) with respect to the outputs s and x respectively. They present the hull
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of all static characteristics ys(u) = ys(u; sin, xr, r) and yx(u) = yx(u; sin, xr, r)
when the coefficients sin, xr and r vary in the prescribed intervals.

The interval function [ys](u) is uniquely defined by its boundary functions
y−
s (u) and y+

s (u) that is [ys](u) = [y−
s (u), y+

s (u)] with y−
s (u) ≤ y−

s (u) for any
u > 0. We shall give explicit expressions for y−

s (u) and y−
s (u) now. Denote first

Δ1(u) = (μmkr+x+
r − s−

in((1 + r+)u− μm)− (1 + r+)uks)2

+ 4μmkr+x+
r (1 + r+)uks,

Δ2(u) = (μmkr−x−
r − s+

in((1 + r−)u− μm)− (1 + r−)uks)2

+ 4μmkr−x−
r (1 + r−)uks.

Then the boundary functions are presented by

y−
s (u) =

2ks(1 + r+)us−
in√

Δ1(u) + μmkr+x+
r − s−

in((1 + r+)u− μm) + (1 + r+)uks
,

y+
s (u) =

2ks(1 + r−)us+
in√

Δ2(u) + μmkr−x−
r − s+

in((1 + r−)u− μm) + (1 + r−)uks
.

The boundary functions y−
x (u) and y+

x (u) for [yx](u) can be computed simi-
larly by substituting sin = s−

in, xr = x−
r , r = r− and sin = s+

in, xr = x+
r , r = r+

in yx(u) respectively.

3 Numerical Experiments

From the literature and from practical experiments some average values for the
coefficients in the model (1)–(2) are known [3]:

μm = 0.35; ks = 100; k = 2;
sin = 250; xr = 2000; r = 0.2.

In our computer experiments the above values for the coefficients are consid-
ered as centers of the intervals. The radii are given by (α · α, α ∈ {sin, xr, r}
with 0 < (α < 1; (α is called deviation from α.

Thus

[sin] = [sin(1− (sin), sin(1 + (sin)],
[xr] = [xr(1− (xr ), xr(1 + (xr )],
[r] = [r(1− (r), r(1 + (r)].

Giving different values to (α, intervals [sin], [xr] and [r] with different radii
(widths) are obtained.
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Fig. 2. Plots of [ys](u) with �sin = 0.1 (left) and [yx](u) with �sin = 0.4 (right)

0

50

100

150

200

5 10 15 20

u

940

950

960

970

980

990

1000

1010

0 5 10 15 20

u

Fig. 3. Plots of [ys](u) with �xr = 0.3 (left) and [yx](u) with �xr = 0.007 (right)
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Fig. 4. Plots of [ys](u) with �r = 0.9 (left) and [yx](u) with �r = 0.04 (right)

All computations and visualizations are performed in the computer algebra
system Maple.

Assume first that only sin is uncertain, sin ∈ [sin], and the other two co-
efficients xr and r are exactly known, that is (xr

= (r = 0 (or equivalently
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[xr] = xr, [r] = r). Figure 2 shows the boundary functions of [ys]sin
(u) and

[yx]sin
(u) with different deviations.

Let be xr ∈ [xr] and [sin] = sin, [r] = r. Figure 3 visualizes the interval static
characteristics [ys]xr (u) and [yx]xr (u).

For r ∈ [r] and [sin] = sin, [xr] = xr Figure 4 presents the boundary functions
of [ys]r(u) and [yx]r(u).

4 Discussion and Conclusion

This work presents qualitative analysis of the input-output static characteristics
of the activated sludge wastewater treatment process involving uncertainties in
the inflow parameters. This analysis is necessary in order to design and operate
such system stable and efficiently.

The considered mathematical model of the process does not require special
bounds on the dilution rate u. In practice, an operating admissible upper bound
û for u always exists and depends on the technical caracteristic of the bioreactor.

Figure 2 shows that the large increase of u leads to strong decrease of the acti-
vated sludge concentration x, so that xmay become smaller than a technologically
givenminimal concentrationxmin.Thismaycause instability and inefficiencyof the
bioreactor. The left picture presents the strong influence of sin on ys(u) for small
values of u, whereas large values for u retain the width y+

s (u) − y−
s (u) of [ys](u)

near to the width s+
in − s−

in of [sin].
Figure 3 shows strong dependence of the activated sludge concentration x

with respect to the recycled biomass concentration xr. The left picture shows
that the deviations in xr have strong impact on s(u) in the first (exponential)
phase, but for large rates u it becomes negligible. Similar effects are observed on
Figure 4 as well.

The qualitative analysis is widely used in optimal control design of an acti-
vated sludge wastewater treatment process in the bioreactor.
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Abstract. We consider problems of quantum mechanics of Kuryshkin
which pass to eigenvalue problem of conventional quantum mechanics
when passing to the limit. From the demand of experimental confirmation
of the theory’s results are derived linearized equations for eigenstates of
observables. The method of solving derived equations is illustrated on
an example of hydrogen-like atom, for which were constructed matrices
Oij(H) and Oij(H2). An example of the solution is presented.

1 Quantum and Classical Mechanics in the Phase-Space
Representation

In the paper of Moyal [1], caused by the preceding paper of Wigner [2], was made
an attempt to interpret the conventional quantum mechanics as a statistical
theory. The author proposed to represent the averages of an observables A,
which take the form [3]:

〈A〉Ψ = (ÂΨ, Ψ) (1.1)

in the CQM, in the form of the integral by the phase-space with so-called quan-
tum distribution function (QDF) FΨ (q, p) :

〈A〉Ψ =
∫∫

dqdpA(q, p)FΨ (q, p). (1.2)

Reconciliation of the expressions (1.1) and (1.2) leaded the author of [1] to the
conclusion, that the use of the QDF of Wigner from the paper [2] in the capacity
of FΨ with the necessity requires to represent the operators Â(q̂, p̂) in the form,
proposed by Weyl [4].

In his paper [5] Shirokov has formulated the model (the concept) of the gener-
alized algebra of observables combining in itself both model of classical mechanics
and the model of quantum mechanics in the form of two pairs of operations σ0, π0
and σh, πh on the common set of observables, realized by functions A(q, p) on the
phase-space. As a realization of his model the author [5] demonstrated the Weyl
quantization rule and considered it’s passage to the limit σh → σ0 and πh → π0

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 613–620, 2005.
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while � → 0. In this connection Shirokov commented the papers of Moyal [1]
and Wigner [2] with their statistical interpretation of the Weyl–Wigner–Moyal’s
quantum mechanics.

His reasoning about the passage to the limit of the statistical construction
of the quantum mechanics into the classical statistical mechanics does not take
into account nonclassical character of the Wigner’s QDF (which is a generalized
function, satisfying to a pseudo-differential evolution equations). These singular-
ities were marked in the papers [6, 7] devoted to applications of QDF to different
concrete problems. In these papers was marked the non-classical character of
Wigner’s QDF as the authors of [2] himself wrote.

At the same time the problem of the validity of the passage to the limit while
� → 0 of the statistical (probabilistic) construction of the quantum mechanics
was considered into the papers [8, 9]. This problem was completed in the papers
of Kuryshkin [10, 11, 12] (see also the review [13]).

2 States with Minimal Dispersion in the Quantum
Mechanics of Kuryshkin

In the quantum mechanics of Kuryskin with non-negative QDF the operators
are defined [10, 11, 12, 13, 14] up to an arbitrary set of square-integrable on q
functions of mocking configuration space and time {ϕk(q, t)} normed by the
condition ∑

k

∫
|ϕk(q, t)|2dq = 1. (2.1a)

By virtue of their square integrability the functions ϕk permit the Fourier trans-
formation

ϕ̃(p, t) = (2π�)−n/2
∫

exp
{
− i

�
(q, p)

}
ϕk(q, t)dq. (2.1b)

Further is introduced the function of the mocking phase space and time
Φ(q, p, t) constructed with the help of auxiliary functions {ϕk} in the form

Φ(q, p, t) = (2π�)−n/2 exp
{
− i

�
(q, p)

}∑
k

ϕk(q, t)ϕ̃∗
k(p, t). (2.2)

The correspondence rule of the constructing the operators in the quantum me-
chanics of Kuryshkin is formulated as follows: to the classical function A(q, p, t)
corresponds the linear operator O(A) whose action on an arbitrary Fourier trans-
formable function Ψ(q, p) is defined by the relation

[O(A)Ψ ](q, t) = (2π�)−n
∫

Φ(ξ − q, η − p)A(ξ, η, t)×

exp
{

i
�

((
q − q′), p),}Ψ(q′)dξdηdq′dp. (2.3)

Then are valid two equivalent ways of evaluation the averages (experimentally
measured) 〈A〉 of an arbitrary observable quantity A :
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a) the quantum-mechanical average

〈A〉Ψ =
∫

Ψ∗(q, t)[O(A)Ψ ](q, t)dq (2.4a)

and
b) the quantum-statistical average

〈A〉Ψ =
∫

A(q, p, t)FΨ (q, p, t)dqdp (2.4b)

so that the relation

FΨ (q, p, t) = (2π�)−n
∑
k

∣∣∣∣∫ ϕ̃∗
k(q − ξ, t)Ψ(ξ, t) exp

{
− i

�
(ξ, p)

}
dξ

∣∣∣∣2 (2.5)

determines the correspondence between the wave function and the probability
distribution in the phase-space.

As in every statistical theory in the quantum mechanics of Kuryshkin1 an
important role plays the degree of incertainty of an average 〈A〉Ψ the quantitative
measure of which is it’s dispersion:

〈(ΔA)2〉Ψ =
〈
O
(
(A− 〈A〉Ψ )2

)〉
Ψ
. (2.6)

The main task of the conventional quantum mechanics is to find the states of
the physical system described by the eigenwavefunctions of the operators of the
observable A :

ÂΨ0
j = a0

jΨ
0
j . (2.7)

The dispersion of this observable in such states equal to((
Â− 〈A〉j

)2
Ψ0
j , Ψ

0
j

)
=

((
Â− a0

j

)2
Ψ0
j , Ψ

0
j

)
(2.8)

is identically equal to zero.
In the quantum mechanics of Kuryshkin in analogous states Ψj satisfying the

equation
O(A)Ψj = ajΨj (2.9)

the dispersion of observable A equal to(
O
((

A− 〈A〉j
)2)

Ψj , Ψj

)
=

(
O
(
A2)Ψj , Ψj)− 2a2

j + a2
j =(

O
(
A2)Ψj , Ψj)− (

O
(
A
)
Ψj , Ψj

)2
(2.10)

is not identically equal to zero.

1 The same concerns any quantization rule except for the Neumann’s one but the
authors do not know that these quantization rules would consider from the point of
view of dispersions of averages.
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In papers [11, 14] is shown that the quantum mechanics with non-negative
QDF on the subset of observables M0 goes over to the CQM when∑

k

|ϕk(q, t)|2→ δ(q) ⇔
∑
k

|ϕ̃k(p, t)|2→ δ(p). (2.11)

In the cases of auxiliary functions {ϕk} the relations (2.9), (2.10) differs from
the relations (2.7), (2.8).

In the quantum mechanics of Kuryshkin (QMK) takes place the eigenvalue
and eigenvector problem (2.9) the variational formulation of which has the form

(O(A)Ψ, Ψ)
(Ψ, Ψ)

→ min
Ψ 
=O

. (2.9a)

The solutions of the problem (2.9a) differs from the solutions of the correspond-
ing problem in CQM (

ÂΨ0, Ψ0
)

(Ψ0, Ψ0)
→ min

Ψ0 
=O
. (2.7a)

At the same time one may formulate the problem of statistical nature to find
the states with minimal dispersion(

O
((

A− 〈A〉Ψ
)2)

Ψ, Ψ
)

(Ψ, Ψ)
→ min

Ψ 
=O
(2.10a)

The analogous problem in CQM coincides identically with the problem (2.7a)
and in the eigenstates of the observable A the dispersion of A is identically equal
to zero and thus minimal. The solutions of the problem (2.10a) also differ from
the solutions of the problem (2.7a)2.

Let us note that similarly to the problems (2.7a), (2.9a) if Ψ is the solution
of the problem (2.10a) then c · Ψ also is it’s solution for ∀ c. Thus the solutions
of the problem (2.10a) are the one-dimensional subspaces (and their sums) so
that the problems (2.7a), (2.9a), (2.10a) may be reformulated in the equivalent
forms (

ÂΨ0, Ψ0
)
→ min

‖Ψ0‖=1
, (2.7b)

(O(A)Ψ, Ψ) → min
‖Ψ‖=1

, (2.9b)(
O
(
(A− (O(A)Ψ, Ψ))2

)
Ψ, Ψ

)
→ min

‖Ψ‖=1
. (2.10b)

2 All the three variational problems (2.7a), (2.9a), (2.10a) are solving in the same
Hilbert space L2(Q).



Numerical Search for the States with Minimal Dispersion 617

3 An Approximate Evaluation of the Eigenstates and of
the States with Minimal Dispersion

So we are considering three variational problems(
ÂΨ0, Ψ0

)
→ min

‖Ψ0‖=1
, (3.1)

(O(A)Ψ, Ψ) → min
‖Ψ‖=1

, (3.2)(
O
(
(A− (O(A)Ψ, Ψ))2

)
Ψ, Ψ

)
→ min

‖Ψ‖=1
, (3.3)

the first order necessary conditions of which (named Euler’s equations and con-
straints) take the form

ÂΨ0
j = a0

jΨ
0
j , ‖Ψ0

j ‖ = 1, (3.4)

O(A)Ψj = ajΨj , ‖Ψ‖ = 1, (3.5)

O
(
A2)Ψ − 2 (O(A)Ψ, Ψ)O(A)Ψ = 0, ‖Ψ‖ = 1. (3.6)

Both the solutions of (3.2) and (3.5) and the solutions of (3.3) and (3.6) differ
from the solutions of (3.1) and (3.4). And while the dispersions of the solutions
of (3.1) and (3.4) are equal to zero, the dispersions both of the solutions of (3.2)
and (3.5) and the solutions of (3.3) and (3.6) are not identically equal to zero.
Because of the fact that the predictions of the CQM are confirmed by experimen-
tal data, distinctions of the QMK would be confirmed by experimental data in
case of

(
|a1
j − a0

j |
/
|a0
j |
)
� 1 and

(
|a2
j − a0

j |
/
|a0
j |
)
� 1 where a2

j = (O(A)Ψj , Ψj)
– for (3.3) and (3.6). In just the same way the dispersions of the corresponding
solutions must satisfy the estimates(

δ1
j

/
|a0
j |
)
� 1,

(
δ2
j

/
|a0
j |
)
� 1.

Consequently the local minimums of the problems (3.2) and (3.5) and the prob-
lems (3.3) and (3.6) must be located in small neighborhoods of the local mini-
mums of the problems (3.1) and (3.4).

We shall look for the solutions of (3.2) and (3.3) in the form Ψ =
∑

cjΨ
0
j ,

where
{
Ψ0
j

}
is the full system of the solutions of the problem (3.1). Then in

coordinate form problems (3.2) and (3.3) take the form∑
i,j

Oij(A)cicj → min∑
i

c2
i
=1

, (3.7)

∑
i,j

Oij

⎛⎜⎝
⎛⎝A−

⎛⎝∑
i,j

Oij(A)cicj

⎞⎠⎞⎠2
⎞⎟⎠ cicj → min∑

c2
i
=1

, (3.8)

where Oij(A) =
(
O(A)Ψoi , Ψ

0
j

)
.
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We look for the solution Ψp of the problem (3.2) near the solution Ψ0
p of the

problem (3.1) in the form

Ψp =
∑
k

(δpk + δck)Ψ0
k . (3.9)

That means that we look for the solution of the problem (3.7) in the form

{cpk} = {δpk + δck} . (3.10)

The first order necessary conditions of the problem (3.7) has the form

∑
j

Oij(A)cpj −

⎛⎝∑
jk

Ojk(A)cpj c
p
k

⎞⎠ cpi = 0; i = 1, 2, . . . , (3.11a)

∑
i

(cpi )
2 = 1. (3.11b)

Because of the norming
∑
k

(cpk)
2 = 1 we have δcp = 0 so that

{cpk} =
{
δcp1, δc

p
2, . . . , δc

p
p−1, δpk, δ

p
p+1, . . .

}
. (3.12)

The first term of the sum (3.11) thus has the form

Oip(A) +
∑
j 
=p

Oij(A)δcj .

The first factor of the second term of (3.11) has the form

∑
j 
=p

⎛⎝∑
k 
=p

Ojk(A)δcjδck + Ojp(A)δcj

⎞⎠ +
∑
k 
=p

Opk(A)δck + Opp(A).

The second factor of the second term of (3.11) has the form (3.12) consequently
all the second term of the (3.11) has the form (up to the small’s of the first
order)

Opp(A)δci + 2
∑
j 
=p

Opj(A)δcjδpi.

Thus all the equation up to the small’s of the first order has the form∑
j 
=p

(Oij(A)−Opp(A)δij) δcij = −Oip(A). (3.13)

We look for the solution Ψ̃p of the problem (3.3) near the solution Ψ0
p of the

problem (3.1) in the form

Ψ̃p =
∑
k

(δpk + δc̃k)Ψ0
k .
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That means that we look for the solution of the problem (3.8) in the form
{c̃pk} = {δpk + δc̃k}.

The first order necessary conditions of the problem (3.8) has the form

∑
j

Oij
(
A2) c̃pj − 2

⎛⎝∑
i,j

Oij(A)c̃pi c̃
p
j

⎞⎠∑
j

Oij(A)c̃pj = 0, (3.14a)

∑
(c̃pi )

2 = 1. (3.14b)

As in case of (3.11b) we have from (3.14b)

{c̃pk} =
{
δc̃p1, δc̃

p
2, . . . , δc̃

p
p−1, 1, δc̃

p
p+1, . . .

}
. (3.15)

In just the same way from (3.14a) with regard to (3.15) we obtain up to the
small’s of the first order∑

k 
=p

(
Ojk(A2)−Opp(A)Ojk(A)− 2Ojp(A)Opk(A)

)
δc̃pk =

Ojp(A)Opp(A)−Ojp(A2); j = 1, 2, . . . .
(3.16)

As an example we consider Hamiltonian H(r,p) =
(
p2 /2μ

)
−

(
Ze2 /|r|

)
of the hydrogen-like atom in the quantum mechanics of Kuryskin. In pa-
pers [15, 16, 17] is shown, that the infinite-dimensional matrix Ojk(H) is sta-
bly approximated by finite-dimensional matrices {Ojk(H)}Nj,k=1 , where Nn =
n∑
k=1

k2 : N1 = 1, N2 = 5, N3 = 14. In just the same way one may prove

that the infinite-dimensional matrix Ojk(H2) is stably approximated by finite-
dimensional matrices

{
Ojk(H2)

}N
j,k=1 . For N3 = 14 we solve the systems of

linear algebraic equations (3.13) and (3.16) with matrices (see [17]) Oij(H), and
Oij(H2). Let us present for example in case N2 = 5 two matrices Mk received
with the help of two auxiliary functions ϕk so that Oij(H) =

∑
k

a2
kMk :

M1 =

∣∣∣∣∣∣∣∣∣
− (1.25 Z b−1.)

b2
− 0.18 Z

b
0. 0. 0.

− 0.18 Z
b

− (0.42 Z b−1.)
b2

0. 0. 0.

0. 0. − (−1.+0.49 Z b)
b2

0. 0.

0. 0. 0. − (−1.+0.49 Z b)
b2

0.

0. 0. 0. 0. − (−1.+0.49 Z b)
b2

∣∣∣∣∣∣∣∣∣,

M2 =

∣∣∣∣∣∣∣∣∣
− (0.42 Z b−0.25)

b2
− 0.018 Z

b
0. 0. 0.

− 0.018 Z
b

− (−0.33 Z b−0.25)
b2

0. 0. 0.

0. 0. − (0.33 Z b−0.25)
b2

0. 0.

0. 0. 0. − (0.33 Z b−0.25)
b2

0.

0. 0. 0. 0. − (0.33 Z b−0.25)
b2

∣∣∣∣∣∣∣∣∣.
Matrices M2

k for Oij(H2) =
∑
k

a2
kM

2
k have more complicated structure, so

we present here only the result of calculation.
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In case a3 = a4 = a5 = 0 we have for p = 2 :

δc21 ∼ (8.95a1 + 0.86a2)
/
{(41.5a1 + 5.95a2)− (a1 + 0.4a2) · 10−7 /Zb}

δ22 + δc22 = 1, c23 = c24 = · · · = c214 = 0.
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About the Iteration Method for Solving
Difference Equations

Valentin G. Zverev

Tomsk State University, Lenin Avenue 36,
Tomsk, 634050, Russia
zverev@niipmm.tsu.ru

Abstract. The new iteration line-by-line method with a variable com-
pensation parameter is proposed for solving a system of difference equa-
tions that arises from the implicit approximation of two-dimensional el-
liptic and parabolic differential equations. Calculations have shown that
the method’s convergence rate is insensitive to the variation of coeffi-
cients at high derivatives in differential equation and weakly depends on
a quantity of grid nodes. The use of computational technology is espe-
cially effective on detailed grids and allows to reduce a necessary number
of iteration steps up to two orders of magnitude as compared with the
initial line-by-line method.

Keywords: multidimensional differential equations, numerical calcula-
tions, difference equations, iteration methods.

1 Introduction

The numerical analysis of a wide circle of applied problems of mathematical
physics leads to the necessity of System of Linear Algebraic Equations (SLAE)
solution, which arises at discretization of the decision region and substitution
of the differential operators by difference analogues. Despite a rapid progress in
computing capacity, the problem of SLAE effective solution is one of the fun-
damentals in computational mathematics. Actuality of this problem at present
is more increased in connection with wide propagation of numerical calculations
and with the rise in requirements to their accuracy and rate of realization [1, 2].

Direct methods of the SLAE solution require a large on-line storage, and re-
sources of processing time, and are very sensitive to round-off errors. They are
seldom applied to a numerical analysis of the mathematical physics equations.
The iteration methods are used for this purpose. The successive overrelaxation
methods, alternating triangular methods, alternating direction implicit methods
(ADI), incomplete factorization methods, iterative ”α–β” algorithm and oth-
ers are wide used in solving multidimensional elliptic and parabolic problems
of computational fluid mechanics and heat transfer. The bibliography on this
problem is given in monographs [1–7].

Attractive feature of an extensive class of ADI methods is reduction of multi-
dimensional difference problem to a successive solution of one-dimensional prob-

Z. Li et al. (Eds.): NAA 2004, LNCS 3401, pp. 621–628, 2005.
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lems along coordinate directions. The simple and convenient scalar technique
based on the solution of three-point difference equations by Tri-Diagonal Matrix
Algorithm (TDMA) has received a wide recognition of researchers and propaga-
tion in practical calculations.

This methodology lies in a basis of line-by-line method (the terminology [8]).
For desired grid function from other coordinate directions the Seidel’s approach
is additional used. An experience of practical using [9, 10] have shown, that on
detailed grids this method frequently has a low convergence rate. Therefore, the
problem of increasing its efficiency is appeared.

A Modified Line-by-Line Method (MLLM) with conservation of initial tech-
nology were offered in [9, 10]. A block variant of this method was considered in
[11]. The considerable improvement in convergence is related to the increasing of
algorithm ellipticity. It is reached by the implicit consideration of difference flux
from other grid direction, and by the diminution a norm of iterative expression.

An accumulated experience in methods of incomplete factorization [2, 6] to-
gether with a diagonal compensation (the terminology [6]) with constant value
of iterative parameter have been used in [10] for this purpose. The parametric
analyses carried out in [10] have shown that the optimal value of compensation
parameter (nearly to 1) in the concrete problem allows sharp decreasing a neces-
sary quantity of iterations. It indicates the necessity of giving it a certain degree
of freedom, as the iteration situation strongly differs from a node to a node in
calculation domain. As it is mentioned in [2], the practical experience of a vari-
able compensation parameter application in incomplete factorization methods is
absent in the literature and a problem of its best value determination still waits
for the solution. Therefore the first empirical attempts in this direction, made
in given paper for increasing of MLLM effectiveness, represent certain interest.
It is create a basis for the further theoretical investigations and generalizations.

2 Mathematical Formulation of Problem

We consider a general stationary differential equation of convection-diffusion

∂ρuΦ

∂x
+

∂ρvΦ

∂y
=

∂

∂x

(
Γ
∂Φ

∂x

)
+

∂

∂y

(
Γ
∂Φ

∂y

)
+ SPΦ + SC , (1)

in two-dimensional rectangular domain G(x, y) supplemented with general bound-
ary conditions on the boundary Gk in the form

q1k
∂Φ

∂n
+ q2kΦ = q3k, (2)

where n is the outward normal to the boundary Gk, Φ is the desired function, ρ
is the density, (u, v) are the components of velocity field, SC , SP are the sources
of Φ. The coefficients Γ , SP , SC , q are piecewise continuous functions of (x, y)
and Γ > 0, SP ≤ 0. Equation (1) is the conservation law for the scalar variable
and is widely used in solving problems of convective heat transfer.
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We define on the G(x, y) a computational grid ω(xi, yi). Without going into
details of the equation (1) approximation, among a variety of its difference ana-
logues let us consider that, which are based on the five-point stencil and follow
from the integro-interpolation method [1, 12] or from the control volumes method
[8, 12]. The integral conservation laws are precisely executed in these methods
(hereinafter, we use the notation of [8]):

aPΦi,j − aEΦi+1,j − aWΦi−1,j − aNΦi,j+1 − aSΦi,j−1 = b, (3)

i = 1,m, j = 1, n;

aEm,j = aW 1,j = 0, aNi,n = aSi,1 = 0, aP ≥ aE + aW + aN + aS . (4)

The equality of the grid stencil coefficients on boundary of calculation domain
to zero in (4) corresponds to taking into account of the boundary conditions (2)
[2, 12]. Here b is the source term, the coefficients aE , aW , aN , aS , aP (> 0) specify
a particular form of the difference scheme, their subscripts (i, j) are omitted for
brevity. The corresponding expressions for these magnitudes are contained, for
example, in [8, 12]. The set of equations (3) for all values (i, j) form the SLAE
AΦ = B. The five-diagonal matrix of its coefficients is positively defined, has a
diagonal dominance and is monotone [2, 12].

3 Description of Iteration Method

Following [7, 10], we define the recurrent relations in j- and i-directions between
grid unknowns as

Φi,j+1 = ξi,jΦi,j + ηi,j , Φi+1,j = γi,jΦi,j + di,j , (5)

where (γ, d)i,j and (ξ, η)i,j are the desired coefficients. Successively substituting
expressions (5) in (3), and taking into account Φi,j implicitly, we receive the
two-stage algorithm for difference equations solution [10]:

− aWΦ
k+1/2
i−1,j +(aP − aNξki,j)Φ

k+1/2
i,j − aEΦ

k+1/2
i+1,j = aSΦ

k+1/2
i,j−1 +(aNηi,j + b), (6)

− aSΦ
k+1
i,j−1 + (aP − aEγ

k+1/2
i,j )Φk+1

i,j − aNΦk+1
i,j+1 = aWΦk+1

i−1,j + (aEdi,j + b), (7)

j = 1, n, i = 1,m.

Superscripts k, k+ 1/2, k+ 1 correspond to previous iteration step and the first
and second stages of the current iteration step, respectively. The last iteration
values are used for the grid function from the other direction in equations (6), (7)
(Seidel’s approach). Therefore Φi,j−1 in a right-hand side of equation (6) and
Φi−1,j in (7) have superscripts identical with the left-hand side of equations,
because these values are known from the solution in the lower located (j− 1)-th
row and the (i− 1)-th column, respectively.

The additional items in the equations (6), (7), containing (ξ, η)i,j and (γ, d)i,j ,
take into account an implicit influence of the unknowns and boundary conditions
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from other grid direction. It reflects the nature of elliptical equations. According
to [6], the solution of an elliptical equation in each point contains the information
on all sources in domain and boundary conditions. Difference equations (6), (7)
are the exact consequence of SLAE (3) and their solution needs a preliminary
determination of the recurrent relations coefficients. Thus, the determination
accuracy of the grid function Φi,j totally depends on the determination accuracy
of coefficients (ξ, η)i,j and (γ, d)i,j .

With this purpose we consider the equations for their calculation. Select the
transfer processes in j-direction in (3), having added the following expression
into the left-hand and into the right-hand parts of (3) :

gi,j(Φ) = −θi,j(aW + aE)Φi,j .

As a result we shall receive:

− aSΦi,j−1 + [aP − θi,j(aW + aE)]Φi,j − aNΦi,j+1 (8)

= b + aWΦi−1,j + aEΦi+1,j + gi,j(Φ).

The introduced expression, as well as in the incomplete factorization meth-
ods [2, 6], represent a diagonal compensation of the iterated expression in a
right-hand side of the equation (8). An admitted region for the compensation
parameter is θi,j ∈ [0, 1]. When θi,j is equal to zero, compensation is absent, and
the grid function on the i − 1 and i + 1 neighboring lines is taken into account
explicitly. When θi,j is equal to one, we have a difference representation of trans-
fer processes in j-direction for the left-hand side (8) and in i-direction for the
right-hand side (8). In a case Φi,j ≡ C1(yj) where C1 is a constant depending
from yj , we obtain the complete compensation of iterated expression.

Iteration values of grid function Φ in the right-hand side of the equation (8)
can have an arbitrary character. By the selection of the compensation parameter
θi,j in its admitted region ∈ [0, 1] we demand the iterated expression

Gi,j(Φ, θ) = aWΦi−1,j + aEΦi+1,j − θi,j(aE + aW )Φi,j

was equal to zero on any approximation for the grid function Φ. As a result, we
receive the following rule for evaluation θi,j

θi,j =

⎧⎨⎩0, θcalcEW ≤ 0,
θcalcEW , 0 < θcalcEW < 1,
1, θcalcEW ≥ 1

θcalcEW =
aEΦi+1,j + aWΦi−1,j

(aE + aW )Φi,j
, (9)

where subscript EW indicates nodes of the stencil, superscript calc corresponds
to the calculated value. It is necessary to note, that the formula (9) is precise
for the linear dependence of the grid function Φ on index i.

The left-hand part (8) represents the one-dimensional three-point equation,
therefore the recurrent coefficients of the required two-point relation may be
found by the left-hand TDMA [1]:

ξi,j−1 = aS/(a′
P − aNξi,j), ηi,j−1 = (b′ + aNηi,j)/(a′

P − aNξi,j), (10)
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(a) (b)

Fig. 1. The iterative algorithm scheme: ◦ — k,  — k+1/2, • — k+1 stages of
iteration step

i = 1,m, j = n, 2;

a′
P = (aP − θi,j(aE + aW )), b′ = b+ aEΦi+1,j + aWΦi−1,j − θi,j(aE + aW )Φi,j .

The processes of transfer in i-direction in the equation (3) are selected simi-
larly. After usage of diagonal compensation

fi,j(Φ, θ) = −θi,j(aS + aN )Φi,j

the equation (3) becomes

− aWΦi−1,j + [aP − θi,j(aS + aN )]Φi,j − aEΦi+1,j (11)

= b + aSΦi,j−1 + aNΦi,j+1 + fi,j(Φ).

By supposing in (11), that the iterated expression is equal to zero

Fi,j(Φ, θ) = aSΦi,j−1 + aNΦi,j+1 − θi,j(aS + aN )Φi,j ,

we receive the analogous (9) formula for calculation θi,j :

θi,j =

⎧⎨⎩0, θcalcNS ≤ 0,
θcalcNS , 0 < θcalcNS < 1,
1, θcalcNS ≥ 1

θcalcNS =
aNΦi,j+1 + aSΦi,j−1

(aN + aS)Φi,j
. (12)

Solving the equation (11) by left-hand TDMA, we receive the necessary coeffi-
cients of the two-point recurrent relation (γ, d)i,j in i-direction.

The two-stage scheme of the iteration algorithm is represented on fig. 1. The
light circles denote the grid function Φki,j computed on the preceding k-iteration
step. The triangles and black circles designate the grid function on the first,
(k+1/2), and the second, (k+1) stages of current iteration step. The algorithm
includes the following stages.

Stage 1. At the known field Φki,j , using (9) for calculation θi,j , we found (ξ, η)i,j
from equation (8), by applying the formulas (10) for left-hand TDMA [1]. Solving
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further the equations (6) for all lines j = 1, n, we obtain the field Φ
k+1/2
i,j (see

fig. 1a).

Stage 2. Using obtained Φ
k+1/2
i,j and formula (12) for calculation θi,j , from

equation (11) we found (γ, d)k+1/2
i,j , by applying the left-hand TDMA [1]. Solving

the equations (7) for all lines i = 1,m, we obtain the field Φk+1
i,j (see fig. 1b).

4 Computational Experiment

The estimation of practical convergence rate and effectiveness of the offered
iteration method for the SLAE solution (3), and also a comparison with other
algorithms, were carried out on the Dirichlet’s problem for a Poisson equation
with variable coefficients in a unit square (see [1]):

∂

∂x

(
a1

∂Φ

∂x

)
+

∂

∂y

(
a2

∂Φ

∂y

)
= −ϕ, (x, y) ∈ [0, 1], Φ|Gk

= 0 (13)

a1 = 1 + C[(x− 0.5)2 + (y − 0.5)2], a2 = 1 + C[0.5− (x− 0.5)2 − (y − 0.5)2],

c1 = 1 ≤ a1, a2(x, y) ≤ c2 = 1 + 0.5C, C = const.

Right-hand side ϕ(x, y) of (13) was chosen so, that the exact solution of
equation (13) corresponds to the test function Φ(x, y) = x(1 − x)y(1 − y). The
usual five-point difference scheme (3) of [1] was used for approximation of (13)
on the uniform grid ω = {(xi, yj) = (ih, jh), 0 ≤ i, j ≤ N, h = 1/N}. The
initial approximation was Φ0

i,j = 1. Varying the constant C, we change the ratio
c2/c1 and the region of coefficients a1, a2 in (13) (c2, c1 are their maximum and
minimum values).

The iteration process was monitored by the relative change in the norms of
the residual ‖rk‖/‖r0‖ and error ‖zk‖/‖z0‖ vectors:

zi,j = (Φi,j − Φ∗
i,j), ri,j = aPΦi,j −

∑
anbΦnb − b, ‖r‖ = (r, r)1/2,

where k is the number of current iteration, nb is a neighboring stencil’s nodes,
∗ notes the exact numerical solution computed in advance with high accuracy.

5 Numerical Results and Their Analysis

Figure 2 shows trajectories of the residual ‖rk‖ and error ‖zk‖ vectors during
iteration process. The curve 1 corresponds to the initial line-by-line method
[8], the curves 2, 3 are the modified method with constant parameter θ = 0
[9] and θ = 1 [10] respectively, the curve 4 is the given paper with the variable
compensation parameter θi,j . The curve of the Stone’s Strongly Implicit Method
(SIP) [13] (5) and the curve of Seidel’s method (6) are given for comparison. The
initial parameters of the problem are c2/c1 = 32, N = 32, ‖r0‖ = 197.
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Fig. 2. The dynamics of the residual rk and error zk vectors in iterative process. 1 —
LLM, 2 — LLM (θ = 0), 3 — MLLM (θ = 1), 4 — LLMVC (the given paper, θ =var),
5 — SIP [13], 6 — Seidel’s method. (N × N) = (32 × 32), c2/c1 = 32

Table 1. A quantity of the required iteration steps for accuracy ‖rk‖/‖r0‖ = 10−4 in
test problem

N × N c2/c1 SIP [13] LLM [8] MLLM LLMVC
θ = 0 [9] θ = 1 [10] θi,j =var

2 88 149 80 12 2
32 × 32 32 55 87 49 9 3

512 51 80 45 9 3
2 290 490 264 20 3

64 × 64 32 181 285 159 16 3
512 166 261 146 16 3
2 916 1544 833 32 3

128 × 128 32 576 907 505 27 3
512 525 833 454 27 3

The vectors of residual and error are shown by dotted curves 4 (the given work).
They are decreasing very rapidly (up to 4 orders) on the first 3–4 iterations, in con-
trast to other curves. On a smooth approximation their decreasing more than two
orders are observed already after the first iteration step. A comparison with curve
3 (θ = 1) shows that such effectiveness is entirely connected with the application
of the variable compensation parameter. Using a sequence of grids, we examined
the behavior of the iterative characteristics depending on the coefficients a1 and
a2 in (13) and the quantity of grid nodes. Table 1 shows the quantity k of iterations
for reducing the initial residual by a factor of 104 (i. e., ‖rk‖/‖r0‖ = 10−4). An
analysis of results shows that the offered algorithm practically does not depend
on the ratio of coefficients c2/c1 in comparison with the line-by-line method [8].
The convergence rate depends from a grid dimension very weakly. Therefore an
application of iteration method is most effective on detailed grids.

Thus, the results obtained confirm a high effectiveness of the proposed iter-
ation algorithm and are emphasized the necessity of implicit registration of the
difference fluxes (or their analogues) from all the grid directions. The integral
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form of the equation (3) represents a balance of the fluxes and sources for desired
variable, therefore the iteration method should reflect this nature. The select of
compensation parameter can be carried out by the different ways and here there
is a wide field of activity for future investigations. The results obtained are shown
the perspectives of using a variable compensation parameter in the solution of
difference equations.

6 Conclusions

The new iteration Line-by-Line Method with Variable Compensation parameter
(LLMVC) is offered for solving the difference equations which arise at the nu-
merical approximation of the two-dimensional elliptic and parabolic differential
equations. The scalar technology of an alternating direction method is retained
in algorithm. Its convergence rate is not sensitive to a variation of coefficients
at highest derivatives in differential equation and weakly depends on a quantity
of grid nodes. Test computations showed that the offered iteration method on
detailed grids allows reducing the quantity of required iteration steps by two
orders of magnitude in comparison with the initial line-by-line method [8] and
almost on the order in relation to its modified variant [10].
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Milovanović, E.I. 416
Milovanović, I.Ž. 416
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